SHORT REPORT
Changing prevalent T serotypes and emm genotypes of Streptococcus pyogenes isolates from streptococcal toxic shock-like syndrome (TSLS) patients in Japan

1 Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
2 Department of Bacteriology, Tokyo Metropolitan Research Laboratory of Public Health, Tokyo, 169-0073
3 Department of Bacteriology, The Yamagata Prefectural Institute of Public Health, Yamagata, 990-0031, Japan
4 Department of Bacteriology, Fukushima Prefectural Institute of Public Health, Fukushima, 960-8560, Japan
5 Department of Bacteriology and Pathology, Kanagawa Prefectural Public Health Laboratory, Yokohama, 241-0815, Japan
6 Department of Bacteriology, Toyama Institute of Health, Toyama, 939-0363, Japan
7 Department of Microbiology, Osaka Prefectural Institute of Public Health, Osaka, 537-0025, Japan
8 Division of Biological Medicine, Yamaguchi Prefectural Research Institute of Public Health, Yamaguchi, 753-0821, Japan
9 Department of Bacteriology, The Oita Prefectural Institute of Health and Environment, Oita, 870-0948, Japan
10 Department of Bioactive Molecules, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
11 Other members of the working group for group A streptococci in Japan are listed at the end of the article

(Received 2 January 2003)

SUMMARY

Streptococcus pyogenes (group A streptococcus) is one of the most common human pathogens. It causes a wide array of infections, the most frequent of which is acute pharyngitis (strep throat). Many streptococcal virulence factors involved in these symptoms have been reported, including pyrogenic exotoxins (SpeA, SpeB and SpeC) and M protein. M protein, which is an important virulence factor of S. pyogenes, protects S. pyogenes from phagocytosis by polymorphonuclear leukocytes [1, 2]. More than 90 of M protein serotypes have been identified, and a molecular approach to identification of emm (M protein) genes has also been documented. For example, emm1, emm2 and emm3 genes encode the M1, M2 and M3 proteins, respectively. In addition, the emm3.1 and emm22.2 belong to the emm3 and emm22 alleles, respectively (http://www.cdc.gov/ncidod/biotech/strep/emmtypes.html).

T serotypes of S. pyogenes have also been important markers in the epidemiological investigation of S. pyogenes infections and more than 25 different T serotypes have been described [3, 4]. The combination of T serotype and emm genotype allows the identification of strain diversity [5].

From the late 1980s, streptococcal TSLS caused by S. pyogenes became a serious problem in both
developed and developing countries. Symptoms such as pharyngitis, fever and pain may suddenly develop and progress very rapidly in some patients to soft tissue necrosis, acute kidney failure, adult respiratory distress syndrome (ARDS), disseminated intravascular coagulopathy (DIC) and multiorgan failure (MOF), leading to shock and death. The first defined case of TSLS in Japan was reported in 1992 [6], and the strains of T3 M3 and T1 M1 serotypes were dominant in causing TSLS during 1992–1995 in Japan [7]. Dominance of these M types was also observed in the United States and United Kingdom [8, 9]. In this study, we describe the current epidemiological features of TSLS isolates in Japan in comparison with the characteristics of isolates from pharyngitis patients.

A total of 18,219 strains (group A streptococci) for T serotyping were isolated in 3041 co-operative hospitals located all over Japan during the period of 1996–2000 and serotyped in the Prefectural Institutes of Public Health. This information was sent to the National Institute of Infectious Diseases (reference centre) from branch offices of *S. pyogenes* centre (seven branch offices are located in the Prefectural Institutes of Public Health of Yamagata (1996–7) – Fukushima (1998–2000), Kanagawa, Toyama, Osaka, Yamaguchi, Oita and Tokyo). Almost all strains were isolated from throat-swabs of paediatric patients who suffered from pharyngitis, but a minority was isolated from respiratory secretions (sputum, tracheal aspirates, etc). The dominant serotypes were T12,

Fig. 1. Distribution of T serotypes; (a) the ratio of pharyngitis isolates (% the number of isolates in each T serotype/the number of total isolates in the year), (b) the number of isolates from TSLS patients in each T serotype for each year.
T1 and T4, which accounted for more than half of the isolates each year. This distribution was similar to that found in 1992–5 [7] but the number of T3 isolates (1.8%) decreased in 1996–2000 compared with 1992–5 (5.3%) [7].

Information on streptococcal TSLS patients and T serotypes of the causative pathogens during the period of 1992–2000 was also sent to the National Institute of Infectious Diseases from the branch offices of reference centre and co-operative hospitals. The diagnostic criteria of TSLS were principally based on those described by the Working Group on Severe Streptococcal Infections (1993) [10]. A total of 99 S. pyogenes isolates (44 from 1992–5 and 55 from 1996–2000) were cultured predominantly from the blood of TSLS-patients. The T serotypes of 29 of the 44 isolates in 1992–5 were reported previously [7]. The number of T-serotyped isolates each year is shown in Figure 1 and the ratio of each serotype compared between periods of 1992–5 and 1996–2000 is given in Figure 2. T1 isolates were constantly dominant, accounting for 14 of 44 (33%) cases in 1992–5 and 33 of 55 (60%) cases in 1996–2000. However, the ratio of T3 isolates reduced dramatically from 33% in 1992–5 to 4% in 1996–2000. T4 isolates (2% in Fig. 2), which dominated among pharyngitis cases, were less frequent in TSLS. T18 and T25 serotypes were isolated from TSLS patients in 1996–2000, but were absent in 1992–5. These results indicate that serotypes of TSLS isolates have changed between the survey periods.

To examine the difference in emm genotypes between the two surveys, we determined nucleotide sequences of the emm genes, which encoded the M proteins, of all the 99 TSLS isolates (Fig. 2). The major emm genotypes during 1992–5 were emm1 (14/44; 33%), emm3.1 (14/44; 33%) and emm28 (6/44; 14%) while in 1996–2000 they were emm1 (33/55; 60%), emm12 (5/55; 9%) and emm28 (5/55; 9%). Furthermore, S. pyogenes carrying the other emm types (emm11, emm18, emm75 and emm81), which were not isolated from TSLS patients in 1992–5, appeared in these patients in 1996–2000. The TSLS isolates with emm1, emm4, emm12, emm18, emm22.2 and emm28, expressed T1, T4, T12, T18, T22 and T28, respectively. On the other hand, T11 and T25-serotype strains of TSLS patients carried emm89 and emm75, respectively. In addition, emm89 isolates of TSLS patients were grouped into T serotypes of T11 and TB3264 (Fig. 2B).

We found 99 cases of TSLS by S. pyogenes during 1992–2000 in Japan. The ratio of T serotypes and emm genotypes of TSLS isolates in 1996–2000 clearly changed in comparison with that in 1992–5; T3 emm3.1 isolates were not found in 1996–2000, and other T and emm types (T3 emm11, T3 emm81, T18 emm18, T25 emm75 and TB3264 emm89), which did not appear in 1992–5, emerged in 1996–2000 (Fig. 2).

The frequency of T3 serotype strains from pharyngitis patients increased rapidly during 1993–4 in Japan, and T3 strains predominated from TSLS patients [7]. However, after 1996, the incidence of T3 strains isolated from both pharyngitis and TSLS patients suddenly decreased due to unknown reasons. A similar phenomenon was observed with the T25 serotype; the isolation of T25 strains from pharyngitis patients was more common in 1999 and 2000, and a T25 serotype strain was first isolated from a TSLS patient in 2000 (Fig. 1). We recently showed [11] that T3 serotype strains newly emergent during 1993–4 had acquired foreign phage DNA carrying a new superantigen gene which may be associated with the
pathogenesis of TSLS. Such an alteration may also have occurred in the T25 strains. The rapid increase and decrease in specific strains among pharyngitis patients may be related to fluctuation of strain serotypes in TSLS.

The emm genotypes of T3 isolates from TSLS patients were emm3.1, emm11 and emm81 and interestingly, the emm3.1 accounted for all T3 isolates from TSLS patients in 1992–5. In contrast T3 isolates from TSLS patients in 1996–2000 were emm11 and emm81, but not emm3.1 (Fig. 2). The combination of T3 and emm11 has not been reported to our knowledge. We do not know how T3 strains acquired the emm11 gene. However, this suggests that the combination of the T serotypes and the emm genotypes may be converted by genetic rearrangement and strains causing TSLS are undergoing genetic change over time.

ACKNOWLEDGMENTS

We are grateful to A. Wada for helpful discussions and suggestions, and also to S. Matsunaga for excellent technical assistance. This work was supported in part by a grant from the Ministry of Health, Labor and Welfare (H12-Shinkou-27).

REFERENCES