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A relationship between acute respiratory illnesses and weather
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SUMMARY

Weekly data from 7 years (2004-2010) of primary-care counts of acute respiratory illnesses
(ARIs) and local weather readings were used to adjust a multivariate time-series vector error
correction model with covariates (VECMX). Weather variables were included through a partial
least squares index that consisted of weekly minimum temperature (coefficient=—0-26), weekly
median of relative humidity (coefficient =0-22) and weekly accumulated rainfall (coefficient=0-5).
The VECMX long-term test reported significance for trend (0-01, P=0-00) and weather index
(1-69, P=0-00). Short-term relationship was influenced by seasonality. The model accounted for
76% of the variability in the series (adj. R*=0-76), and the co-integration diagnostics confirmed
its appropriateness. The procedure is easily reproducible by researchers in all climates, can be
used to identify relevant weather fluctuations affecting the incidence of ARIs, and could help
clarify the influence of contact rates on the spread of these diseases.
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INTRODUCTION

Acute respiratory illnesses (ARIs) stand out as the
most common health complaint worldwide [1]. They
were estimated to cause 4-2 million deaths and
97 million disability adjusted life years (DALYSs) in
2004 [1, 2]. The usual syndrome consists of malaise,
headache, myalgia, sore throat, coryza, fever, cough,
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dyspnoea and additional signs of respiratory distress;
clinical abnormalities generally arise in that order as
severity of disease increases [3, 4].

Although bacteria may be present primarily or as
a complication, it is viruses that cause ARIs most
commonly (70-90% of cases). Over 200 different
causal viruses have been identified, but most ARIs
stem from rhinovirus, respiratory syncytial virus
(RSV), coronavirus, adenovirus, metapneumovirus,
and influenza or parainfluenza viruses [2, 5-8].
Public health impact of diseases from different viruses
is distinct, and more attention has been devoted to
those posing higher threats, such as influenza and
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RSV, through the former’s potential for high-
mortality pandemics, and the latter’s more severe
expression in children, often involving the lower
airways.

In community settings most cases are mild, and the
fraction of patients that seeks medical care usually
receive symptomatic treatment without inquiry into
the aetiological agent or agents, due to practical and
financial constraints. Counts of ARI cases are kept
and published in states that are members of the
World Health Organization (WHO), and are used to
report on global health and health-related economics
[2]. These counts represent a proportion, likely to
vary with age group, gender, and severity, of the
real number of cases.

ARIs are related to weather; their name in many
languages reflects this age-old observation (English:
cold; Spanish: resfrio; German: Erkéltung; French:
froid). Indeed, counts of cases in temperate climates
show peaks during their cold, dry, and low solar-
radiation winters. On the other hand, tropical climates
display an ARI incidence pattern with highs in the
rainy season, during their warm summer [9-12]. It is
of note that for some pathogens capable of causing
ARIs, a biennial rhythmicity has been described
(RSV, metapneumovirus, parainfluenza) in temperate
regions; still, the seasonal variation of ARIs in general
is annual [9, 13].

There have been efforts to quantify the relationship
between ARIs and weather. Laboratory and observ-
ational studies suggest the existence of effects of low
and high meteorological parameters for a variety of
viruses on (1) the amount and viability of viruses
shed by diseased individuals, (2) the probability of
successful transmission by different mechanisms, and
(3) host states that determine an individual’s immunity
and the group’s vulnerability to an epidemic. Doyle &
Cohen [3] observed that for viruses such as RSV or
influenza, temperature, relative humidity, barometric
pressure and ultraviolet radiation can explain 40% of
the variance in the risk of ARI, and interpret this lit-
erature finding as related to the physical conditions
favouring virus survival. Indeed, technical reports
such as the one by Roberts & Kiang [12] on seasonal
influenza transmission classify the meteorological fac-
tors recorded in the literature as those affecting virus
survivorship (higher temperature, humidity, vapour
pressure, and solar irradiance all decrease virus survi-
val), those affecting transmission efficiency (decreased
by higher temperature and vapour pressure, increased
by higher rainfall, by ENSO, more air travel and
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holidays, and with varying reports for humidity),
and those affecting host susceptibility (decreased by
higher sunlight exposure and with varying effects of
nutrition). It is likely that the weather’s influence on
ARIs is mediated at least partially by effects on con-
tact rates, and such effects may vary by type of climate
and cultural group, as suggested by empirical obser-
vations [2, 6, 8, 14].

Our study used data from a primary-care popu-
lation in the state of Nuevo Ledn, in northeastern
Mexico. Nearly four million inhabitants (about 80%
of the state population in 2010) live in the metropoli-
tan area of Monterrey, 537 m above sea level, and
~270 km north of the Tropic of Cancer. The climate
is semi-arid (Koppen classification BSh), with a long
hot season (>32°C monthly average of daily maxi-
mum, individual readings as high as 45°C, 2004-
2010), correspondingly short cool and cold seasons,
scarce precipitation (between 0-94 mm and 228-6 mm
per day, mostly during the summer), and mild winters
(between 4-5°C and 7-4 °C annual average of daily
minimum). During winter, the region experiences sud-
den changes in temperature, which may fall by 20 °C
in a few hours, often accompanied by high humidity
and generalized low-intensity rain.

This paper describes a vector error correction model
with covariates (VECMX), that relates weekly counts
of ARIs in a primary-care setting to weather variables
in a specific climate, that of the northeast of Mexico,
using data from 2004 to 2010. Models such as the
one reported here may provide quantitative support
for the role of contact rates in epidemic spread in
naturalistic settings, by comparing the weather most
likely to make people stay indoors in different
cultures. If similar degrees of explanation are attained
through the use of different weather variables in
contrasting climates and peoples, human behaviour
would be the parsimonious explanation. If, on the
other hand, the same weather variables are related
to increases in counts of cases worldwide, biophysical
effects on viruses, hosts and groups should be attested
to as more efficiently promoting the rapid dissemina-
tion of disease.

METHODS
Weekly ARI counts

The Universidad Autéonoma de Nuevo Ledn’s
(UANL) 11 primary-care clinics in the municipalities
of Apodaca and Guadalupe, within the Monterrey
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Table 1. ICD-10 codes and clinical diagnosis scored as
acute respiratory illnesses
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Table 2. Gender and age group of patients in the acute
respiratory illness counts (2004-2010)

Code Diagnosis Variable/value n Proportion ~ 95% CI
JOO Acute nasopharyngitis, common cold Gender

JO1-9 Acute sinusitis, unspecified Male 13717 043 0-42-0-44
J02-9 Acute pharyngitis, unspecified Female 18163 0-57 0-56-0-58
J04-0 Acute laryngitis Age group (years)

JO4-1 Acute tracheitis 0-5 16974 0-53 0-53-0-54
J04-2 Acute laryngotracheitis >5-15 6576  0-21 0-20-0-21
JO5-1 Acute epiglottitis >15-50 6460 0-20 0-20-0-21
Jggg icute laryngopharyngitis . o >50 1870  0-06 0-056-0-061
JO6- cute upper respiratory infection, unspecifie

J20 Acute b?(l))nchiti;3 ’ b Total 31880

J20-9 Acute bronchitis, unspecified CI, Rounded confidence interval,

J21 Acute bronchiolitis

J21-9 Acute bronchiolitis, unspecified

J11 Influenza, virus not identified

metropolitan area, provide medical care in low-
income neighbourhoods. The data included weekly
counts of the ICD-10 diagnoses listed in Table 1
(chronic ailments were excluded), as well as the age
in years and the gender of the patient. Table 2 sum-
marizes the demographical data of the sample.

Weather data

The study used information from the ‘Monterrey’
weather station (100° 16’ 18" longitude, 25° 40’ 57"
latitude) for the same years, accessed through the
National Water Commission (CONAGUA) website
[15]. The readings consisted of mean temperature,
maximum temperature, minimum temperature, baro-
metric pressure, relative humidity, wind velocity,
wind direction, and rainfall. After exploratory analy-
sis, only the series of observations constituted by
three parameters, i.e. minimum temperature during a
given week, median of the observations of relative
humidity during a given week, and rainfall accumu-
lated during a given week, were retained in the model.

Statistical methods
Database conditioning

(a) Case count database. In order to correct for
the bias introduced by non-biological variations
in case counts, probably due to changes in the
administrative organization of healthcare institutions
affecting the number of persons served, such as the
introduction of a new federal programme in 2004
known as Seguro Popular (Popular Insurance), the

https://doi.org/10.1017/50950268813001854 Published online by Cambridge University Press

counts of cases for 2004-2006 were scaled using
state-wide data published by the State Health
Ministry (Secretaria de Salud de Nuevo Ledn),
preserving the overall dynamics of the series. In
addition, these Poisson counts were transformed to
stabilize their variance and to smooth them, by Y=2
[y”] [16]. In addition, the demographic covariables
were standardized, to render them less prone to noise
from variation in the number of persons seeking
attention related to administrative or political factors.

(b) Meteorological database. A small amount of
observations (52/1092, 4-5%) were missing or clear
errors (e.g. temperatures incompatible with life,
relative humidity of zero accompanied by non-zero
rainfall), and were substituted by estimates from a
smoothing technique as proposed by Cleveland ez al.
in 1990 [17].

Model building
Weather variables modelling

As stated earlier, exploratory analysis led to inclusion
in the model of three weather parameters: the mini-
mum temperature during a week, the median of all
readings of relative humidity in a week, and the
weekly accumulated rainfall. As expected, variables
in the meteorological database displayed linear and
nonlinear dependencies, a situation known as multi-
collinearity. Regression procedures attempted with
such data yield unstable and hard to interpret coeffi-
cients for the independent variables.

Therefore, we created a weather index through par-
tial least squares (PLS) [18]. PLS is a technique that
exploits the dependency structure in a set of variables
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to determine a group of coefficients that best relate
them to a dependent variable. PLS is similar to prin-
cipal components analysis (PCA) and factor analysis
(FA) in that they are all methods to reduce the dimen-
sionality of a model by projecting a set of variables
into a hyperplane that retains most of the information,
but under different criteria. FA uses a model deter-
mined by the researcher, whereas PCA chooses a
number of orthogonal dimensions based on maximiz-
ing the variance of the independent variables in each
dimension, rendering it a more unspecific technique
than PLS. PLS is also different in the fact that both
the dependent and the independent variables are pro-
jected into a different space, with the aim of maximiz-
ing the covariance in them, as opposed to the unique
variance maximization that occurs in PCA through
the projection of one set of variables. The solution
in PLS is a nonlinear function that is best suited for
forecasting purposes. In our model, we were only
interested in the coefficients of the solution produced,
as a single index that captures the information in the
three weather variables, and could be used in further
statistical procedures [19, 20].

Vector error correction modelling

Multivariate time-series models undertake either the
explanation or the prediction of the observations
in one time-series by the dynamics of one or more
other series that may summarize several variables.
VECMXs are a subtype that seeks to do this by esti-
mating: (1) long-term effects, (2) short-term or shock
effects, and (3) an error term, which in a correctly
specified model should be random noise. VECMXs
allow the variables to ‘speak by themselves’, pro-
ducing estimates of the long-term relationship between
the time-series, decomposed in parameters of trend
(how the series influence each other in the long
term), seasonality (the time-frame in which oscil-
lations around the trend are best understood), and
autocorrelation [the extent of influence of the previous
observation on subsequent one(s)] in the long-term
relationship, and of the impact of sudden changes in
the independent variables and covariates on the short-
term relationship, including the speed with which the
dependent series returns to the long-term relationship
equilibrium [21]. In a problem such as the one we con-
sider here, VECMX-relevant contribution is to deter-
mine if the dynamics present in the weather variables
index are capable of reproducing the dynamics present
in the ARI counts time-series.
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Two covariates were included in the model. Age
group and gender data were available for each case
diagnosed, and were included since variations over
time were observed on exploratory analyses. Once
again, a PLS index for the proportions of each cat-
egory allowed the addition of an age group covariate
to the model. The gender covariate was added as the
proportion of males. Since these primary-care clinics
remained closed for 2 weeks for each Christmas and
Easter holiday seasons, a covariable to adjust for
these weeks, when zero cases meant that no patient
requested attention, was also included. All these co-
variables were added because of particularities in the
data, influenced by non-biological factors in this rela-
tively small healthcare system, and thus will not be
interpreted in the discussion of the model in epidemio-
logical or biological terms.

We tested the fit of models with all combinations
of three different parameters: trend (none, constant,
positive), seasonality (3-52 periods), and lag (1-18
periods). It is of note that a VECMX model is able
to provide spurious significance (regression artifacts),
therefore the modelling procedure must include a
diagnostic phase. In our model’s development, resi-
dual hypothesis-testing including autocorrelation
tests supported the selection of a group of models.
They were later tested for co-integration, believed to
occur when there is a unique relationship in the series
that does not depend on time, through the maximum
eigenvalue long-term test [22-25]. From the models
that remained after performing these diagnostics, we
chose the one that maximized fit and plausibility.

Finally, we used an outlier Z test (¢« =0-10) to detect
atypical counts of cases that could not be explained by
the model.

All the analyses were performed using the free open
source statistical software R, specifically the packages
‘pls’ and ‘vars’ [26-28].

RESULTS
Weather index

The PLS solution to the problem of the combination

of weather parameters that maximizes the covariance

with the case counts, produced the coefficients

described in Table 3 and equation (1).

PLS weather index = —0-26 minimum temperature
in the week + 0-22 weekly median of relative
humidity + 0-5 weekly accumulated rainfall. (1)
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Table 3. Partial least squares ( PLS) coefficients for
weather index and age group index

PLS index Variable Coefficient
Weather Minimum temperature —0-26
in the week
Weekly median of relative 0-22
humidity
Weekly accumulated rainfall 0-50
Age group  0-5 years 0-24
>5-15 years 043
>15-50 years 0-54
>50 years 0-33

The index is higher when the minimum temperature in
the week is lower, and both weekly median of relative
humidity and weekly accumulated rainfall are higher;
the impact of rainfall is stronger than that of the other
two parameters.

Covariates
Age group index

The PLS coefficients are described in Table 3. The
resulting index assigned a lower weight to the trans-
formed number of diagnosed cases in children aged
<5 years, and assigned increasingly higher weights
to those aged >50, >5-15, and >15-50 years, in that
order. Gender was added as the proportion of males
in the counts of a given week. It is important to
remember that we introduced this type of covariable
only as an adjustment device, due to the sample
characteristics, and not for an epidemiological reason.

PLS age group index = (0-24) 0—5 years
+ (0-43) > 5—15years + (0-54) > 15—50 years
4+ (0-33) > 50 years. 2)

VECMX

In the selected model, the maximum eigenvalue test
rejected the first null hypothesis, namely, the lack of
a time-independent relationship, and did not reject
the second null hypothesis, that there could be only
one such relationship. It showed a slight positive
trend of 0-01; the long-term equation was also signifi-
cant, with a coefficient of 1-69 for the weather index
(P <0-00). In the short-term equation, the week of
the year (442, P=0-01), having more older children
and adults (1-50, P < 0-00), and less males (—2-43,
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P=0-04), all had a statistically significant effect. The
vector of short-term error corrections so formed was
also significant (—0-67, P <0-00), and the overall
degree of explanation was 76% (adj. R*=0-76; for
the most important coefficients, see Table 4). As stated
earlier, the relevant information in a VECMX model
for a problem like the one studied here is to determine
the ability of one series, the weather index series in this
case, to reproduce the dynamics of the dependent
series, the ARI counts in this paper; this is shown
graphically in Figure 1. (The full VECMX equation
and table of coefficients is available upon request.)

Finally, hypothesis testing characterized the resid-
uals as random noise, and values in the uppermost
10% of the observations were defined as atypical (n=
14 weeks in the whole period, see Fig. 2).

DISCUSSION

We report a VECMX, using commonly kept data
and free open source software, to help explain the
dynamics of acute respiratory infection counts in
terms of the weather in an urban community.

As mentioned, PLS maximizes the covariance in the
weather series of observations and the ARI counts.
The best possible fit between the transformed counts
and the new variable, the PLS weather index that
combines the three weather series, is given by award-
ing a —0-26 weight to the minimum temperature
during a given week, a 0-22 weight to the median
of relative humidity during a given week, and a
0-5 weight, the heavier influence, to accumulated rain-
fall during a given week. The signs of the coefficients
imply the direction of the relationship: negative for
minimum temperature means that the lowest tempera-
tures are responsible for the relationship, while the
positive signs for the other two parameters indicate
that the highest readings are the ones that bear
relation to increases in counts. This is in keeping
with the literature on the most common viral agents
[7-9, 11, 13, 29-33].

Both the gender and age-group PLS covariables
render the dynamics of the influence of the weather
index on the transformed counts clearer. It is known
that young children are more vulnerable to ARIs
and their complications than adults; and gender has
been repeatedly proven not to affect the probability
of ARI transmission ([3, p. 162, and references
therein]). These covariables merely control for swifts
in the covariances of the standardized demographic
observations and the transformed counts of ARIs
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Table 4. VECMX adjusted parameters

Type of relationship Variable Coefficient P value
Long term PLS weather index 1-60 0-00
Trend 0-01 0-00
Short term Error correction coefficient — —0-67 0-00
D (PLS weather) —0-66 0-11
D (cases) —0-05 043
Seasonality 4-42 0-01
PLS age group 1-50 0-00
Gender —2-43 0-04
Holiday 0-17 0-79
Adjusted explanation Adj. R? 0-76 n.a.

VECMX, Vector error correction model with covariates; PLS, partial least squares;

n.a., not available.

Bold values indicate statistical significance (P < 0-05).

| w— AR
Sl Model fit

20 —

ARI

I I I I I I I I
2004 2005 2006 2007 2008 2009 2010 2011

Week

Fig. 1 [colour online]. Smoothed acute respiratory illness (ARI) series (black line) and model fit (grey line). Shaded areas in

the background indicate the calendar autumn and winter seasons in each year.

along time-lines. The statistically significant trend in
the model is quite small and thus lacks epidemiologi-
cal importance; it may reflect demographical growth,
somewhat blunted since the large non-biological
fluctuations in the number of visits to the clinics
were corrected for, as explained in the Methods sec-
tion. The modelled relationship of weather to the
ARI counts does have further impact on the short-
term relationship, where only the last 3 weeks have
significant coefficients, all with a negative sign. In
other words, there were more cases in week T when
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weeks T-1, T-2 and T-3 were characterized by high
scores in the weather index, and when considering
the dynamics of pairs of weeks, the previous one
had a stronger influence (T-3>T-2>T-1), while this
relationship diluted itself from T-4 onwards.
However, the short-term relationship is characterized
by a rather quick return to the long-term relationship,
as can be inferred from the error correction coefficient
of 0-67, meaning that 67% of the changes dissipate
over a week. The proportion of the variability
explained by the model is very satisfactory, 76%
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2007 2008 2009 2010
Weeks

Fig. 2 [colour online]. Weeks with atypical counts (outbreaks). 1=week 51, 2004; 2 =week 13, 2005; 3=week 51, 2006; 4=
week 1, 2007; 5=week 6, 2007; 6=week 8, 2007; 7=week 36, 2007; 8 =week 42, 2007; 9=week 1, 2008; 10=week 15,
2008; 11 =week 17, 2009; 12=week 36, 2009; 13=week 12, 2010; 14=week 15, 2010.

(adj. R*=0-76), the highest we were able to locate in
the literature, perhaps owing to its multivariate (as
opposed to multiple) nature.

The fitted model has two interesting advantages
that, to our knowledge, previously reported models
have not provided: (1) it lends itself to replication in
different types of climate and different countries, due
to its widely available types of data input, and (2) it
has a low cost of implementation.

The first difference pertains to what at first may
seem a lack of sophistication in the model, which
does not consider the different pathogens involved.
Indeed, successful efforts to relate weather parameters
to the incidences of specific viral pathogens in ARIs
have been previously reported [7-9, 11, 13, 29-33].
Laboratory and special population studies have
shown effects of weather variables on the successful
transmission by specific mechanisms for different
viruses, affecting the length of time spent in the air
for aerosol droplets, the survival of viruses on hands
and objects, and the ability of the respiratory and
immune systems to defend the individual from infec-
tion, among other parameters. Even though docu-
mented in laboratory conditions, the size of these
effects in a naturalistic setting remains unclear.

It has been suggested that the weather’s effect on
contact rates is larger than the more biophysical virus-
specific effects [2, 14]; further studies on the epi-
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demiological dynamics of ARIs are needed to clarify
the ‘efficiency’ of the effects to facilitate epidemics.
In our opinion, models such as the one reported
here may help to shed light on this issue. When
adjusted for diverse climates and communities, they
will determine if the kinds of weather that make a par-
ticular cultural group stay indoors, different for
diverse latitudes and peoples, explain ARIs counts
with a comparable degree of completeness. This poss-
ible result would weigh in favour of the increased con-
tact rates explanation for the naturalistic spread of
epidemics. On the other hand, the same modelling
procedure may also be applied to carefully sampled
counts of different aetiological agents, and thus
inform specific prevention policy makers and their
vaccination strategies [30].

The model we report does not imply causality. The
reasons why cold rainy weeks are consistently associ-
ated with higher counts of cases 1-3 weeks later in a
semi-arid climate in Mexico are not shown in these
data. Yet, the described procedure presents an advan-
tage to healthcare systems of any size, complexity, or
global localization: an affordable way to compare the
weather’s influence on ARIs across the world using
commonly kept data and software that is freely avail-
able through the internet.

Still another feature in the model, useful for
decision-making authorities, is the detection of
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atypically high numbers of cases. Epidemiological
outbreak detection methods are in wide use, and the
model provides a further check on this crucial public
health function, which is so important because of
the serious consequences of falsely reporting either
an outbreak or its absence.

This set of procedures is easily reproducible for
researchers throughout the world, and may add quan-
titative information about the means through which
the weather influences the number of ARIs in different
climates.
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