Immunoglobulin G enzyme-linked immunosorbent assay using truncated nucleoproteins of Reston Ebola virus

T. IKEGAMI1,2, M. SAIJO1, M. NIKURA1, M. E. MIRANDA2, A. B. CALAOR3, M. HERNANDEZ2, D. L. MANALO3, I. KURANE1, Y. YOSHIKAWA2 and S. MORIKAWA1*

1 Special Pathogens Laboratory, Department of Virology 1, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
2 Department of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
3 Veterinary Research Department, Research Institute for Tropical Medicine, Muntinlupa, Philippines

(Received 13 December 2002)

SUMMARY

We developed an immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA), using partial recombinant nucleoproteins (rNP) of Reston Ebola virus (EBO-R) and Zaire Ebola virus (EBO-Z). We examined the reaction of 10 sera from cynomolgus macaques naturally infected with EBO-R to each of the partial rNP in the IgG ELISA. All the sera reacted to the C-terminal halves of the rNP of both EBO-R and EBO-Z. Most of the sera reacted to the RD1C (aa 360–739), and RD6 (aa 451–551) and/or RD8 (aa 631–739) at a higher dilution than to the corresponding truncated rNPs of EBO-Z. The results indicate that this IgG ELISA is useful for detecting EBO-R specific antibody, and may have a potential to discriminate EBO-R infection from other subtypes.

INTRODUCTION

Ebola virus, which belongs to the family Filoviridae, order Mononegavirales, is divided into four subtypes: Zaire Ebola virus (EBO-Z), Sudan Ebola virus (EBO-S), Côte d’Ivoire Ebola virus (EBO-CI), and Reston Ebola virus (EBO-R) [1]. Ebola virus has a negative-stranded RNA genome which encodes nucleoprotein (NP), P protein (VP35), matrix protein (VP40), glycoprotein (GP), second nucleoprotein (VP30), protein associated with the membrane (VP24), and RNA-dependent RNA polymerase (L) [2, 3]. EBO-Z, EBO-S, and EBO-CI emerged in equatorial Africa, and are known to cause haemorrhagic fevers in humans [4–6]. Experimental infection has also demonstrated that EBO-Z causes a similar fatal disease in guinea-pigs and non-human primates [7–9]. EBO-R emerged in a monkey export and breeding facility in the Philippines and caused fatal illness among non-human primates [10, 11]. EBO-R-infected monkeys were exported to the United States in 1989, 1990 and 1996 [12–16], and to Italy in 1992 [17]. No symptomatic infection has been recorded in humans infected with EBO-R [11, 13, 14, 17].

The epidemiological situation concerning EBO-R in the Philippines and the other Asian countries is not known. This is partly due to the lack of an EBO-R antibody-detection test kit that can be applied to epidemiological studies [18, 19]. Recently enzyme-linked immunosorbent assay (ELISA) for detecting immunoglobulin G (IgG) to EBO-Z using the recombinant NP (rNP) has been developed [20, 21]. The use of recombinant proteins has the great advantage of preparing the antigens without any specified facility, and in modification of the antigens suitable for the assay. In the present study, we prepared a panel of the truncated rNPs of EBO-R and EBO-Z and developed

* Author for correspondence.
an IgG ELISA using the rNPs. This new IgG ELISA demonstrated high specificity and sensitivity to detect EBO-R antibodies.

METHODS

Sera

Two and four rabbits were immunized four times with the histidine-tagged entire EBO-R rNP (His-EBO-R-NP) and the entire EBO-Z rNP (His-EBO-Z-NP), respectively, using Imject-Alum (Pierce, Rockford, USA). The His-EBO-R-NP and His-EBO-Z-NP were prepared and purified as described previously [21, 22]. One cynomolgus monkey was immunized four times at 2-week intervals with the His-EBO-Z-NP using Imject-Alum. The sera were collected at 7, 30 and 73 days post immunization and used in the present study.

Ten serum samples collected from cynomolgus macaques at a monkey export and breeding facility in the Philippines (Facility A) were used. This facility had experienced an EBO-R outbreak in 1996 [11]. These sera were determined to be EBO-R antibody-positive by indirect immunofluorescence assay (IFA) [22]. Three of these 10 macaques were demonstrated to have EBO-R antigens in the sera by antigen-capture ELISA [23]. Seventy-two sera were also collected from cynomolgus monkeys at another breeding facility in the Philippines where no EBO-R outbreak had ever occurred. These 72 sera were found to be negative for EBO-R antibodies by IFA [22].

Preparation of the glutathione S-transferase (GST)-tagged truncated Ebola NPs

The DNAs encoding the truncated NP of EBO-R were amplified by polymerase chain reaction (PCR) from the cDNA of EBO-R (DDBJ accession no. AB050936) using the primers shown in Table 1. The PCR fragments were digested with both BamHI and EcoRI, purified and subcloned into a pGEX-2T vector (Amersham Pharmacia Biotech, Little Chalfont, UK). The sequences of the inserts were confirmed to be identical to the originals. The GST-tagged truncated EBO-R rNPs included RD 360–739, RD 360–461, RD 451–551, RD 541–640 and RD 631–739. The truncated EBO-Z rNPs, ZD 361–739, ZD 361–460, ZD 451–552, ZD 541–640 and ZD 631–739, were as previously reported [21]. The GST alone was expressed and used as the negative control antigen in the IgG ELISA.

IgG ELISA using GST-tagged truncated Ebola NPs

Wells of microtitre plates (Becton Dickinson, NJ, USA) were coated with the unified amount of RD 360–739, RD 360–461, RD 451–551, RD 451–552, ZD 541–640 and GST in 100 μl of PBS, and incubated overnight at 4 °C. The amounts of the antigens were determined as described below. The plates were washed three times with phosphate-buffered saline (PBS) containing 0.05% Tween 20 (PBS-T); 200 μl of PBS-T containing 0.5% bovine serum albumin (BSA) was added, and incubated for 1 h at 37 °C. The wild monkey sera were diluted at 1 in 100, 1 in 400, and 1 in 1600 in PBS-T, and the hyper-immune rabbits and monkey sera were twofold serially diluted from

Table 1. Primers for the amplification of DNA encoding EBO-R NP and EBO-Z NP

<table>
<thead>
<tr>
<th>Primers for EBO-R NP</th>
<th>Sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES-N5F 5'-GCT GGA TTC* AGA GAA CTC GAC AGC CT-3'</td>
<td></td>
</tr>
<tr>
<td>RES-N5R 5'-ACC GAA TTC† GGG GTC AAT TGC ACT AT-3'</td>
<td></td>
</tr>
<tr>
<td>RES-N6F 5'-GAC GGA TTC* GAC ACT ATC ATT CCT AAT AGT GC-3'</td>
<td></td>
</tr>
<tr>
<td>RES-N6R 5'-TTG GAA TTC† TCG GTG CCT GTC GTA TT-3'</td>
<td></td>
</tr>
<tr>
<td>RES-N7F 5'-GCA GGA TTC* GAG GAA CAA GAA GGT CA-3'</td>
<td></td>
</tr>
<tr>
<td>RES-N7R 5'-CTT GAA TTC† ACC GAT ATG AGG GTC TT-3'</td>
<td></td>
</tr>
<tr>
<td>RES-N8F 5'-GCT GGA TTC* TCA CAA TTG AAT GAA GAC C-3'</td>
<td></td>
</tr>
<tr>
<td>RES-N8R 5'-GTG GAA TTC† TTA CTG ATG GTG CTG CAA-3'</td>
<td></td>
</tr>
</tbody>
</table>

* BamHI recognition site. † EcoRI recognition site.
1 in 100 to 1 in 6400 in PBS-T-BSA; 100 μl of each serum dilution was added to the antigen-coated wells, and incubated for 1 h at 37 °C. After washing three times with PBS-T, the wells were reacted with 100 μl of horseradish peroxidase (HRP)-conjugated goat anti-human IgG (Zymed Laboratories Inc., CA) for monkey sera, or HRP-conjugated goat anti-rabbit IgG (Zymed Laboratories Inc.) for rabbit sera, at a dilution of 1 in 1000 in PBS-T-BSA. The plates were then incubated for 1 h at 37 °C. After washing three times with PBS-T, ABTS substrate (ABTS tablet and ABTS buffer; Roche Diagnostics, Mannheim, Germany) was added to the wells. The plates were then incubated for 30 min at room temperature and optical density (OD) at 405 nm were recorded. For each sample, the adjusted OD value was calculated by subtracting the OD of GST-coated well from that of GST-fusion antigen-coated well. The mean plus three standard deviation of the adjusted OD value of 72 serum samples from Ebola virus uninfected cynomolgus monkeys to each GST-tagged, truncated Ebola rNPs was lower than 0.1 (Table 2). Therefore, the cut-off value of the IgG ELISA was determined to be 0.1. The antibody titres of serum samples were defined as the reciprocals of the highest dilution yielding a positive value.

The optimization of GST-tagged proteins on ELISA plate

The amount of coated antigens on an ELISA plate was standardized according to the antigenicity of GST-tag. Briefly, several dilutions of the GST-tagged truncated Ebola rNPs were coated on a microtitre plate (Becton Dickinson, NJ, USA.). Then, the goat anti-GST polyclonal antibody (Amersham Pharmacia Biotech) and the HRP-conjugated anti-goat IgG rabbit polyclonal antibody (Zymed Laboratories Inc.) were added as the primary and secondary antibodies at dilutions of 1 in 500 and 1 in 1000, respectively. An OD value of 0.2 was taken as the cut-off value to determine the end point dilution of each GST-tagged antigen. The dilution of eight times lower than each end point dilution of each GST-tagged antigen was defined as the amount of antigen coating. The amount of each GST-tagged antigen used for the IgG ELISA in this study is shown in Table 2.

Indirect immunofluorescence assay (IFA)

The entire NP of EBO-R or EBO-Z was stably expressed in HeLa cells as reported previously [22, 24].
The HeLa cells were trypsinized, washed with PBS, spotted on 14-well Teflon-coated slide glasses (AR Brown Co., Ltd., Tokyo, Japan), air dried and fixed with acetone at room temperature for 5 min. The slides were stored at −80 °C until use. The slides were thawed and dried just before use; 20 μl of diluted serum was spotted on the well of the slide, and incubated under humidified conditions at 37 °C for 1 h. After washing with PBS, the slides were reacted with fluorescein isothiocyanate (FITC)-conjugated goat anti-human IgG antibody (Zymed Laboratories Inc.) at a dilution of 1 in 100 or with FITC-conjugated goat anti-rabbit IgG (Zymed Laboratories Inc.) at a dilution of 1 in 100. The slides were washed with PBS and examined for staining pattern under a fluorescent microscope. The antibody titre in the IFA was defined as the reciprocal of the highest dilution showing positive staining.

RESULTS

Reaction of hyper-immune sera to each truncated rNP of EBO-R and EBO-Z in the IgG ELISA

Reaction of EBO-R or EBO-Z hyper-immune rabbit sera and the EBO-Z hyper-immune monkey sera were examined by the IgG ELISAs with truncated EBO-R rNPs or EBO-Z rNPs (Fig. 1a, Fig. 1b, Table 3). The sera from EBO-R rNP-immunized rabbits (nos. 1 and 2) and those from EBO-Z rNP-immunized rabbits (nos. 3–6) reacted to RD5, RD6, RD7 and RD8, while the sera did not react to ZD6 and ZD7. On the other hand, all the sera from EBO-Z rNP-immunized rabbits reacted to ZD5, ZD6 and ZD8, while two of them did not react to RD6 and RD7.

The sera serially collected from the monkey immunized with the EBO-Z rNP were also examined (Fig. 1b, Table 3). The day 7 serum reacted to ZDC, ZD5 and ZD6. The day 30 serum reacted to ZDC, ZD5, ZD6 and ZD7, and the day 73 serum reacted to ZDC, ZD5 and ZD6 at higher titres. Furthermore, the day 73 serum also reacted to ZD8, RDC, RDA5 and RDA6.

Reaction of the sera from EBO-R infected monkeys to each truncated rNP of EBO-R and EBO-Z in the IgG ELISA

Ten IFA antibody positive monkey sera collected at the Facility A in the Philippines were examined for the reaction in the IgG ELISA (Fig. 1c, Table 3). All the sera reacted to RDC and ZDC. Seven, 9, 5 and 7 of the 10 sera reacted to RDA5, RDA6, RDA7 and RDA8.
Table 3. The reactivities of hyper-immune sera and the sera from cynomolgus monkeys naturally infected with EBO-R to the truncated rNPs* of EBO-R and EBO-Z in the IgG-ELISA

<table>
<thead>
<tr>
<th>Serum samples</th>
<th>Titre with EBO-R rNP</th>
<th>Titre with EBO-Z rNP</th>
<th>IFA titre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RΔC</td>
<td>RΔ5</td>
<td>RΔ6</td>
</tr>
<tr>
<td>I. Rabbits immunized with EBO-R rNP</td>
<td>No. 1</td>
<td>>6400</td>
<td>>6400</td>
</tr>
<tr>
<td></td>
<td>No. 2</td>
<td>>6400</td>
<td>800</td>
</tr>
<tr>
<td>II. Rabbits immunized with EBP-Z rNP</td>
<td>No. 3</td>
<td>>6400</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>No. 4</td>
<td>>6400</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>No. 5</td>
<td>>6400</td>
<td>1600</td>
</tr>
<tr>
<td></td>
<td>No. 6</td>
<td>>6400</td>
<td>3200</td>
</tr>
<tr>
<td>III. A monkey immunized with EBO-Z rNP</td>
<td>Day 7</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Day 30</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Day 73</td>
<td>400</td>
<td>100</td>
</tr>
<tr>
<td>IV. EBO-R infected monkeys in Facility A†</td>
<td>No. 2728$</td>
<td>>1600</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>No. 2669$</td>
<td>400</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>No. 2921</td>
<td>>1600</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>No. 2194</td>
<td>>1600</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>No. 2739$</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>No. 2408</td>
<td>>1600</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>No. 2190</td>
<td>400</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>No. 2191</td>
<td>400</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>No. 2195</td>
<td>>1600</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>No. 2180</td>
<td>>1600</td>
<td>400</td>
</tr>
</tbody>
</table>

† OD of GST-Ebola rNPs was subtracted by that of GST, and the cut off value was determined to be 0.1 on the basis of the results of 72 Ebola virus uninfected sera.
‡ Several EBO-R outbreaks have occurred in Facility A in the Philippines.
§ EBO-R NP antigens were detected from the sera of Nos. 2728, 2669 and 2739 by antigen-capture ELISA [23] at the dilution of 1 in 20, 1 in 640 and 1 in 320, respectively. The (—) means negative at a dilution of 1 in 100.
respectively. Three, 1 and 4 of the 10 sera reacted to ZΔ5, ZΔ6 and ZΔ8, respectively, while none reacted to ZΔ7. The titres were at least 4 times higher for RAC than for ZAC in 8 of the 10 sera in the IgG. However, only 5 sera reacted to EBO-R rNP at least 4 times higher titre than to EBO-Z rNP in IFA.

DISCUSSION

In the present study, we developed the IgG ELISAs using the truncated rNPs of Ebola viruses. The reactions of Ebola antibody positive sera to the truncated rNPs of EBO-R and EBO-Z were analysed by the IgG ELISA. The truncated rNPs used in the IgG ELISAs covered the C-terminal halves of the NPs of EBO-R and EBO-Z. It has been reported that the C-terminal halves of the NPs are hydrophilic and antigenic, while the N-terminal halves are hydrophobic and far less antigenic [19, 21, 25].

All the hyper-immune rabbit sera reacted strongly to RΔC, RΔ8, ZΔC and ZΔ8 in the IgG ELISA. The EBO-Z rNP-immune monkey serum collected on day 73 after immunization reacted to ZΔC and RAC. Ten sera from EBO-R infected monkeys that died or were sacrificed during the EBO-R outbreak in the Philippines in 1996 were also examined by the IgG ELISA. These 10 sera were confirmed to be EBO-R antibody positive by IFA. All the 10 sera reacted to RAC and ZAC in the IgG ELISA. Seven of the 10 sera also reacted to RA8, and four (nos. 2408, 2191, 2195 and 2180) of them further cross-reacted to ZΔ8. Similar reaction pattern was demonstrated by Western blotting (data not shown). The results suggest that ΔC and Δ8 contains cross-reactive epitopes between EBO-R and EBO-Z, and that the IgG ELISA using RΔC has a suitable degree of sensitivity compared with IFA using HeLa cells expressing EBO-R rNP. Eight of the 10 sera from EBO-R infected monkeys reacted to RAC at least 4 times higher titre than to ZΔC in the IgG ELISA, while only 5 sera reacted to EBO-R rNP at least 4 times higher titre than to EBO-Z rNP in IFA. Recent reports demonstrated that humoral immune responses were mainly directed against the NP and the VP40 in Ebola virus infected humans [26, 27]. Therefore, the IgG ELISA using RΔC and ZΔC would be useful for detecting subtype-specific antibodies. Furthermore, 6 and 5 of the 10 sera reacted to RA6 and RA8 at a dilution of 1 in 400 or greater, respectively. The results suggest that the reaction to RΔC, RΔ6 and/or RΔ8 can be considered as a clue for truly positive reaction.

Several diagnostic methods have been developed to detect Ebola-specific antibodies. It has been reported that many of these methods lack the specificity in detecting past filovirus infections. Thus, previous serological surveys could not illustrate the epidemiology of the filoviruses [18, 19]. In this regard, the newly developed IgG ELISA using the truncated rNPs might be more useful for seroepidemiological studies, especially in combination with IFA using HeLa cells expressing Ebola rNP [22, 24].

ACKNOWLEDGEMENTS

We gratefully acknowledge Ms M. Ogata of National Institute of Infectious Diseases and the staff of the Research Institute for Tropical Medicine for their technical assistance. We also thank Dr H. Cho and the staff of INA Research Co. for kindly providing us with the monkey sera. This work was partly supported by the grant from the Ministry of Health, Labour and Welfare, Japan.

REFERENCES

