REVIEW ARTICLE
Causality in acute encephalitis: defining aetiologies

1 Health Protection Agency Centre for Infections, London, UK
2 Plymouth Hospitals NHS Trust, Plymouth, UK
3 King’s College Hospital, London, UK
4 Manchester Royal Infirmary, Manchester, UK
5 St Vincent’s Hospital & University of New South Wales, Sydney, Australia
6 University College Hospital, London, UK
7 National Hospital for Neurology and Neurosurgery, London, UK
8 Brain Infections Group, University of Liverpool, Liverpool, UK
9 Ontario Agency for Health Protection and Promotion, Toronto, Canada

(Accepted 9 March 2010; first published online 14 April 2010)

SUMMARY
Defining the causal relationship between a microbe and encephalitis is complex. Over 100 different infectious agents may cause encephalitis, often as one of the rarer manifestations of infection. The gold-standard techniques to detect causative infectious agents in encephalitis in life depend on the study of brain biopsy material; however, in most cases this is not possible. We present the UK perspective on aetiological case definitions for acute encephalitis and extend them to include immune-mediated causes. Expert opinion was primarily used and was supplemented by literature-based methods. Wide usage of these definitions will facilitate comparison between studies and result in a better understanding of the causes of this devastating condition. They provide a framework for regular review and updating as the knowledge base increases both clinically and through improvements in diagnostic methods. The importance of new and emerging pathogens as causes of encephalitis can be assessed against the principles laid out here.

Key words: Aetiology, case definition, encephalitis, infection.

INTRODUCTION
Encephalitis is a complex syndrome of multiple aetiologies and pathogeneses. The clinical diagnosis of encephalitis is complicated as the symptoms and signs are similar to many other serious neurological diseases. Infection is the commonest cause of acute encephalitis where an aetiological diagnosis is made; however, in most cases the cause remains undetected [1]. When an infection is detected in a patient with encephalitis, another complexity presents itself: with what certainty can we say the infectious agent is actually causing encephalitis? In 1890 Robert Koch described a series of conditions that must be met to establish a microorganism as the cause of a disease and additional criteria were added later by Rivers for virus infections; however, not all microbes associated with encephalitis can be shown to fulfil these criteria [2].

* Author for correspondence: Miss J. Granerod, Health Protection Agency Centre for Infections, 61 Colindale Avenue, London NW9 5EQ, UK.
(Email: Julia.granerod@hpa.org.uk)
Ascribing a specific pathogen as the cause of the encephalitis is not straightforward. The definitive or ‘gold standard’ way to establish an infectious aetiology is to identify the pathogen in diseased brain tissue. Whilst brain biopsy has 99% sensitivity and 100% specificity for herpes simplex encephalitis (HSE) its use is limited in the living as only a small amount of tissue is obtained for investigation, limited areas of the brain can be sampled, and the procedure may be associated with surgical complications [3]. Therefore a number of problems face both the diagnostician and researcher. First, in most cases it is not possible to study directly the diseased tissue. In addition, the frequency or strength of the link between the putative aetiological agent and the neurological syndrome varies among organisms.

Encephalitis is often described as a rare complication of common human infections. Thus, the detection of organisms outside the central nervous system (CNS) occurs with frequency, particularly for viruses that establish lifelong latency in their hosts such as lymphotropic and neurotropic herpesviruses. Other potentially neurotropic organisms are associated with asymptomatic carriage in non-sterile sites, such as the nasopharynx. Hence, detection of an organism in a non-sterile site or extraneural tissue confers less diagnostic weight than detection of an organism within brain tissue. Analysis of cerebrospinal fluid (CSF) is the key diagnostic intervention in patients with suspected CNS infections; however, being more representative of pathological processes affecting the meninges as opposed to the parenchyma of the brain it is only a surrogate for brain tissue. Furthermore, the methods of microbe detection have different diagnostic weight. For instance, isolation or culture of an organism indicates the presence of viable microbes, which cannot necessarily be implied when specific microbial sequences are detected by polymerase chain reaction (PCR). Therefore there exists a hierarchy of sample locations for attributing causality (see Fig. 1).

As Rivers classically demonstrated detection of a microbe is not sufficient to attribute causality but this association can be strengthened by demonstrating a microbe-specific immune response [2]. Serological tests may show primary or recent infection or activity, which confers more aetiological weight; particularly when the detected organism is one that establishes latency. Neurological complications are more frequent at the time of primary infection with viruses such as Epstein–Barr virus (EBV) or human herpesvirus-6 and -7 (HHV-6/-7) in the immunocompetent [4].

Furthermore, through study of CSF and blood samples paired in time, the microbe-specific immune response can be demonstrated to occur locally within the intrathecal space. When found this implies a very strong association between organism and neurological syndrome. Thus without brain biopsy the hierarchical zenith for diagnosis of infectious encephalitis would be both the demonstration of an organism and its specific immune response within the intrathecal space. Critically, however, infection is a dynamic process and therefore at different time points during infectious encephalitis the probability of detecting either the causal microbe or the microbe-specific immune response varies.

Approximately one third of acute encephalitides are thought to have an immune-mediated pathogenesis, with acute disseminated encephalomyelitis (ADEM), being the most commonly identified subtype [5]. The clinical manifestations of ADEM, often referred to as ‘post-infectious’ encephalitis, and acute infectious encephalitis may be identical and difficult to distinguish on clinical grounds alone [6]. There are at present no universally standardized diagnostic criteria for ADEM. Diagnosis is complicated and numerous controversies exist, for instance how to make the distinction from a first presentation of multiple sclerosis [7]. Other more recently described causes of immune-mediated encephalitis include voltage-gated potassium channel antibodies and
antibodies against the N-methyl-D-aspartate (NMDA) receptor [8–10].

This paper is the outcome of an initiative to streamline aetiological case definitions for acute encephalitis. Aetiological case definitions for encephalitis have recently emerged from the USA, but are otherwise lacking in the published literature [6, 11–13]. We present what is to our knowledge the first set of specific case definitions and laboratory criteria by organism for infectious causes of encephalitis and extend these to include immune-mediated causes. The more uniform case definitions are between regions, the more easily epidemiological studies of encephalitis can be compared.

METHODS

Discussions began on aetiological case definitions for acute encephalitis following implementation of the Health Protection Agency (HPA) Prospective Aetiological Study of Encephalitis in the UK (http://www.hpa.org.uk/webw/HPAweb&HPAwebStandard/HPAweb_C/119573813070?p=1191942149529) [14]. This study has involved national UK experts of encephalitis based both at the HPA and across the National Health Service. A diagnosis of encephalitis was made either clinically or pathologically (or both) as defined below. The aetiological case definitions apply to all cases with a clinical or histopathological diagnosis of encephalitis.

Encephalitis was defined as follows:

1. **Clinical definition:** Any person, of any age, admitted to hospital with encephalopathy (altered level of consciousness persisting for >24 h and including lethargy, irritability or a change in personality and behaviour) and ≥ 2 of the following:
 - fever or history of fever (≥ 38 °C);
 - seizures and/or focal neurological findings (with evidences of brain parenchyma involvement);
 - CSF pleocytosis (≥ 4 WBC/μl);
 - electroencephalogram findings compatible with encephalitis;
 - abnormal results of neuroimaging in keeping with encephalitis.

2. **Pathological definition:** The presence of nonpyogenic inflammatory infiltrates, commonly in the form of T lymphocytes and microglia, within the brain. This may also involve the meninges (meningoencephalitis) and spinal cord (myelitis). In polioencephalitis/polioencephalitis the inflammation is predominantly localized to grey matter, in leucoencephalitis to white matter, and in panencephalitis inflammation is present in both grey and white matter.

The causes were divided into those whose pathogenesis was due to a direct effect of the organism, and those with an immune-mediated pathogenesis. A combination of expert opinion and literature-based methods was used. The HPA Study Steering Group, all with extensive experience in encephalitis, provided multidisciplinary expertise in virology, microbiology, epidemiology, neurology, neuroimmunology, and infectious diseases. Individual advice on specific rarer causes of CNS infection, including amoebae, Brucella, Borrelia, Leptospira and Toxoplasma species, was obtained from UK reference laboratories whilst advice on antibody-associated encephalitis and histopathology was obtained from other laboratories with specific expertise. Guidance on diagnostic criteria for ADEM was sought from paediatric neurologists with expertise in this field. This expert opinion was supplemented by literature searches. Relevant articles on aetiology and diagnosis of encephalitis were retrieved from Pubmed by comprehensive albeit non-systematic searching. For ‘aetiology’ for example, specific criteria applicable to a particular agent were used to find relevant publications, e.g. ‘granular cell neuronopathy’ and ‘fulminant JC encephalopathy’ were entered to find papers specific to JC virus. The first meeting of the Steering Group to discuss these definitions was held in London in July 2007, with the first draft of the definitions circulated soon afterwards. Following a teleconference in November 2007 a subsequent draft was disseminated to the group. Specific questions and issues were addressed at a meeting held in January 2008 with an updated version circulated in November 2008, and a final review shortly after. Due to the complexities and caveats discussed above, we adopted a probabilistic approach for causal inference based on strength of association. Causes of encephalitis were defined as confirmed, probable, possible, and excluded (see Fig. 2). The category possible is not just used to capture diagnoses which are suggested but not confirmed by the available test results, but also to flag that a certain diagnosis has not been ruled out. The case definitions are primarily intended for use in clinical epidemiological studies of encephalitis. However, the definitions also have implications for clinicians, public health professionals and laboratory staff.
RESULTS

Aetiological case definitions for acute encephalitis caused by an acute infectious agent are displayed in Table 1. Case definitions for encephalitis which is predominantly immune-mediated are displayed in Table 2. These case definitions apply to all cases with a clinical picture of encephalitis or histopathological evidence of encephalitis (see Fig. 2).

DISCUSSION

Defining the causal relationship between a microbe and the syndrome encephalitis is complex. It is thought that over 100 different infectious agents may cause encephalitis, often as one of the rarer manifestations of infection. The gold-standard investigation to identify a causative agent in encephalitis is the examination of diseased brain tissue; however, in...
most cases this is not clinically justified. We present the UK perspective on aetiological case definitions for acute encephalitis. We also extend them to include immune-mediated causes, which often cannot be distinguished from acute infectious encephalitis on clinical grounds alone.

These case definitions are primarily the product of consultation with an array of experts with extensive experience in encephalitis; they have additionally been supplemented by a search of published literature. The complexities of defining aetiologies in encephalitis cannot be addressed from a single discipline but rather require a multidisciplinary effort like the one used for these purposes. Different approaches incorporate different perceptions and allow for establishment of a more precise set of definitions. Validation of these definitions in future studies of encephalitis will be beneficial, as will their application in paediatrics where the spectrum of causative agents and disease may be different.

Each organism should be considered separately as some are well-established causes of encephalitis whereas others have only recently been linked to the disease. Aetiological confirmation for the latter may require both nucleic acid detection in CSF and serological tests such as IgM and IgG antibody detection, whereas in the former only one of these may suffice. Nucleic acid detection by PCR may also be difficult to interpret as a positive result may be obtained in the absence of specific neurological signs, for example *Treponema* in syphilis. Other dimensions, including test type and sample type, need to be considered when defining the role of an agent in encephalitis. We emphasize the importance of detecting a specific intrathecal compartment effect or detection of the organism or nucleic acid within the CSF as this confers more aetiological weight. This is evident throughout our definitions and in many cases guides a confirmed vs. a probable categorization.

Inevitably difficulties were faced in producing these definitions. Differentiating between probable and possible cases is difficult, especially for viruses that establish latency within the host and are often common human infections that only occur sporadically as encephalitis. Negative post-mortem histology is not documented in the exclusion criteria for any cause. It is difficult to exclude diagnoses based on negative neuropathology unless the patient dies in the acute stage without treatment, and in some forms of encephalitis the low number of autopsy cases examined to date makes even this difficult without making assumptions. Documenting post-mortem criteria for organism confirmation is also difficult for some causes, for example HHV-6 and EBV, where histopathological evidence is based on data from only few cases. We propose a definition for the diagnosis of the syndrome ADEM although the cause or causes are still poorly defined. Perhaps in the future a similar set of definitions can be devised specifically for ADEM. Our case definitions have focused on the most common causes of encephalitis, as well as newly described antibody-mediated causes [8, 9]. Some immune-mediated forms of encephalitis are not included; however, those we do not discuss are of subacute onset and some are very contentious in terms of their existence, for example Hashimoto’s encephalopathy/encephalitis.

Published studies have used different criteria to link potential aetiological agents to encephalitis. A recent French study used clinical data, imaging findings and biological test results to classify patients as having confirmed, probable or possible causes of encephalitis [15]. The California Encephalitis Project defined the association between an identified agent and the encephalitis case ‘as confirmed, probable or possible, based on the type of specimen in which the potential aetiological organism was detected, the strength of the previously established associations between the agent and encephalitis, and the clinical and epidemiological characteristics of the disease’ [13]. Parallels to our case definitions include the consideration of type of specimen, strength of previously established association, clinical characteristics, and emphasis on CNS diagnosis of the syndrome ADEM although the cause or causes are still poorly defined. Perhaps in the future a similar set of definitions can be devised specifically for ADEM. Our case definitions have focused on the most common causes of encephalitis, as well as newly described antibody-mediated causes [8, 9]. Some immune-mediated forms of encephalitis are not included; however, those we do not discuss are of subacute onset and some are very contentious in terms of their existence, for example Hashimoto’s encephalopathy/encephalitis.

Published studies have used different criteria to link potential aetiological agents to encephalitis. A recent French study used clinical data, imaging findings and biological test results to classify patients as having confirmed, probable or possible causes of encephalitis [15]. The California Encephalitis Project defined the association between an identified agent and the encephalitis case ‘as confirmed, probable or possible, based on the type of specimen in which the potential aetiological organism was detected, the strength of the previously established associations between the agent and encephalitis, and the clinical and epidemiological characteristics of the disease’ [13]. Parallels to our case definitions include the consideration of type of specimen, strength of previously established association, clinical characteristics, and emphasis on CNS to establish aetiology. In contrast, epidemiological profiles did not feature much in our case definitions. Only case definitions for certain agents, for example amoebae, *Borrelia burgdorferi* and rabies, included epidemiological criteria; exposures are very well defined for these organisms. Although our main emphasis was laboratory criteria, we integrate imaging and histopathology into our case definitions. For example, ‘MRI suggestive/not suggestive of ADEM’ is used to differentiate acute infectious and post-infectious encephalitis associated with group A streptococci and *M. pneumoniae*, as the pathogenic mechanisms for these organisms remain unclear. A characteristic MRI was also used to define HIV and JC cases as sufficient evidence is available on which to base these diagnostic criteria [16, 17]. Recent US clinical practice guidelines for the management of encephalitis emphasize the importance of neuro-imaging in encephalitis and imply its potential use in
Table 1. Acute encephalitis caused by an infectious agent

<table>
<thead>
<tr>
<th></th>
<th>Confirmed</th>
<th>Probable</th>
<th>Possible*</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMOEBAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naegleria fowleri [22]</td>
<td>- Clinical presentation consistent with PAM, and history of recent swimming or other immersion in fresh water; AND</td>
<td>- Clinical presentation consistent with PAM, and history of recent swimming or other immersion in fresh water; AND</td>
<td>- No amoebae detectable in CSF or brain pathology; OR</td>
<td>- No amoebae detectable in CSF or brain pathology; OR</td>
</tr>
<tr>
<td></td>
<td>- Demonstration of motile amoebae on wet mount preparations of fresh CSF, or on Giemsa/Wright stained smears of CSF; OR</td>
<td>- Autopsy neuropathology demonstrates haemorrhagic meningo-encephalitis with amoebic trophozoites, but absence of cysts</td>
<td>- No other explanatory pathogen or cause found</td>
<td>- Meets confirmed or probable CD for another cause</td>
</tr>
<tr>
<td></td>
<td>- Positive culture from CSF or brain tissue; OR</td>
<td>- Autopsy neuropathology demonstrates haemorrhagic meningo-encephalitis with amoebic trophozoites, but absence of cysts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Autopsy neuropathology demonstrates haemorrhagic meningo-encephalitis with amoebic trophozoites, but absence of cysts</td>
<td>- No other explanatory pathogen or cause found</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACANTHAMOEBA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acanthamoeba spp., Balamuthia mandrillaris [22]</td>
<td>- Clinical presentation consistent – insidious chronic onset, with or without a history of soil exposure; AND</td>
<td>- Clinical presentation consistent – insidious chronic onset, with or without a history of soil exposure; AND</td>
<td>- No other explanatory pathogen or cause found</td>
<td>- Meets confirmed or probable CD for another cause</td>
</tr>
<tr>
<td></td>
<td>- Demonstration of motile amoebae on wet mount preparations of fresh CSF, or on Giemsa/Wright stained smears of CSF (rare); OR</td>
<td>- Autopsy neuropathology demonstrates necrotic and haemorrhagic meningo-encephalitis</td>
<td>- No other explanatory pathogen or cause found</td>
<td>- Meets confirmed or probable CD for another cause</td>
</tr>
<tr>
<td></td>
<td>- Cysts and trophozoites in brain tissue; OR</td>
<td>- Autopsy neuropathology demonstrates necrotic and haemorrhagic meningo-encephalitis with scattered amoebic trophozoites and cysts, and giant multinucleate cells/granuloma</td>
<td>- No other explanatory pathogen or cause found</td>
<td>- Meets confirmed or probable CD for another cause</td>
</tr>
<tr>
<td></td>
<td>- Culture positive (rare); OR</td>
<td>- Autopsy neuropathology demonstrates necrotic and haemorrhagic meningo-encephalitis with scattered amoebic trophozoites and cysts, and giant multinucleate cells/granuloma</td>
<td>- No other explanatory pathogen or cause found</td>
<td>- Meets confirmed or probable CD for another cause</td>
</tr>
<tr>
<td>BACTERIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bartonella henselae</td>
<td>- Bartonella detected in CSF/brain specimens by PCR (rare); OR</td>
<td>- ≥4-fold rise in blood antibody titres; OR</td>
<td>- Single elevated antibody titre</td>
<td>- Bartonella not detected in CSF/brain specimens by PCR; AND</td>
</tr>
<tr>
<td></td>
<td>- Bartonella-specific intrathecal antibody response; AND</td>
<td>- Positive PCR of lymph node tissue; AND</td>
<td>- Bartonella not detected in CSF/brain specimens by PCR; AND</td>
<td>- Meets confirmed or probable CD for another cause</td>
</tr>
<tr>
<td></td>
<td>- If available – Autopsy neuropathology demonstrates perivascular inflammation and microglial nodules; AND</td>
<td>- No other explanatory pathogen or cause found</td>
<td>- Bartonella not detected in CSF/brain specimens by PCR; AND</td>
<td>- Meets confirmed or probable CD for another cause</td>
</tr>
<tr>
<td></td>
<td>- No other explanatory pathogen or cause found</td>
<td>- No other explanatory pathogen or cause found</td>
<td>- Bartonella not detected in CSF/brain specimens by PCR; AND</td>
<td>- Meets confirmed or probable CD for another cause</td>
</tr>
<tr>
<td>Borrelia burgdorferi (Lyme borreliosis) [23–26]</td>
<td>- Preceding risk of tick exposure; AND</td>
<td>- Preceding risk of tick exposure; AND</td>
<td>- Preceding risk of tick exposure; AND</td>
<td>- Absence of preceding tick exposure risk; OR</td>
</tr>
<tr>
<td></td>
<td>- B. burgdorferi-specific intrathecal antibody response; OR</td>
<td>- Seroconversion or significant rise in antibody level on serum samples obtained 2 weeks apart and tested in parallel in patients with suspected early neuroborreliosis</td>
<td>- Clinical history (e.g. erythema migrans) compatible with earlier stage of infection; OR</td>
<td>- Absence of preceding tick exposure risk; OR</td>
</tr>
<tr>
<td></td>
<td>- Isolation of B. burgdorferi from CSF or CNS sample (rare and likely only to occur in early neuroborreliosis) or detection of B. burgdorferi DNA by PCR in CSF or CNS tissue</td>
<td>- B. burgdorferi antibodies present in serum</td>
<td>- Absence of B. burgdorferi antibodies present in serum 4 weeks after presentation in an immunocompetent patient; OR</td>
<td>- Absence of B. burgdorferi antibodies present in serum 4 weeks after presentation in an immunocompetent patient; OR</td>
</tr>
<tr>
<td></td>
<td>- Preceding risk of tick exposure; AND</td>
<td>- Early neuroborreliosis</td>
<td>- Preceding risk of tick exposure; AND</td>
<td>- Absence of B. burgdorferi antibodies present in serum 4 weeks after presentation in an immunocompetent patient; OR</td>
</tr>
<tr>
<td></td>
<td>- Clinical history (e.g. erythema migrans) compatible with earlier stage of infection; OR</td>
<td>- B. burgdorferi antibodies present in serum</td>
<td>- Absence of B. burgdorferi antibodies present in serum 4 weeks after presentation in an immunocompetent patient; OR</td>
<td>- Absence of B. burgdorferi antibodies present in serum 4 weeks after presentation in an immunocompetent patient; OR</td>
</tr>
<tr>
<td></td>
<td>- B. burgdorferi antibodies present in serum</td>
<td>- Absence of B. burgdorferi antibodies present in serum 4 weeks after presentation in an immunocompetent patient; OR</td>
<td>- Absence of B. burgdorferi antibodies present in serum 4 weeks after presentation in an immunocompetent patient; OR</td>
<td>- Absence of B. burgdorferi antibodies present in serum 4 weeks after presentation in an immunocompetent patient; OR</td>
</tr>
<tr>
<td></td>
<td>- Meets confirmed or probable CD for another cause and does not meet the possible CD for B. burgdorferi</td>
<td>- Absence of B. burgdorferi antibodies present in serum 4 weeks after presentation in an immunocompetent patient; OR</td>
<td>- Absence of B. burgdorferi antibodies present in serum 4 weeks after presentation in an immunocompetent patient; OR</td>
<td>- Absence of B. burgdorferi antibodies present in serum 4 weeks after presentation in an immunocompetent patient; OR</td>
</tr>
</tbody>
</table>
Brucella spp. [27]
- Epidemiological criteria: contact with infected animals; OR consumption of unpasteurized milk/milk products from enzootic country; OR residence in or travel to enzootic country; AND
- Brucella-specific intrathecal antibody response; OR
- ≥ 4-fold rise in Brucella agglutination titre AND other Brucella antibody tests between acute- and convalescent-phase serum specimens obtained ≥ 2 weeks apart and studied at the same laboratory

Chlamydophila spp.
- Chlamydophila spp. detected in CSF/brain specimens by PCR; OR
- Chlamydophila-specific intrathecal antibody response; AND
- No other explanatory pathogen or cause found

Group A streptococci
- Detection of group A streptococcal nucleic acid in CSF/brain specimens by PCR or culture; AND
- No MRI changes suggestive of ADEM

Haemophilus influenzae
- Detection of *H. influenzae* or *H. influenzae* nucleic acid from a normally sterile site (e.g. blood, CSF or, less commonly, joint, pleural, or pericardial fluid)

Leptospira spp.
- Isolation of leptospires from blood or CSF; OR
- ≥ 4-fold increase in *Leptospira* agglutination titre between acute- and convalescent-phase serum specimens obtained ≥ 2 weeks apart and studied at the same laboratory; OR
- Demonstration of leptospires in fixed or unfixed tissue by immunofluorescence

Listeria monocytogenes
- Isolation/PCR of *L. monocytogenes* from a normally sterile site; OR
- In the setting of miscarriage or stillbirth, isolation of *L. monocytogenes* from placental or foetal tissue

Mycobacterium tuberculosis
- MTB culture/PCR positive in CSF; OR
- Autopsy neuropathology demonstrates basal meningitis with granuloma and AAFBs

Brucella serology negative in an immunocompetent patient; OR
- Meets confirmed or probable CD for another cause

Four-fold rise in antibody titre, culture-based or PCR evidence of infection outside the CNS site
- Throat culture positive for group A streptococcus (in the context of sore throat); OR
- Recent scarlet fever

ASOT negative at 4 weeks after presentation in an immunocompetent patient; OR
- Meets confirmed or probable CD for another cause and does not meet the CD for *Group A streptococci*
- *H. influenzae* not detected in any sterile site; OR
- Meets confirmed or probable CD for another cause and does not meet the possible CD for *H. influenzae*

Detection of *Leptospira* or *Leptospira* antigen from a normally sterile site; AND
- No other explanatory pathogen or cause found

Serological evidence of acute infection (IgM positive or single high titre of ≥ 200); AND
- No other explanatory pathogen or cause found; AND
- Suggestive epidemiological features

Negative serology but compatible clinical features and exposure within 19 days of onset
- Leptospira serology negative at 4 weeks after presentation in an immunocompetent patient; AND
- No suggestive epidemiological features; OR
- Meets confirmed or probable CD for another cause

Strong epidemiological evidence e.g. consumption of contaminated food in an outbreak, and a brainstem encephalitis (with negative PCR and CSF culture)
- Meets confirmed or probable CD for another cause and does not meet the possible CD for *L. monocytogenes*

MTB culture/PCR positive outside CNS site; OR
- Decision to treat (based on epidemiology, CSF chemistry, and clinical signs); AND
- AAFBs inside/outside CNS site; OR
- Histological appearance of granulomata; OR
- Decision to treat; AND
- Response to treatment; AND
- No other explanatory pathogen or cause found

Decision to treat
- No decision to treat; AND
- Negative microbiological investigations; OR
- Meets confirmed or probable CD for another cause and does not meet the possible CD for MTB
<table>
<thead>
<tr>
<th>Mycoplasma pneumoniae</th>
<th>Confirmed</th>
<th>Probable</th>
<th>Possible*</th>
<th>Excluded</th>
</tr>
</thead>
</table>
| **Confirmed** | • *M. pneumoniae* detected in CSF/brain specimens by PCR; OR
 • *M. pneumoniae*-specific intrathecal antibody response; AND
 • No MRI suggestive of ADEM; AND
 • No other explanatory pathogen or cause found | • Serological evidence of acute infection (≥4-fold rise in CFT or agglutination titres or positive IgM response); AND
 • No MRI suggestive of ADEM; AND
 • No other explanatory pathogen or cause found | • Serological (single raised titre), culture-based or PCR evidence of infection outside the CNS site | • Meets confirmed or probable CD for another cause and does not meet the possible CD for *M. pneumoniae* |
| **Probable** | • Detection of *N. meningitidis*, *N. meningitidis* nucleic acid or *N. meningitidis* antigen or isolation of *N. meningitidis* from a normally sterile site (e.g. blood, CSF or, less commonly, joint, pleural, or pericardial fluid) | • Detection of *N. meningitidis* from a non-sterile site; OR
 • Clinical picture compatible with meningococcal disease (e.g. meningitis and/or meningococcemia that may progress rapidly to purpura fulminans, shock and death. Other manifestations are possible) without any laboratory confirmation; OR
 • Demonstration of Gram-negative diplococci from normally sterile site by microscopy; AND
 • No other explanatory pathogen or cause found | • Meets confirmed or probable CD; AND
 • Group A, C, Y or W135 detected, AND patient ≥12 months and been vaccinated for the matching serogroup at ≥12 months, OR was <12 months of age and had received at least 2 doses of vaccine more than 1 month prior to onset | • *N. meningitidis* not detected in any sterile site; OR
 • Meets confirmed or probable CD for another cause |
| **Possible*** | • Identification of *S. pneumoniae* C polysaccharide and serotype-specific antigen in urine (except for urine in children <2 years of age) | • Clinical diagnosis where the responsible clinician or microbiologist considers that pneumococcal disease, based on available clinical, microbiological and epidemiological evidence, is the most likely diagnosis. A probable case would be supported by certain clinical signs or an epidemiological link to a confirmed case; OR
 • Meets confirmed or probable CD; AND
 • Vaccine-preventable serogroup detected (this needs to be checked as serogroups included by vaccine vary) AND patient ≥12 months and had been vaccinated against matching serogroup at ≥12 months OR was <12 months of age and had received at least 2 doses of vaccine more than 1 month prior to onset | | • *S. pneumoniae* not detected in any sterile site; OR
 • Meets confirmed or probable CD for another cause and does not meet the possible CD for *S. pneumoniae* |
| **Excluded** | | | | • Meets confirmed or probable CD for another cause and does not meet the possible CD for *S. pneumoniae* |

Neisseria meningitidis			

Detection of bacterial nucleic acid in CSF/brain specimens by PCR or culture			

<table>
<thead>
<tr>
<th>Other acute bacterial ME (e.g. group B streptococci)</th>
<th>Confirmed</th>
<th>Probable</th>
<th>Possible*</th>
<th>Excluded</th>
</tr>
</thead>
</table>
| **Confirmed** | • Detection of *S. pneumoniae* from a normally sterile site by culture; OR
 • Detection of *S. pneumoniae* DNA from CSF or blood (except for blood in children <2 years of age) by dual target PCR; OR
 • Reference laboratory identification of *S. pneumoniae* C polysaccharide and serotype-specific antigen in CSF | | | |
| **Probable** | | | | |
| **Possible*** | • Identification of *S. pneumoniae* C polysaccharide and serotype-specific antigen in urine (except for urine in children <2 years of age) | | | |
| **Excluded** | | | | • Meets confirmed or probable CD for another cause and does not meet the possible CD for *S. pneumoniae* |

<table>
<thead>
<tr>
<th>Streptococcus pneumoniae</th>
<th>Confirmed</th>
<th>Probable</th>
<th>Possible*</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirmed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Possible*</td>
<td>• Identification of S. pneumoniae C polysaccharide and serotype-specific antigen in urine (except for urine in children <2 years of age)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excluded</td>
<td></td>
<td></td>
<td></td>
<td>• Meets confirmed or probable CD for another cause and does not meet the possible CD for S. pneumoniae</td>
</tr>
<tr>
<td>Pathogen</td>
<td>Case Definition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treponema pallidum</td>
<td>Syphilis of any clinical stage; AND Reactive serological test for syphilis and reactive VDRL/RPR and/or TPHA/TPPA in CSF; OR T. pallidum detected by PCR in CSF; OR Autopsy neuropathology demonstrates a chronic meningo-encephalitis with demonstration of treponemes by silver impregnation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syphilis of any clinical stage; AND Reactive serological test for syphilis and reactive VDRL/RPR and/or TPHA/TPPA in CSF; OR Elevated CSF protein or leukocyte count in the absence of other known causes of these abnormalities; AND Clinical symptoms or signs consistent with neurosyphilis without other known causes for these clinical abnormalities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parasites</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toxoplasma gondii [28]</td>
<td>T. gondii detected in any CSF/brain specimens by PCR; OR Toxoplasma-specific intrathecal antibody response; OR Autopsy neuropathology demonstrates a panencephalitis with T. gondii antigen in zoites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toxoplasma serology negative at 4 weeks after presentation in an immunocompetent patient; OR Meets confirmed or probable CD for another cause</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rickettsia spp.</td>
<td>≥4-fold rise in antibody titre to rickettsial antigen by IFA, CF, LA, MA, or IHA test, or a single titre ≥64 by IFA or ≥16 by CF; OR Demonstration of positive immunofluorescence of skin lesion (biopsy) or organ tissue (autopsy); OR Isolation of Rickettsia from a clinical specimen; OR Autopsy neuropathology demonstrates a microvasculitis with rickettsial antigen in endothelial cells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rickettsia serology negative at 4 weeks after presentation in an immunocompetent patient; OR Meets confirmed or probable CD for another cause</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIRUSES</td>
<td>Confirmed</td>
<td>Probable</td>
<td>Possible*</td>
<td>Excluded</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Adenovirus</td>
<td>• ADV detected in CSF/brain specimens by PCR; OR</td>
<td>• ADV DNA/antigen detected in a blood, respiratory, urine or faecal sample (excluding adenovirus 40 & 41 in faecal samples)</td>
<td>• ADV DNA negative on CSF specimen taken 3–7 days after symptom onset; AND</td>
<td>• Meets confirmed or probable CD for another cause and does not meet the possible CD for ADV</td>
</tr>
<tr>
<td></td>
<td>• ADV-specific intrathecal antibody response†; OR</td>
<td>• Serological evidence of primary ADV infection; OR</td>
<td>• No ADV-specific intrathecal antibody response† at least 7–10 days after symptom onset; OR</td>
<td>• Meets confirmed or probable CD for another cause and does not meet the possible CD for ADV</td>
</tr>
<tr>
<td></td>
<td>• Autopsy neuropathology demonstrates basophilic nuclear inclusions in neurons and glia containing ADV DNA/antigen, variable inflammation, necrosis and haemorrhage‡; AND</td>
<td>• No other explanatory pathogen or cause found</td>
<td>• No ADV-specific intrathecal antibody response† at least 7–10 days after symptom onset; OR</td>
<td>• Meets confirmed or probable CD for another cause and does not meet the possible CD for ADV</td>
</tr>
<tr>
<td></td>
<td>• No other explanatory pathogen or cause found</td>
<td>• CMV DNA/antigen detected in any CSF/brain specimens; OR</td>
<td>• CMV DNA/antigen detected in blood</td>
<td>• Meets confirmed or probable CD for another cause and does not meet the possible CD for CMV</td>
</tr>
<tr>
<td></td>
<td>• CMV-specific intrathecal antibody response†; OR</td>
<td>• CMV DNA/antigen detected in blood</td>
<td>• No CMV-specific intrathecal antibody response† at least 7–10 days after symptom onset; OR</td>
<td>• Meets confirmed or probable CD for another cause and does not meet the possible CD for CMV</td>
</tr>
<tr>
<td></td>
<td>• Autopsy neuropathology demonstrates panencephalitis with microglial nodules and cytomegalic inclusions containing CMV DNA/antigen; AND</td>
<td>• Serological evidence of primary CMV infection (e.g. seroconversion); OR</td>
<td>• No CMV-specific intrathecal antibody response† at least 7–10 days after symptom onset; OR</td>
<td>• Meets confirmed or probable CD for another cause and does not meet the possible CD for CMV</td>
</tr>
<tr>
<td></td>
<td>• No other explanatory pathogen or cause found</td>
<td>• Laboratory detection of organism outside the CNS; OR</td>
<td>• Serological evidence of primary CMV infection (e.g. seroconversion); OR</td>
<td>• Meets confirmed or probable CD for another cause and does not meet the possible CD for CMV</td>
</tr>
<tr>
<td></td>
<td>• Enteroviruses detected in any CSF/brain specimens; OR</td>
<td>• Serological evidence of recent infection</td>
<td>• Serological evidence of recent infection</td>
<td>• Meets confirmed or probable CD for another cause and does not meet the possible CD for enterovirus</td>
</tr>
<tr>
<td></td>
<td>• Enterovirus-specific intrathecal antibody response†; AND</td>
<td>• Serological evidence of recent infection</td>
<td>• Serological evidence of recent infection</td>
<td>• Meets confirmed or probable CD for another cause and does not meet the possible CD for enterovirus</td>
</tr>
<tr>
<td></td>
<td>• If available – Autopsy neuropathology demonstrates poliomyelitis/polioencephalitis AND</td>
<td>• Serological evidence of recent infection</td>
<td>• Serological evidence of recent infection</td>
<td>• Meets confirmed or probable CD for another cause and does not meet the possible CD for enterovirus</td>
</tr>
<tr>
<td></td>
<td>• No other explanatory pathogen or cause found</td>
<td>• EBV DNA/antigen detected in any CSF/brain specimens; AND</td>
<td>• EBV DNA negative on CSF specimen taken 3–7 days after symptom onset; AND</td>
<td>• Meets confirmed or probable CD for another cause and does not meet the possible CD for EBV</td>
</tr>
<tr>
<td></td>
<td>• Serological evidence of primary EBV infection</td>
<td>• No other explanatory pathogen or cause found AND</td>
<td>• EBV DNA negative on CSF specimen taken 3–7 days after symptom onset; AND</td>
<td>• Meets confirmed or probable CD for another cause and does not meet the possible CD for EBV</td>
</tr>
<tr>
<td></td>
<td>• EBV DNA/antigen detected in any CSF/brain specimens; AND</td>
<td>• No other explanatory pathogen or cause found</td>
<td>• No EBV-specific intrathecal antibody response† at least 7–10 days after symptom onset; OR</td>
<td>• Meets confirmed or probable CD for another cause and does not meet the possible CD for EBV</td>
</tr>
<tr>
<td></td>
<td>• Primary EBV infection removed and primary CNS lymphoma excluded in the immunosuppressed</td>
<td>• No other explanatory pathogen or cause found</td>
<td>• Meets confirmed or probable CD for another cause and does not meet the possible CD for EBV</td>
<td>• Meets confirmed or probable CD for another cause and does not meet the possible CD for EBV</td>
</tr>
</tbody>
</table>
Herpes simplex virus [29, 30]

- HSV DNA/antigen detected in any CSF/brain specimens; OR
- HSV-specific intrathecal antibody response†; OR
- Autopsy neuropathology demonstrates panencephalitis with HSV DNA/antigen present in eosinophilic neuronal inclusions

(1) In ALL:
- Evidence of primary HSV infection (IgG seroconversion or detection of low avidity antibodies) within 2 weeks of onset
- Serological evidence suggestive but not conclusive (IgM positive) of primary HSV infection or positive sample other than CNS site

(2) In infants ≤1 year:
- IgM positive in blood; AND
- PCR swab positive from any site

Human herpesvirus-6 [18]

(1) In immunocompromised:
- Clinical picture of encephalitis in allogeneic haematopoietic stem cell and solid organ transplant patients [31]; AND
- HHV-6 detected in CSF/brain; AND
- Exclusion of HHV-6 chromosomal integration *(This is defined by characteristically high, persistent HHV-6 DNA levels in whole blood equivalent to at least 1 copy/leukocyte and in serum or plasma equivalent to at least 1 copy/lysed leukocyte)*; OR
- Autopsy neuropathology demonstrates HHV-6 DNA/antigen in neurons and glia, panencephalitis

(2) In immunocompetent:
- Primary HHV-6 infection; AND
- HHV-6 detected in CSF or brain

Human herpesvirus-7

- Primary HHV-7 infection; AND
- HHV-7 detected in CSF/brain

Human immunodeficiency virus

- HIV RNA detected in any CSF/brain specimens by PCR; AND
- MRI findings consistent with HIV; AND
- No other cause identified; OR
- Autopsy neuropathology demonstrates panencephalitis or leukoencephalitis with HIV antigen in macrophages

- HIV RNA present in the CSF at a higher viral load than plasma in samples taken at approximately the same time; AND
- No other explanatory pathogen or cause found

Human herpesvirus-6

(1) In immunocompromised:
- Clinical picture of encephalitis in allogeneic stem cell and solid organ transplant patients; AND
- HHV-6 detected in CSF/brain; OR
- Autopsy neuropathology demonstrates HHV-6 DNA/antigen in neurons and glia, panencephalitis

(2) In immunocompetent:
- Primary HHV-6 infection; AND
- HHV-6 detected in CSF or brain

Human immunodeficiency virus

- HIV RNA detected in any CSF/brain specimens; AND
- MRI findings consistent with HIV; AND
- No other cause identified; OR
- Autopsy neuropathology demonstrates panencephalitis or leukoencephalitis with HIV antigen in macrophages

- HIV RNA present in the CSF at a higher viral load than plasma in samples taken at approximately the same time; AND
- No other explanatory pathogen or cause found

Human immunodeficiency virus

- HIV RNA negative on CSF specimen taken 3–7 days after symptom onset; AND
- No HSV-specific intrathecal antibody response† at least 7–10 days after symptom onset; OR
- Meets confirmed or probable CD for another cause and does not meet the possible CD for HSV

Human herpesvirus-7

- No evidence of primary HHV-7 infection; AND
- HHV-7 detected in CSF/brain; AND
- HHV-6 chromosomal integration should be excluded

Human immunodeficiency virus

- No evidence of primary HHV-7 infection; AND
- HHV-7 detected in CSF/brain; AND
- HHV-6 chromosomal integration should be excluded

- Meets confirmed or probable CD for another cause and does not meet the possible CD for HIV
<table>
<thead>
<tr>
<th></th>
<th>Confirmed</th>
<th>Probable</th>
<th>Possible*</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influenza A/B</td>
<td>• Influenza virus RNA detected in CSF/brain specimens by PCR; OR</td>
<td>• Serological evidence of acute influenza infection (≥4-fold rise in antibody titres in paired serum); AND</td>
<td>• Single high antibody titre to influenza in a blood specimen; OR</td>
<td>• Influenza virus RNA negative on CSF specimen taken 3–7 days after symptom onset; AND</td>
</tr>
<tr>
<td></td>
<td>• Influenza-specific intrathecal antibody response†; AND</td>
<td>• No other explanatory pathogen or cause found (If well-matched vaccine given > 2 weeks before or the 2-dose schedule completed for children, move to probable)</td>
<td>• Influenza virus RNA/antigen detected in a respiratory, urine or faecal sample</td>
<td>• No influenza-specific intrathecal antibody response† at least 7–10 days after symptom onset; OR</td>
</tr>
<tr>
<td></td>
<td>• No other explanatory pathogen or cause found (If well-matched vaccine given > 2 weeks before or the 2-dose schedule completed for children, move to probable)</td>
<td></td>
<td></td>
<td>• Meets confirmed or probable CD for another cause and does not meet the possible CD for influenza</td>
</tr>
<tr>
<td>Japanese encephalitis virus [32]</td>
<td>• Presence of JEV-specific IgM antibody in single sample of CSF, as detected by IgM-capture ELISA specifically for JEV. This should be confirmed by specific neutralising titres to distinguish from cross-reactive flaviviruses such as WNV, SLEV, dengue and possibly TBE (depending on patient’s exposures); OR</td>
<td>• Presence of JEV-specific IgM antibody in single sample of serum, as detected by IgM-capture ELISA; OR</td>
<td>• Presence of IgG antibodies to JEV</td>
<td>• No JEV detected in CSF; OR</td>
</tr>
<tr>
<td></td>
<td>• Detection of JEV antigens in tissue by immunohistochemistry; OR</td>
<td>• Detection of JEV genome in serum, plasma, or blood by reverse transcriptase PCR or an equally sensitive and specific nucleic acid amplification test; OR</td>
<td></td>
<td>• No intrathecal or serological antibodies to JE detected; OR</td>
</tr>
<tr>
<td></td>
<td>• Isolation of JEV from or detection of JEV genome in CSF or tissue by reverse transcriptase PCR or an equally sensitive and specific nucleic acid amplification test; OR</td>
<td>• Isolation of JEV from serum, plasma or blood; OR</td>
<td></td>
<td>• Meets confirmed or probable CD for another cause and does not meet the possible CD for JEV</td>
</tr>
<tr>
<td></td>
<td>• Autopsy neuropathology demonstrates panencephalitis with JEV antigen in neurons</td>
<td>• Detection of ≥4-fold rise in JEV-specific antibody as measured by haemagglutination inhibition or plaque reduction neutralization assay in serum collected during acute and convalescent phase of illness. The two specimens for IgG should be collected at least 14 days apart. The IgG test should be performed in parallel with other confirmatory tests to eliminate possibility of cross-reactivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JC polyomavirus</td>
<td>• JC virus detected in any CSF/brain specimens by PCR; OR</td>
<td>• Compatible illness/MR scan findings consistent with PML, granular cell neuronopathy, or fulminant JC encephalopathy [33, 34]; OR</td>
<td>• Meets confirmed or probable case definition for another cause</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• JC-specific intrathecal antibody response†; AND</td>
<td>• Autopsy neuropathology demonstrates leukoencephalitis with demyelination and JC DNA/antigen in glia</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Compatible illness/MR scan findings consistent with PML, granular cell neuronopathy, or fulminant JC encephalopathy [33, 34]; OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymphocytic chorion meningitis virus</td>
<td>• LCMV detected in any CSF/brain specimens; OR</td>
<td>• Serological evidence of acute infection (IgM positive); AND</td>
<td>Meets confirmed or probable case for another cause</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• LCMV-specific intrathecal antibody response†</td>
<td>• No other explanatory pathogen or cause found</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Measles

- Measles virus/nucleic acid detected in any CSF/brain specimens; OR
- Measles-specific intrathecal antibody response†; OR
- Autopsy neuropathology demonstrates panencephalitis with intranuclear inclusions containing measles virus RNA/antigen
- Measles seroconversion or detection of IgM in serum, plasma or oral fluid, or detection of measles virus/nucleic acid by PCR on oral fluid or urine. Samples should be within 2 weeks after symptom onset. OR
- Meets confirmed or probable CD; AND
- Measles vaccine given at least 1 month apart and the second at least 1 month before onset
- Evidence of prior immunity at presentation (IgG, no IgM, or ≥ 2 doses of vaccine); OR
- Meets confirmed or probable CD for another cause and does not meet the possible CD for measles

Mumps

- Mumps virus/nucleic acid detected in any CSF/brain specimens; OR
- Mumps-specific intrathecal antibody response†
- IgG seroconversion or detection of IgM in serum, plasma or oral fluid, or detection of mumps virus/nucleic acid by PCR on oral fluid or urine. Samples should be within 2 weeks after symptom onset; OR
- Meets confirmed or probable CD; AND
- Mumps vaccine given at least 1 month apart and the second at least 1 month before onset
- Evidence of prior immunity at presentation (IgG, no IgM, or ≥ 2 doses of vaccine); OR
- Meets confirmed or probable CD for another cause and does not meet the possible CD for mumps

Norovirus

- Norovirus detected in CSF/brain specimens by PCR; OR
- Norovirus-specific intrathecal antibody response†; AND
- No other explanatory pathogen or cause found
- Isolation of virus from or demonstration of specific viral antigen or genomic sequences in brain tissue/CSF; OR
- Virus-specific IgM antibodies demonstrated in CSF by antibody-capture EIA; OR
- 4-fold change in virus-specific serum antibody titre; OR
- Virus-specific IgM antibodies demonstrated in serum by antibody-capture EIA and confirmed by demonstration of virus-specific serum IgG antibodies in the same or a later specimen by another serologic assay (e.g. neutralization or HI)
- Detection of norovirus outside CNS
- Meets confirmed or probable CD for another cause and does not meet the possible CD for norovirus

Other arboviruses – including California serogroup viruses, Eastern equine, Venezuelan equine, Murray Valley, Rocio virus, Rift Valley fever, St Louis, Western equine, Powassan, Toscana, Chikungunya, and Usutu viruses [35]

- Isolation of virus from or demonstration of specific viral antigen or genomic sequences in other tissue, blood, or other body fluid or body tissue other than brain; OR
- 4-fold change in virus-specific serum antibody titre; OR
- Virus-specific IgM antibodies demonstrated in serum by antibody-capture EIA and confirmed by demonstration of virus-specific serum IgG antibodies in the same or a later specimen by another serologic assay (e.g. neutralization or HI)
- A single or stable (≤ 2-fold change) but elevated titre of virus-specific serum antibodies OR serum IgM antibodies detected by antibody-capture EIA but with no available results of a confirmatory test for virus-specific serum IgG antibodies in the same or a later specimen
- No virus detected in CSF or brain; OR
- No virus antibody detected in CSF or serum; OR
- Meets confirmed or probable CD for another cause
Table 1 (cont.)

<table>
<thead>
<tr>
<th></th>
<th>Confirmed</th>
<th>Probable</th>
<th>Possible*</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabies</td>
<td>Detection by direct fluorescent antibody of rabies antigens in a clinical specimen (preferably brain or nerves surrounding hair follicles in the nape of the neck); OR</td>
<td>Clinical presentation and outcome consistent with rabies; AND</td>
<td>Clinical presentation consistent with rabies; AND</td>
<td>The patient survives (applies only if patient unvaccinated or had not received post-exposure prophylaxis); OR</td>
</tr>
<tr>
<td></td>
<td>Isolation (in cell culture or in a laboratory animal) of rabies virus or positive rabies PCR from saliva, CSF, or CNS tissue; OR</td>
<td>History of exposure to a rabid animal within the incubation period</td>
<td>No history of exposure to a rabid animal within the incubation period</td>
<td>Meets confirmed or probable CD for another cause and does not meet the possible CD for rabies</td>
</tr>
<tr>
<td></td>
<td>Identification of a rabies-neutralizing antibody titre ≥ 5 in the serum or CSF of an unvaccinated person; OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Autopsy neuropathology demonstrates a polioencephalitis with eosinophilic neuronal cytoplasmic inclusions (Negri bodies)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory syncytial</td>
<td>RSV detected in CSF/brain specimens by PCR; OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>virus</td>
<td>RSV-specific intrathecal antibody response†; AND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No other explanatory pathogen or cause found</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotavirus</td>
<td>Rotavirus detected in CSF/brain specimens by PCR; OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rotavirus-specific intrathecal antibody response†; AND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No other explanatory pathogen or cause found</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rubella</td>
<td>Rubella virus detected in any CSF/brain specimens; OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rubella-specific intrathecal antibody response†; AND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If available – Autopsy neuropathology demonstrates a panencephalitis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No other explanatory pathogen or cause found</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Respiratory syncytial virus
- RSV detected in CSF/brain specimens by PCR; OR
- RSV-specific intrathecal antibody response†; AND
- No other explanatory pathogen or cause found

Rotavirus
- Rotavirus detected in CSF/brain specimens by PCR; OR
- Rotavirus-specific intrathecal antibody response†; AND
- No other explanatory pathogen or cause found

Rubella
- Rubella virus detected in any CSF/brain specimens; OR
- Rubella-specific intrathecal antibody response†; AND
- If available – Autopsy neuropathology demonstrates a panencephalitis
- AND
- No other explanatory pathogen or cause found
- Detection of TBEV-specific IgM or IgG antibodies in CSF; OR
- Virus isolation from tissue or CSF; OR
- Autopsy neuropathology demonstrates a polioencephalitis with TBEV viral antigen in neurons and glia
- 4-fold rise in serum antibody titre, with no history of vaccination against any flaviviral disease during previous 3 months; OR
- Detection of specific IgM antibodies in serum, with no history of vaccination against any flaviviral disease during previous 3 months; preferably with confirmation by neutralisation; OR
- Serology negative 10–14 days after symptom onset; OR
- Meets confirmed or probable CD for another cause

- VZV DNA/antigen detected in any CSF/brain specimens; OR
- VZV-specific intrathecal antibody response; OR
- Autopsy neuropathology demonstrates panencephalitis with nuclear inclusions containing VZV DNA/antigen
- Serological evidence of VZV primary infection (IgG seroconversion or detection of low avidity antibodies) within 2 weeks of onset
- Serological evidence suggestive but not conclusive (IgM positive) of primary VZV infection or virus detection at a site other than the CNS
- VZV DNA negative on CSF specimen taken 3–7 days after symptom onset; OR
- No VZV-specific intrathecal antibody response at least 7–10 days after symptom onset; OR
- Meets confirmed or probable CD for another cause and does not meet the possible CD for VZV

- Detection of antibody in CSF via MAC-ELISA and differentiation from other flaviviruses by plaque reduction neutralization test; OR
- Detection of WNV in CSF by PCR; OR
- Detection of WNV in serum by PCR
- Serological evidence of WNV epidemic but inappropriate or untimely sampling
- No WNV detected in CSF or brain; OR
- No WNV antibody detected in CSF or serum; OR
- Meets confirmed or probable CD for another cause

ADEM, Acute disseminated encephalomyelitis; ADV, adenovirus; AAFB, alcohol and acid-fast bacilli; ASOT, antistreptolysin O titre; CD, case definition; CF, complement fixation; CMV, cytomegalovirus; CNS, central nervous system; CSF, cerebrospinal fluid; EBNA, Epstein–Barr virus nuclear antigen; EBV, Epstein–Barr virus; EIA, enzyme immunoassay; ELISA, enzyme-linked immunosorbent assay; HGE, human granulocytic ehrlichiosis; HHV-6, human herpesvirus-6; HHV-7, human herpesvirus-7; HI, haemagglutination inhibition; HIV, human immunodeficiency virus; HME, human monocytic ehrlichiosis; HSV, herpes simplex virus; IFA, immunofluorescence assay; IHA, indirect haemagglutination; JEV, Japanese encephalitis virus; LA, latex agglutination; LCMV, lymphocytic choriomeningitis virus; MA, microagglutination; MAC-ELISA, IgM antibody capture ELISA; ME, meningoencephalitis; MRI, magnetic resonance imaging; MTB, Mycobacterium tuberculosis; PAM, primary amoebic meningoencephalitis; PCR, polymerase chain reaction; PML, progressive multifocal leukoencephalopathy; RPR, rapid plasma reagin; RSV, respiratory syncytial virus; SLEV, St Louis encephalitis virus; TBEV, tick-borne encephalitis virus; TPHA, treponema pallidum haemagglutination test; TPPA, treponema pallidum particle agglutination test; VCA, viral capsid antigen; VDRL, venereal disease research laboratory; VZV, varicella-zoster virus; WNV, West Nile virus.

* Patients may meet more than one possible aetiological case definition but only one probable aetiological case definition.
† Intrathecal antibody production implies local synthesis of microbe-specific antibody within the CNS. Microbe-specific intrathecal antibody production can be identified by two methodologies: either by calculation of an antibody index or through antigen-specific immunoblotting of CSF and serum antibody following isoelectric focusing [36].
‡ Based on data from very few cases.
§ Does not include post-infectious encephalitis due to streptococci.
†† Presents more often as meningoencephalitis.
Table 2. Encephalitis which is predominantly immune-mediated

<table>
<thead>
<tr>
<th>Confirmed</th>
<th>Possible*</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADEM [5, 6, 37–43]</td>
<td>Defining case</td>
<td>Possible</td>
</tr>
<tr>
<td></td>
<td>• A direct infectious aetiology is excluded; AND</td>
<td>• Encephalitic illness in the setting of systemic illness with known association with ADEM, e.g. measles; OR</td>
</tr>
<tr>
<td></td>
<td>• Prior to the onset of the current illness, the patient has not suffered previous neurological symptoms suggestive of demyelination; AND</td>
<td>• Encephalitis following vaccination (particularly with inactivated agent)</td>
</tr>
<tr>
<td></td>
<td>• The MRI findings are compatible with ADEM (see below) or diagnosis confirmed by biopsy or post-mortem examination; AND</td>
<td>• Post-mortem CNS examination excluding the diagnosis in untreated patient who dies during acute illness</td>
</tr>
<tr>
<td></td>
<td>• The patient does not develop definite MS during the duration of the study; OR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Post-mortem-autopsy findings are in keeping with ADEM (Note: instead of or as well as MRI criteria)</td>
<td></td>
</tr>
<tr>
<td>Schwartz MRI criteria</td>
<td>• One or multiple supra- or infratentorial demyelinating lesions; AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Absence of ‘black holes’ on T1-weighted imaging (indicative of previous destructive inflammatory-demyelinating illness)</td>
<td></td>
</tr>
<tr>
<td>Defining aetiology</td>
<td>• There is serological evidence of contemporary microbial infection; OR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• A microbe is directly identified outside the CNS with evidence of infection</td>
<td></td>
</tr>
<tr>
<td>Bickerstaff’s encephalitis [44]</td>
<td>• The patient has progressive, symmetric external ophthalmoplegia and ataxia within 4 weeks of disease onset with disturbance of level of consciousness or hyper-reflexia; AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The following brainstem conditions excluded – vascular disease, Wernicke’s, botulism, myasthenia gravis, brainstem tumour, pituitary apoplexy, ADEM, MS, neuro-Behcet’s, vasculitis and lymphoma</td>
<td></td>
</tr>
<tr>
<td>Voltage-gated potassium channel antibodies [9]</td>
<td>• A titre of > 400 pM; AND</td>
<td>• A titre of 100–400 pM</td>
</tr>
<tr>
<td></td>
<td>• No other explanatory pathogen or cause found</td>
<td></td>
</tr>
<tr>
<td>Anti-NMDA receptor antibodies [8]</td>
<td>• Detection of anti-NMDA receptor antibodies; AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Immunotherapy-responsive; AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• No other explanatory pathogen or cause found</td>
<td></td>
</tr>
<tr>
<td>Anti-GAD antibodies</td>
<td>• Detection of anti-GAD65 antibodies (> 20 nmol/l); AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Immunotherapy-responsive; AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• No other explanatory pathogen or cause found</td>
<td></td>
</tr>
</tbody>
</table>

ADEM, Acute disseminated encephalomyelitis; CNS, central nervous system; GAD, glutamic acid decarboxylase; MRI, magnetic resonance imaging; MS, multiple sclerosis; NMDA, N-methyl-d-aspartate.

* Patients may meet more than one possible aetiological case definition but only one probable aetiological case definition.
distinguishing the most up-to-date research such as the need to exclude chromosomal integration before confirming HHV-6 as the definitive cause [18]. As a third of all acute encephalitides are thought to be immune-mediated and often the distinction from acute infectious encephalitis cannot be made on clinical grounds alone, it is crucial to include non-infectious causes in any case definitions for acute encephalitis.

Yet other studies in North America have based their criteria solely on the type of specimen in which the organism was detected [19, 20]. Other studies have not made the criteria they used explicit. In one study, prior to the routine use of molecular diagnostics, causative agents were assigned by isolation of the organism from the nasopharynx [21]. The fact that so many case definitions are used, and that they are of such varying quality, makes comparison between existing studies difficult.

This paper is an important addition to the limited literature available on case definitions of encephalitis. Encephalitis is of global public health concern and as a result numerous studies are either underway or being planned. Achieving consensus for these aetiological case definitions will facilitate comparison between studies and ultimately result in a better understanding of the causes of this devastating neurological condition. They provide a framework for regular review and updating as the knowledge base increases both clinically and through improvements in diagnostic methods, while the importance of new and emerging pathogens as causes of encephalitis can be assessed against the principles laid out here.

ACKNOWLEDGEMENTS

The authors are grateful to the following for their expert advice on specific case definitions: Dr Richard Pebody (HPA Immunisation Department, London), Dr Susan O’Connell (HPA Lyme Borreliosis Unit, Southampton), Professor Peter Chiodini (HPA Parasitology Reference Laboratory, London), Dr Edward Guy (HPA Toxoplasma Reference Laboratory, Swansea), Dr Alison Johnson (HPA Leptospira Reference Unit, Hereford), Dr Richard Cooke (HPA Brucella Reference Unit, Liverpool), Dr Sarosh Irani (Immunology Neurosciences Group, John Radcliffe Hospital, Oxford), Professor Angela Vincent (Immunology Neurosciences Group, John Radcliffe Hospital, Oxford), Professor John Watson (HPA Respiratory Diseases Department, London), Professor Bruce Brew (Expert in HIV Neurology, University of New South Wales, Sydney, Australia), Dr Geoff Keir (Neuroimmunology and CSF Laboratory, National Hospital for Neurology, London), Dr Cheryl Hemingway (Paediatric Neurologist, Great Ormond Street Hospital for Children, London), Dr Jean-Pierre Lin (Paediatric Neurologist, Evelina Children’s Hospital, London), Dr Ming Lim (Paediatric Neurologist, Evelina Children’s Hospital, London), Dr Ray Borrow (Manchester Medical Microbiology Partnership, HPA Regional Laboratory), Dr Ed Kaczmarzski (Manchester Medical Microbiology Partnership, HPA Regional Laboratory).

K.N.W. acknowledges funding from the University College London Hospitals/University College London Comprehensive Biomedical Research Centre (CBRC) of the National Institute for Health Research. N.W.S.D. is funded by the Peel Medical Research Trust.

DECLARATION OF INTEREST

None.

REFERENCES

