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SUMMARY

Patagonia in southern South America is among the few world regions where direct human
impact is still limited but progressively increasing, mainly represented by tourism, farming,
fishing and mining activities. The sanitary condition of Patagonian wildlife is unknown, in spite
of being critical for the assessment of anthropogenic effects there. The aim of this study was the
characterization of Salmonella enterica strains isolated from wild colonies of Magellanic penguins
(Spheniscus magellanicus) located in Magdalena Island and Otway Sound, in Chilean Patagonia.
Eight isolates of Salmonella were found, belonging to Agona and Enteritidis serotypes, with
an infection rate of 0·38%. Resistance to ampicillin, cefotaxime, ceftiofur and tetracycline
antimicrobials were detected, and some of these strains showed genotypic similarity with
Salmonella strains isolated from humans and gulls, suggesting inter-species transmission cycles
and strengthening the role of penguins as sanitary sentinels in the Patagonian ecosystem.
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INTRODUCTION

Penguins are long-lived aquatic birds exclusively distri-
buted in the Southern hemisphere and are catalogued
as marine sentinels of the ocean’s health. This condition
has been established, among other reasons, due to their
large land breeding colonies [1], and being totally depen-
dent onmarine resources [2]. Therefore their population

alterations reflect the regional oceanic variations more
accurately and faster than any other aquatic bird [1].

The Spheniscus genus includes four species which in-
habit the coastal areas from the Pacific and Atlantic
Oceans. The Magellanic penguin (Spheniscus magellani-
cus) is distributed in southern South America, including
Chile and Argentina. It is the most abundant temperate
penguin in the world [1], although with a declining
population that has caused its ‘Near Threatened’
classification by the International Union for the
Conservation of Nature [3]. During the reproductive
season (spring and summer) it is possible to observe col-
onies from 30° S in the Pacific and 42° S in the Atlantic
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coasts. In winter, birds migrate to Brazil, South Atlantic
Islands, New Zealand and Australia [4].

It has been assumed that emerging infectious dis-
eases (EIDs) constitute an unpredictable phenomenon
associated with global changes largely influenced by
anthropogenic effects on the environment, hosts and
pathogens [5]. In this scenario, penguins are seriously ex-
posed due to resource competition with commercial
fisheries and theprogressivehuman invasionof theirhabi-
tats throughpopulationgrowth anddevelopment, includ-
ing livestock, mining and touristic activities. In addition,
the contamination of rivers and oceans with sewage and
fishery processingwaste predisposes contact with biologi-
cal agents, threatening the sanitary condition and conser-
vation status of penguins [1]. This situation is particularly
important for temperate penguins like S. magellanicus in
ChileanPatagonia,which are a tourist attraction, increas-
ing the direct and indirect interaction with visitors, dom-
estic animals and their transmissible pathogens.

Worldwide, the need for active surveillance of
wildlife-borne pathogens has been recognized, focusing
these efforts on prioritized agents. Salmonella enterica
has been considered within this group, being associated
with both water and wildlife [6, 7]. Within the World
Health Organization (WHO) Event Management
System, salmonellosis is classified as a communicable
disease common to humans and animals related to
food safety, with transmission through the food chain
andwater supply [8]. In developed and developing coun-
tries,Salmonellaconstitutes anendemic foodborne infec-
tion that generates periodic outbreaks in the human
population and is considered of great concern for animal
health [7, 9, 10]. The most frequent Salmonella serovars
isolated from wild birds (mainly aquatic birds) are
S. enterica Typhimurium and S. enterica Enteritidis
[11–13].Although inmost cases the infection is asympto-
matic, these serovars have been associated with disease
outbreaks and high mortality [11, 14–16], with reports
evidencing a direct transmission of Salmonella from
wild birds to humans and other animals [17–19].

The aim of this work was to detect S. enterica ser-
ovars in faecal samples of free-ranging Magellanic
penguins from two colonies in Chilean Patagonia.
The isolates were characterized by serotyping, antimi-
crobial susceptibility and genotyping.

MATERIAL AND METHODS

Study area

During January and February in 2012 and 2013, samples
fromS.magellanicus located inMagdalena Island (52°55′

S, 70° 34′ W) and Otway Sound (52° 58′ S, 71° 13′ W),
in southern Chilean Patagonia were collected. For this
work, authorization for sampling activities were obtained
from the official authority inMagdalena Island and from
farm owners in Otway Sound. Additionally, authoriza-
tions from Bioethics and Biosecurity Committees of the
University of Chile were also obtained.

Sampling

A total of 2114 faecal samples (Table 1) were collected
through both environmental and cloacal swabbing.
Swabs were placed into Cary–Blair transport medium
(Copan, USA) and stored under refrigeration for up to
4 weeks until arrival at the Laboratory of Infectious
Diseases, University of Chile, Santiago.

Penguins were captured using a net, following
recommendations of Chilean authorities and the
Global Penguin Society. In order to avoid breeding in-
terference, only adult animals ranging outside nests
were manipulated. Once cloacal swabbing and mor-
phological data collection was completed, the animals
were identified by a web tag (National Band and Tag
Co. model no. 1005–1) as described previously [20],
and then released in the same place as captured.

Bacterial isolates

To isolate bacteria, swabs were placed into 5 ml buf-
fered peptone water (Difco APT broth, Beckton
Dickinson, USA) supplemented with 20 μg/ml novo-
biocin (Sigma, USA) [21], and incubated for 24 h at
37 °C. Then, 100 μl of the suspension was inoculated
into modified semi-solid Rappaport–Vassiliadis basal
medium (Oxoid, Brazil) supplemented with 20 μg/ml
novobiocin and incubated for 24 h or 48 h at
41·5 °C. Cultures with growth were plated onto
xylose lysine deoxycholate agar (Difco XLD,
Beckton Dickinson) and incubated for 24 h at 37 °C.
Suspicious colonies were identified by biochemichal
tests and invA gene detection by PCR [22]. Next, S.
enterica strains were serotyped according to the
Kauffman–White scheme [23].

For genotypic comparison, a set of S. enterica strains
isolated from poultry and humans in Chile during 2011
and 2012 were also included in the analysis (Fig. 1).
Strains from poultry were provided by the
Agriculture and Livestock Service (SAG) and strains
from humans by the Institute of Public Health (ISP).
A S. enterica Agona strain previously isolated from a
Kelp gull (Larus dominicanus) [24] was also included.
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Genotyping

Pulsed field gel electrophoresis (PFGE)

PFGE was performed according to the standard proto-
col recommended by PulseNet (http://www.cdc.gov/pul
senet/pathogens/index.html). Briefly, the digestion was
made using XbaI (Invitrogen, USA). Electrophoresis
was performed using the CHEF DRIII PFGE system
(Bio-Rad, USA). The conditions used were 6 V/cm for
21 h at 14 °C with pulse time ranging from 3 to 63 s.
As control, S. Braenderup H9812 strain was used. The
gels were analysed with GEL COMPAR II® software
(Applied Maths, Belgium).

Virulotyping

This procedure was made by PCR amplification of pefA,
spvC, sirA, gipA, SEN1417, trhH and prot6e virulence
genes, using primers pefA_F (5′-cctgtgacctgaccacttctg-
3′), pefA_R (5′-gtaagccactgcgaaagatg-3′), spvC_F (5′-
ctccttgcacaaccaaatgcg-3′), spvC_R (5′-tgtctctgcatttcac-
caccatc-3′), sirA_F (5′-tgcgcctggtgacaaaactg-3′), sirA_R
(5′-actgacttcccaggctacagca-3′), gipA_F (5′-acgactgag-
caggctgag-3′), gipA_R (5′-ttggaaatggtgacggtagac-3′),
sen1417_F (5′-gatcgctggctggtc-3′), sen1417_R (5′-ctgacc-
gtaatggcga-3′), trhH_F(5′-aactggtgccgttgtcattg-3′), trhH_R
(5′-gatggtctgtgcttgctgag-3′), prot6e_F (5′-gcctaaggttagtg-
tgactctc-3′) and prot6e_R (5′-ctagcagccgttggtatcc-3′).
The DNA extraction, reaction mixtures and PCR condi-
tions were developed as described previously [24]. The S.
enterica Typhimurium ATCC 14028 and S. enterica
Agona SARB1 strains were used as positive controls.

Antimicrobial resistance phenotypes

Antimicrobial susceptibility was evaluated by the
disc diffusion method following CLSI criteria [25].

Antimicrobials tested were (μg/disk) ampicillin (10),
amoxicillin–clavulanic acid (20/10), cefotaxime (30),
gentamicin (10), trimethoprim–sulfamethoxazole (1·25/
23·75), tetracycline (30), ciprofloxacin (5), cefradine
(30), ceftiofur (30) and enrofloxacin (10) (Oxoid).
Escherichia coliATCC 25922 was used as control strain.

Statistical analyses

Categorical data analyses were made through contin-
gency tables with Infostat (2010v) software (http://www.
infostat.com.ar/) using Pearson’s correlation coefficient
to determine differences (P< 0·05).

Results from PFGE and PCR were merged by
transforming data in a binary code, using 1 when
the character was present (PFGE fragment or PCR
gene detection) or 0 when it was absent. The similarity
of the strains was calculated according to the Dice
coefficient with a 1% tolerance in band position, and
the dendogram was constructed using the UPGMA
method with TREECON software [26].

RESULTS

Three S. enterica Agona and five S. enterica
Enteritidis strains were isolated, with an overall infec-
tion rate of 0·38%. The detection of these serotypes
suggest differences according to sampling region and
year (Table 1), because Enteritidis strains were only
detected in Otway Sound, and Agona strains only in
2012. In addition, phenotypes of resistance against
ampicillin, cefotaxime, ceftiofur and tetracycline
were detected (Table 1). Resistances to ceftiofur and
tetracycline were associated (P < 0·05) with Agona
and Enteritidis strains, respectively.

The PFGE assay classified the strains in two main
clusters, in accordance with their serotypes, with less

Table 1. Salmonella strains isolated from Magellanic penguins (Spheniscus magellanicus)

Location Year Isolation rate (%) Serotype Strain ID
Antimicrobial
resistance

Otway Sound 2012 2/210 (0·95) Enteritidis
Agona

SEN96
SAG3

Susceptible
EFT

2013 4/850 (0·47) Enteritidis
Enteritidis
Enteritidis
Enteritidis

SEN162SEN163
SEN164SEN165

TE
TE
TE
TE

Magdalena Island 2012 2/436 (0·46) Agona
Agona

SAG1
SAG6

EFT
AMP, EFT, CTX

2013 0/618 (0) − −

AMP, Ampicillin; CTX, cefotaxime; EFT, ceftiofur; TE, tetracycline.
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than 60% similarity between them (Fig. 1). When the
PFGE and PCR results were merged (Fig. 2), these
major groups were maintained and discrimination
improved marginally, with some strains changing
from identical patterns to having minor differences
(less than 10%) within sub-clusters.Within the two sub-
clusters of the S. enterica Enteritidis group, all penguin
isolates were distinguishable from strains belonging to
other hosts. However, similarities were595%, suggest-
ing genetically close Salmonella strains. Within the S.
enterica Agona group, strains from humans were
clearly differentiated from the others, and one penguin’s
isolate (S. entericaAgona 6) had an identical patternwith
a gull’s strain (S. entericaAgona 2).When comparing ser-
otypes, a higher genotypic variability inS. entericaAgona
strains was found (Figs 1 and 2) compared to theS. enter-
ica Enteritidis group.

DISCUSSION

It is now estimated that 70–80% of emerging infec-
tious diseases (EID) in humans have an animal

component in their transmission, and more than half
of these have been elicited from wildlife [27].
Moreover, the most common cause of EID in wildlife
is the human introduction of pathogens in wild envir-
onments [28, 29], among which S. enterica is within
the group of pathogens that deserve more attention
for surveillance [7].

The presence of Salmonella in penguins has been
reported in Pygoscelis adeliae from the Antarctic con-
tinent, including serotypes Blockley, Panama and
Infantis with an overall infection rate of 13%.
Other studies have reported Salmonella infection in
P. papua, with serotypes Enteritidis, Havana and
Typhimurium, with isolation rates ranging between
3% and 44% [30, 31]. These works, with an overall
108 positive samples, suggest that P. papua could be
a major reservoir of the bacterium in Antarctica, con-
trasting with penguin species Aptenodytes forsteri and
Eudyptes chrysolophus that were also sampled without
any detection [32, 33]. In this study we detected a very
low occurrence of Salmonella infection in S. magella-
nicus (0·38%), with technical, geographical and

Restriction pattern Serotype Strain host Location

S. Agona 2

S. Agona 6

S. Agona 1

S. Agona 3

S. Agona 4

S. Agona 5

S. Enteritidis 49

S. Enteritidis 162

S. Enteritidis 165

S. Enteritidis 47

S. Enteritidis 69

S. Enteritidis 163

S. Enteritidis 164

S. Enteritidis 54

S. Enteritidis 96

S. Enteritidis 6

S. Enteritidis 11

S. Enteritidis 12

S. Enteritidis 27

S. Enteritidis 3

S. Enteritidis 21

Gull Valparaíso

Valparaíso

Valparaíso

Valparaíso

Valparaíso

Valparaíso

Valparaíso

Penguin Magdalena I.

Magdalena I.Penguin

Penguin Otway sound

Otway sound

Otway sound

Otway sound

Otway sound

Otway sound

Human Metropolitana

Human

Human Atacama

Penguin

Penguin

Poultry Arica

Human O’Higgins

Penguin

Penguin

Human

Penguin

Poultry

Poultry

Poultry

Human Antofagasta

Antofagasta

Poultry

Human

50 55 60 65 70 75 80 85 90 95 10
0

Fig. 1. Dendogram showing genetic similarities (%) between Salmonella enterica strains resulting from PFGE assay after
digestion with XbaI. The tree was constructed using the Dice coefficient and UPGMA algorithm with Gel Compar
software (Applied Maths, Belgium).
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host-related factors that could explain this contrasting
result. Nonetheless, reports made from one penguin
species cannot be extrapolated to others, which is
also supported by a recent description of large vari-
ation within the faecal microbiota of different penguin
species, a finding that includes bacteria belonging to
the family Enterobacteriaceae and several known
human pathogens [34].

This is the first report of Salmonella infection in
free-ranging penguins from South America, and the
first description of antimicrobial resistance pheno-
types among these isolates. However, a previous
work has already shown tetracycline and ampicillin
antibiotic resistance in enteric non-pathogenic micro-
organisms isolated from penguin faecal samples col-
lected near human settlements in Antarctica [35].
This finding, and the fact that tetracycline and ampi-
cillin correspond to widely used antimicrobials in
humans, livestock and poultry [36], suggest that
these bacterial phenotypes in penguins, which inhabit
pristine environments, could be a measure of the
anthropogenic effect. However, whether penguins
are directly or indirectly being affected by these
human footprints is unknown, since other seabirds

in Chile have also been reported to harbour
Salmonella strains with these and other antimicrobial
resistance phenotypes [24]. This hypothetical inter-
species transmission gains support with our genotypic
results, in which one S. enterica Agona strain isolated
from a Kelp gull on the Chilean coast, had the same
pattern as a penguin isolate (Figs 1 and 2).
Furthermore, all S. enterica Enteritidis strains isolated
from penguins showed high genetic similarity with
other human and poultry isolates (Fig. 2), represent-
ing additional evidences of close bacterial trans-
mission cycles among hosts.

The analysis based on merged PFGE and PCR
results has clearly discriminated bacteria according
to their serotypes. The contrasting strains’ diversity
at the sub-cluster level is in agreement with the relative
higher clonality that has been reported for S. enterica
Enteritidis strains compared to other serotypes [37, 38].

On the other hand, the SEN1417 factor has been
identified as a putative ABC transporter protein,
which gene is inserted within an unstable chromoso-
mal segment that has been exclusively detected in
prevalent phage types isolated from humans and ani-
mals [39]. In this study, this sequence was detected in

60 70 80 90 pe
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S. Agona 6
S. Agona 1
S. Agona 3
S. Agona 4
S. Agona 5

S. Enteritidis 3
S. Enteritidis 54
S. Enteritidis 96
S. Enteritidis 27
S. Enteritidis 12
S. Enteritidis 11
S. Enteritidis 6
S. Enteritidis 21
S. Enteritidis 47
S. Enteritidis 49
S. Enteritidis 69
S. Enteritidis 162
S. Enteritidis 163
S. Enteritidis 164
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Human
Penguin
Penguin
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Magdalena I.
Otway Sound
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Valparaíso
Valparaíso
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Otway Sound
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Valparaíso
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Fig. 2. Dendogram showing genetic similarities (%) between Salmonella enterica strains resulting from merged PFGE and
PCR data. Detection of virulence-associated genes is depicted as grey squares when present. Virulotypes are indicated by
letters according to their frequencies (A:8, B:4, C to E:2, F to H:1). Results from PFGE and PCR were transformed
into a binary code, using 1 when the character was present (PFGE fragment or PCR gene detection) and 0 when absent.
The tree was constructed using the UPGMA method with TREECON software.
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all S. enterica strains isolated during 2012 and none
from 2013. Whether this is by coincidence or bacterial
evolution remains unknown and should be elucidated
in the future.

In Chilean Patagonia, there are wild colonies of
S. magellanicus neighbouring urban zones with high
tourist activity, which increases in the summer during
the reproductive period of the animals. It has been cal-
culated that almost 3 00 000 people per year, from all
over the world, visit the studied region. However,
other activities such as mining, animal husbandry
and maritime traffic have been developed near pen-
guins’ habitats. The fact that reported Enteritidis
and Agona serotypes are among the top five most
common zoonotic serotypes isolated from humans in
the South American region [10], along with the antimi-
crobial resistance phenotypes (Table 1) and genotypic
similarities detected (Figs 1 and 2), constitute sugges-
tive evidence that penguins have been exposed to
human influence in Patagonia. Further efforts are
required to characterize the real magnitude of this
phenomenon, the temporal and geographical fluctua-
tions of Salmonella in penguin colonies, the sanitary
effects on these animals, the involvement of other wild-
life and the potential for the emergence of new
Salmonella strains. This knowledge will support deci-
sions to preserve the environment and its wildlife in
a globally changing scenario.
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