SHORT PAPER
An outbreak of *E. coli* O157 infection with evidence of spread from animals to man through contamination of a private water supply

K. LICENCE¹, K. R. OATES¹*, B. A. SYNGE² AND T. M. S. REID³

¹Public Health Department, Highland Health Board, Assynt House, Beechwood Park, Inverness, IV2 3HG
²Scottish Agricultural College, Veterinary Science Division, Stratherrick Road, Inverness, IV2 4JZ
³Microbiology Department, Aberdeen Royal Infirmary, Aberdeen, AB25 2ZN

(Accepted 18 October 2000)

SUMMARY
An outbreak of *E. coli* O157 infection occurred in the Highland Region of Scotland in the summer of 1999. The source of the outbreak was traced to an untreated private water supply. All six cases identified arose in visitors to the area, and most had very limited exposure to the contaminated water. Permanent residents on the same supply were unaffected. The *E. coli* O157 isolates from the water, sheep faeces collected from around the source and the human stool samples were indistinguishable using pulsed field gel electrophoresis. Previously reported outbreaks of *E. coli* O157 linked to potable water supplies have resulted from structural or treatment failures, which allowed faecal contamination of source water. Here, contamination of the water supply and subsequent human infection was due to the use of an untreated, unprotected private water source in a rural area where animals grazed freely.

*Author for correspondence.

Escherichia coli O157 was first reported to have been isolated from water in 1989 [1]. Drinking water has been implicated in human *E. coli* O157 infection, but proven or strongly suspected outbreaks of the infection linked to potable water supplies remain infrequent, although such outbreaks have caused significant morbidity and mortality [2–8]. Contamination of water supplies with *E. coli* O157 is presumed to arise from faecal wastes from the main animal reservoirs (cattle, sheep and man). Due to the difficulty of isolating organisms from environmental samples however, confirmation of the likely source and route of contamination is rarely discovered. We are aware of only two previous outbreaks in the United Kingdom where there has been strong microbiological evidence of a connection between contamination of potable water supplies by animal faeces and human illness (personal communication) [4]. Here, we report on an outbreak of *E. coli* O157 infection in which strains of the organism, indistinguishable using pulsed field gel electrophoresis, were isolated from animals, a private water supply and the human cases.

This outbreak occurred in the summer of 1999 in Applecross, a small village on the west coast of Scotland. Over a 7-week period, six cases of *E. coli* O157 infection in tourists visiting Applecross were investigated by the Public Health Department of Highland Health Board (Table 1).

All of the cases were linked to a campsite, which was provided with untreated drinking water from a private supply that originated in a ‘spring’ in an area of land grazed by sheep and deer. Surveillance of the water was carried out by Protective Services (Environmental Health) officers from the Highland Council in accordance with current regulations. A sample taken 1 week prior to the first case of illness had failed bacteriological tests (total coliforms of 11 c.f.u./100 ml and *E. coli* of 15 c.f.u./100 ml), resulting in the issue of a ‘Boil Water’ notice. Further samples taken during the outbreak repeatedly showed levels of indicator organisms above the relevant Significant
The Private Water Supplies (Scotland) Regulations, 1992 prescribe sampling frequencies and standards for private supplies [16]. These regulations do not however, make specific reference to testing for the presence of E. coli O157 when waters fail to meet indicator organism standards, and practices vary between laboratories. Due to the very low infective dose of E. coli O157, significant risk of infection with this organism may arise in waters that only just meet standards for indicator organisms [17]. If E. coli O157 is detected, there is currently no national protocol for action by public and environmental health departments.

In the period July to December 1999, 39% of category two private water supplies tested in England and Wales (which includes supplies to hospitals, residential homes, holiday sites and food preparation premises) were positive for E. coli [18]. These statistics reveal the extent of the potential risk from private water supplies in areas where E. coli O157 is likely to be a contaminant.

E. coli O157 is often not isolated from water samples even when there is good circumstantial evidence that water is the source of the infection [19]. This may be due to inappropriate technique or insensitive culture methods, but also to the likely sporadic nature of such contamination, which makes...
multiple samples and rigorous analytical procedures essential.

Since the *E. coli* O157 present in the water may be ‘stressed’ they may only grow on first incubation at 37 °C and not at 44 °C. Hence they may be dismissed as coliforms if subculturing and further tests for O157 are not performed. Equally, since the levels of *E. coli* O157 in the water may be low direct plating of a routine 100 ml filtered sample may fail to demonstrate the organism. It is recommended that when there is a high index of suspicion a 5 l sample of water is filtered and tested by immunomagnetic separation thereby increasing the sensitivity and specificity of the isolation method.

Carriage of *E. coli* O157 in sheep has been demonstrated, although the rate of carriage may not be as high as in cattle [20]. This makes the isolation of the organism from environmental samples in this outbreak even more unusual. Lambing ewes were associated with human cases of *E. coli* O157 infection [21], but never before have sheep on a hillside without direct contact with man been implicated.

A Scotland-wide survey of carriage rates in cattle is currently underway, and it may be valuable to extend this to other farm species, and possibly even to wild mammals such as deer and to birds, which have also been proposed as reservoirs of infection.

ACKNOWLEDGEMENTS

We would like to thank colleagues at the Protective Services Department of the Highland Council and the North of Scotland Water Authority for considerable help in controlling this outbreak and for contributing to the discussions around issues raised in this report; the Scottish Centre for Infection and Environmental Health for advice on the management of the outbreak and its wider ramifications; and the Scottish *E. coli* O157 Reference Laboratory, Aberdeen for typing the strains and providing scientific support during the investigation; S.A.C. receives financial assistance from the Scottish Executive Rural Affairs Department.

REFERENCES

https://doi.org/10.1017/S0950268801004988 Published online by Cambridge University Press

