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Abstract

Legionnaires’ disease (LD) incidence in the USA has quadrupled since 2000. Health depart-
ments must detect LD outbreaks quickly to identify and remediate sources. We tested the
performance of a system to prospectively detect simulated LD outbreaks in Allegheny
County, Pennsylvania, USA. We generated three simulated LD outbreaks based on published
outbreaks. After verifying no significant clusters existed in surveillance data during 2014–
2016, we embedded simulated outbreak-associated cases into 2016, assigning simulated resi-
dences and report dates. We mimicked daily analyses in 2016 using the prospective space-time
permutation scan statistic to detect clusters of ⩽30 and ⩽180 days using 365-day and 730-day
baseline periods, respectively. We used recurrence interval (RI) thresholds of ⩾20, ⩾100 and
⩾365 days to define significant signals. We calculated sensitivity, specificity and positive and
negative predictive values for daily analyses, separately for each embedded outbreak. Two
large, simulated cooling tower-associated outbreaks were detected. As the RI threshold was
increased, sensitivity and negative predictive value decreased, while positive predictive value
and specificity increased. A small, simulated potable water-associated outbreak was not
detected. Use of a RI threshold of ⩾100 days minimised time-to-detection while maximizing
positive predictive value. Health departments should consider using this system to detect com-
munity-acquired LD outbreaks.

Introduction

Legionnaires’ disease (LD) is pneumonia caused by Legionella species that disproportionately
affects elderly and immunocompromised persons and can be fatal [1]. Transmission occurs
primarily through inhalation of aerosolised droplets from a contaminated water source.
Known sources include large building water systems, cooling towers, soil, hot tubs and res-
idential potable water systems [1]. LD outbreaks can result in substantial morbidity and mor-
tality [2].

Rapid detection of disease clusters is critical to prevention and control. Statistical cluster
detection has been shown to successfully identify LD outbreaks quickly and accurately
using both prospective and retrospective methods [3–5]. The New York City Department of
Health and Mental Hygiene (NYC DOHMH) has performed daily analyses since 2014
using the prospective space-time permutation scan statistic available through a free software
program called SaTScan to detect clusters in 35 reportable communicable diseases, including
legionellosis [6]. Advantages of using this scan statistic method include that it does not impose
any artificial boundaries on the spatial or temporal extent of a cluster, does not require
population-at-risk data and accounts for multiple testing [7]. This scan statistic method has
also been applied effectively for surveillance for clusters of dead birds as an early warning
of West Nile virus activity, hospital emergency department visits, ambulance dispatch calls,
pharmacy sales, shigellosis and campylobacteriosis [7–13].

Several outbreaks were first detected using the NYC DOHMH system, including in 2015
the second largest community-acquired LD outbreak in the USA, which was associated with
138 cases and 16 deaths [6, 14]. In this instance, the NYC DOHMH system automatically
detected a significant cluster 3 days before NYC DOHMH staff independently noted an
increase in LD cases and 4 days before hospital staff notified NYC DOHMH of an increase
in LD among emergency department patients [6, 14]. A resource-intensive epidemiologic,
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environmental and laboratory investigation identified the source,
a cooling tower on a hotel [14]. The NYC DOHMH cluster detec-
tion system contributed to the timeliness of outbreak detection,
investigation and mitigation and was useful for tracking the
scope of the outbreak after initial detection, as additional cases
were reported.

In the USA, only 4% of LD cases have been shown to be
outbreak-associated [15]. Allegheny County, Pennsylvania, USA,
with a population of 1.2 million people including the city of
Pittsburgh and its surrounding suburbs [16], had an age-adjusted
legionellosis rate of 4.4 per 100 000 in 2009 [17], which was four-
fold higher than the national legionellosis rate [2]. About 25% of
cases diagnosed during 2013–2016 among Allegheny County
residents were healthcare-associated; the remaining 75% of cases
were classified as community-acquired sporadic (non-outbreak-
associated). Allegheny County Health Department (ACHD)
staff routinely conduct patient interviews to identify risk factors
and then review collected data to assess common exposures
among cases. However, detecting community-acquired clusters
through human review of case investigation data relies on astute
staff noticing unusual clustering in time and space and recognis-
ing links between cases, is time- and resource-intensive to con-
duct and can lag days to weeks behind an increase in reported
cases. This issue can be exacerbated in densely populated urban
areas with large numbers of background cases.

During 2003–2017, only one community-acquired LD out-
break, occurring in 2008, was identified in Allegheny County.
Traditional patient interview-based surveillance methods have
not identified common exposures among other community-
acquired Allegheny County LD cases. Relying solely on human
review and descriptive epidemiology to detect clusters could result
in missing clusters, such that cases are assumed to be sporadic
rather than investigated as potentially having a common source.
More timely detection of LD cases clustered in space and time
that might signify a cooling tower-associated outbreak would
lead to faster outbreak investigation, source mitigation and disease
prevention. The objective of this study was to determine the
adaptability, utility and performance of NYC DOHMH’s
prospective cluster detection system using its particular SaTScan
parameter settings to detect LD outbreaks of various sizes in
Allegheny County, a smaller, less densely populated jurisdiction.

Methods

Data on legionellosis cases among Allegheny County residents
reported by laboratories and healthcare providers during 2014–
2016 were obtained through Pennsylvania’s National Electronic
Disease Surveillance System (PA-NEDSS). Legionellosis com-
prises two conditions caused by Legionella: LD and Pontiac
fever, which is a milder febrile illness and therefore, less com-
monly diagnosed and reported. A confirmed case of legionellosis
is defined by the Council of State and Territorial Epidemiologists
as a clinically compatible illness confirmed by laboratory culture,
urine antigen or antibody seroconversion [18]. Age-adjusted
annual incidence was calculated using direct standardisation
and weighting to the US 2000 standard population [19]. Date of
report and latitude and longitude coordinates of the centroid of
the census tract of residence were used to represent the temporal
and spatial aspects of each case.

Three simulated outbreaks were created based on data
published on community-acquired LD outbreak investigations
[20–22]. These outbreaks were selected because they represent

three distinct LD community-acquired outbreak types that
could potentially be detected by the space-time permutation
scan statistic: (1) 50 cases presumed to be associated with a cool-
ing tower occurring rapidly over 38 days, (2) 84 cooling tower-
associated cases occurring at a moderate speed over 82 days and
(3) 10 community potable water system-associated cases occur-
ring slowly over 163 days. The outbreaks varied by environmental
source, number of cases, duration, the growth of epidemic curve,
the radius of the affected area and season (Table 1). The cases
from each individual outbreak were inserted into Allegheny
County baseline data based on a simulated report date to mimic
the published epidemic curve. No published epidemic curve for
simulated outbreak 3 was available [22] and, therefore, we used
information on the timing of cases available in the publication
to simulate an epidemic curve.

Each published outbreak used for a simulation included a
point map of the spatial distribution of case residences. For
each simulated outbreak, we mimicked the published outbreak
spatial distribution by calculating the distribution of published
outbreak cases within circular bands of increasing radius centred
on the outbreak source (i.e. ‘outbreak radii’) and then assigning
locations to simulated outbreak cases to achieve a similar distribu-
tion relative to the simulated outbreak area. The publication used
as the basis for simulated outbreak 2 also included the spatial dis-
tribution of cases during two time periods. We used this informa-
tion to further refine the case spatial distribution of simulated
outbreak 2.

We analysed the simulated study data for Allegheny County,
which included baseline or routine public health surveillance
data spiked with simulated outbreak cases, using a SAS program
created by NYC DOHMH [6] and modified for use by ACHD.
The original NYC DOHMH SAS program was easily modified
by an ACHD epidemiologist with intermediate SAS skills.
Minor modifications included editing portions of the original
code to conform to PA-NEDSS-specific nuances, removing code
related to secondary addresses and editing code referencing
NYC-specific geographic resolutions [6].

The space-time permutation scan statistic evaluates potential
clusters as space-time cylinders, with the circular base represent-
ing space and the height representing time, encompassing all pos-
sible clusters within the spatial and temporal limits defined in the
analysis parameter settings. A likelihood ratio-based test statistic is
calculated for each cylinder as a function of observed and expected
case counts, inside and outside the cylinder. The cluster with the
maximum test statistic is identified. A large number of random
replications of the input dataset are generated under the null
hypothesis that the same process generated disease counts inside
and outside the cylinder [7]. The P-value for the cluster with the
maximum test statistic is obtained through Monte Carlo hypoth-
esis testing, by comparing the rank of the maximum likelihood
from the real case dataset with the maximum likelihoods from
the randomly generated datasets. A recurrence interval (RI) is cal-
culated as the reciprocal of the P-value [23]. If analyses are con-
ducted daily, the RI represents the number of days of analyses
required for the expected number of clusters at least as unlikely
as the observed cluster to be equal to 1 by chance alone [24].

The NYC DOHMH standard maximum spatial cluster size of
50% of all cases reported during the study period was used for this
analysis. The SaTScan method also requires selection of a
maximum temporal cluster size, which should be short (e.g. 30
days) to have optimal power to detect a rapidly growing outbreak
like simulated outbreak 1, or long (e.g. 180 days) to be able to
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detect a slowly growing outbreak like simulated outbreak 3 [6].
The epidemic curve for simulated outbreak 2 was neither clearly
rapidly nor slowly growing, so we did not know a priori which
maximum temporal window would be preferable. Therefore, we
analysed simulated outbreak 2 using both 30- and 180-day max-
imum temporal windows to determine which performed better.
For maximum temporal cluster sizes of 30 and 180 days, we
used 365 and 730 days of historical baseline data, respectively.

We assessed 2014–2016 Allegheny County legionellosis case
reports for previously unidentified clusters through a retrospective
analysis using the space-time permutation scan statistic in
SaTScan. These years were analysed given they represented the
full range of possible baseline data used for prospective analyses
(e.g. when analysing a period ending on 1 January 2016 using a
maximum temporal cluster size of 180 days, the case file for ana-
lysis would include cases for a 730-day period starting 2 January
2014). We spiked the 2016 baseline data with cases for each of the
three simulated LD outbreaks. Analyses for each of the three out-
breaks were performed separately. We mimicked daily prospective
analyses for the entire year of 2016 and defined signals using three
RI thresholds: 20 days (a low threshold that is sometimes never-
theless used as it corresponds to P < 0.05, failing to account for
repeated analyses performed daily instead of once), 100 days
(the threshold used by NYC DOHMH for reportable diseases
[6]) and 365 days (a threshold sometimes used for less specific
data streams, e.g. syndromic surveillance data [25, 26]). Analysis
days were restricted to days in which a baseline or simulated
case was reported, as only these days had the potential to yield
informative signals. Analysis days with at least one cluster exceed-
ing the RI threshold were classified as positive, while analysis days
with no clusters exceeding the RI threshold were classified as
negative. A true positive required ⩾3 simulated cases included
in the cluster detected. A false positive required <3 simulated
cases included in the cluster detected. A true negative required
<3 simulated cases reported in the maximum temporal window
OR zero simulated cases reported that day. A false negative
required ⩾3 simulated cases reported in maximum temporal win-
dow AND⩾1 simulated case reported that day.

These daily analysis classifications were used to calculate the
validity statistics of sensitivity, specificity, positive predictive
value (PPV) and negative predictive value (NPV) at the three
RI signalling thresholds for each simulated outbreak. Sensitivity
was defined as the proportion of true positive daily analyses
amongst all daily analyses that met cluster signalling criteria.
Specificity was defined as the proportion of true negative daily
analyses amongst all daily analyses that did not meet cluster sig-
nalling criteria. PPV was defined as the proportion of true positive
daily analyses amongst all signalled daily analyses. NPV was
defined as the proportion of the true negative daily analyses
amongst all non-signaled daily analyses. Time to outbreak detec-
tion was calculated for each simulated outbreak by subtracting the
earliest outbreak detection date from the report date of the third
simulated outbreak-associated case, assuming a common source,
community-acquired outbreak reasonably could not be recog-
nised nor a source identified with fewer than three reported
cases. All analyses were performed using SAS (v.9.4) and
SaTScan (v.9.4.4).

Results

During 2006–2016, the observed number of legionellosis cases
reported per year in Allegheny County ranged between 54 andTa
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118, and 90 cases were reported in 2016 (Fig. 1). When retro-
spectively analyzing these 2014–2016 Allegheny County legionel-
losis surveillance data, no clusters were detected.

A total of 144 outbreak cases were added as part of three sep-
arate outbreak simulations (Figs. 2–5). The time-to-detection
using a RI⩾ 100-day threshold was 5 days for outbreak 1 and
38 days using a 30-day maximum temporal window for outbreak
2; outbreak 3 was not detected (Table 2). Time-to-detection was
shortened by using a lower RI threshold. Using a RI⩾ 100-day
threshold, time-to-detection was shortened to 33 days for out-
break 2 when a 180-day maximum temporal window and longer
baseline period were used (Table 2). The maximum recurrence
interval observed for outbreak 1 was over 3000 years using a
30-day maximum temporal window (Table 3). The maximum
recurrence interval observed for outbreak 2 was higher when
using a 180-day compared with a 30-day maximum temporal
window (Table 3).

Signals identified spatial and temporal extents of clusters of
excess disease activity but did not attribute individual cases within
clusters as outbreak-related vs. background. The maximum num-
ber of background cases included in any identified cluster was
two, with total numbers of observed cases (i.e. simulated outbreak
cases plus background cases within such clusters) ranging from 17
to 38 cases.

Using a 30-day maximum temporal window and an RI signal-
ing threshold ⩾20 days or ⩾100 days, all validity statistics for
simulated outbreak 1 daily analyses were ⩾90%; thus, few false
negative and false positive days were produced (Table 4). Using
a 30-day maximum temporal window, the sensitivity of outbreak
2 detection was low using a RI⩾ 20 days threshold and very low
using a RI⩾ 100 day threshold, whereas all other validity statistics
were ⩾64% (Table 5). When using a 180-day maximum temporal
window and any RI signalling threshold, the sensitivity of out-
break 2 daily analyses was ⩾43%. The other validity statistics
were ⩾76% (Table 5). Using a 180-day maximum temporal win-
dow and any RI signalling threshold, outbreak 3 was not detected,
so sensitivity was 0%. The specificity was ⩾97% (Table 6).

Discussion

We demonstrated that the space-time permutation scan statistic in
SaTScan as applied in the NYC DOHMH cluster detection system
identified two larger simulated outbreaks of varying intensity and
duration and failed to detect one smaller, slowly growing simu-
lated outbreak in Allegheny County. Outbreak 1 was detected
within a few days and outbreak 2, which was slower growing,
was detected within a few weeks. The validity statistics of the
second simulation were higher when using the 180-day maximum
temporal window and 2-year baseline period compared with the
30-day maximum temporal window and 1-year baseline. This
observation supports using both the 30-day and 180-day max-
imum temporal windows for prospective cluster detection since
it is unknown in advance whether any given outbreak will be rap-
idly or slowly growing, although this method does not account for
the multiple testing of the same temporal windows up to 30 days
in each analysis. Both simulated outbreaks 1 and 2 were based on
cooling tower-associated outbreaks, which can be difficult to
quickly detect through human review alone.

Simulated outbreak 3 was not detected, as it occurred over a
longer period and included few excess cases. Illustrating the
type of outbreak, the system is not optimised to detect and high-
light the continued importance of astute public health

investigators to complement automated detection methods.
Through traditional human review of case data, the New Jersey
Department of Health detected the outbreak that simulated out-
break 3 after cases occurred in nearby senior apartment buildings.
In addition, non-statistical analyses can identify multiple cases
within a defined period sharing a common potable water source
or building water system; for example, NYC DOHMH runs auto-
mated analyses to detect ⩾2 Legionnaires’ disease patients with
the same address within a year [27].

Health departments should consider using the prospective
space-time permutation scan statistic in SaTScan for routine
reportable disease cluster detection, as, in particular, this might
help to detect cooling tower-associated LD outbreaks. In practice,
the signalling threshold of RI⩾ 100 days balanced optimising sen-
sitivity (which favours a low RI threshold) and PPV (which
favours a high RI threshold). Each outbreak was detected more
quickly using an RI threshold of 20 days; however, with the
lower PPV associated with this threshold, more false positives
were produced that could overextend limited public health
resources. This method could also corroborate spatiotemporal
trends observed by public health investigators and provide add-
itional evidence to support the need for further investigation.
Detecting a significant cluster, using this method should prompt
an investigation of a potential source including enhanced patient
interviews and environmental sampling. Cooling tower registries,
such as the one established in NYC in 2015, can be useful for
identifying cooling towers for sampling, especially in dense
urban environments where cooling towers are not necessarily vis-
ible from the street [28, 29]. Given the circular shape of the scan-
ning window, the space-time permutation scan statistic most
successfully detects circular and highly focal outbreaks, such as
some LD cooling tower-associated outbreaks. Nevertheless, non-
circular shaped outbreaks have been successfully detected by
this method [12].

Our assessment has several limitations. First, the PA-NEDSS
case report date was the only date used in our simulations mim-
icking published epidemic curves. Using onset or diagnosis date
would have been a better proxy of when the exposure occurred
but would have required strong assumptions regarding reporting
lags. In practice, report dates can be delayed because of batched
electronic laboratory reporting and might have a temporal pattern
appreciably different from the date of exposure, which could
impact the results of outbreak detection analyses.

Second, the residential address was the only address simulated
for each case. NYC DOHMH also performs LD cluster detection
using all available address information, including work addresses,
which improves sensitivity for detecting clusters where a patient’s
exposure occurred in a location other than the home [30].
PA-NEDSS does not systematically include data on work address;
thus, this analysis reflects a current limitation of PA-NEDSS.
However, the home address is often a good approximation of
where individuals might have been exposed to Legionella and
each publication used to simulate outbreaks described case spatial
distributions based solely on residential address.

Third, daily analyses were simulated only over 1 year. Results
might vary if repeated over several years, given fluctuation in
baseline Allegheny County legionellosis case counts, or if repeated
by inserting simulated outbreak cases into different parts of
Allegheny County with different baseline counts. Only three
simulated outbreaks were generated for this analysis, selected to
represent three distinct types of community-acquired LD out-
breaks. Many simulations of one outbreak type could have been
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generated with parameter specifications; however, we chose to
simulate one outbreak of each type as accurately as possible
based on published information including spatial distributions
and epidemic curves. Information about the epidemic curve of
outbreak 3 was limited and whether our simulation accurately
reproduced the outbreak is unknown.

The method used to simulate the spatial distribution of each
outbreak has limitations. The outbreaks used for simulation

occurred outside of Allegheny County in jurisdictions that differ
from Allegheny County in many ways. Creation of these simula-
tions required making assumptions about the spatial distribution
of cases that in actuality might take a different form because of
differences in Allegheny County population density and distribu-
tion, differences in terrain and wind patterns. Also, we did not
take into account area-based poverty when considering the spatial
distribution of simulated cases. Increased legionellosis rates have

Fig. 1. Confirmed legionellosis cases and age-adjusted
legionellosis incidence rates, Allegheny County,
Pennsylvania, USA, 2006–2016.

Fig. 2. (a–c) Observed baseline and simulated outbreak-associated legionellosis cases, Allegheny County, Pennsylvania, USA, 2016.
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Fig. 3. Simulated outbreak 1-associated Legionnaires’ disease cases, simulated outbreak radii and legionellosis cases by census tract, 2014–2016, Allegheny County,
Pennsylvania, USA.

Fig. 4. Simulated outbreak 2-associated Legionnaires’ disease cases, simulated outbreak radii and legionellosis cases by census tract, 2014–2016, Allegheny County,
Pennsylvania, USA.
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Fig. 5. Simulated outbreak 3-associated Legionnaires’ disease cases, simulated outbreak radii and legionellosis cases by census tract, 2014–2016, Allegheny County,
Pennsylvania, USA.

Table 2. Time-to-detection, defined as days from third outbreak-associated case report to first signal exceeding recurrence interval (RI) threshold, for three
simulated Legionnaires’ disease outbreaks, Allegheny County, 2016

30-day max temporal window 180-day max temporal window

RI ⩾ 20 RI ⩾ 100 RI⩾ 365 RI ⩾ 20 RI⩾ 100 RI⩾ 365

Outbreak simulation 1 1 day 5 days 5 days n/aa n/aa n/aa

Outbreak simulation 2 22 days 38 days Not detected 33 days 33 days 36 days

Outbreak simulation 3 n/aa n/aa n/aa Not detected Not detected Not detected

aA maximum temporal window was chosen for each simulated outbreak based on the temporal span of the outbreak. The n/a designation was listed when a maximum temporal window was
not used for analysis of a particular outbreak. Outbreak 2 did not clearly fit an appropriate maximum temporal window, thus both 30-day and 180-day were used.

Table 4. Simulated outbreak 1 daily analyses validity statistics (n = 105 days
with any reported cases in 2016)

30-day max temporal window

RI ⩾ 20
(%)

RI ⩾ 100
(%)

RI ⩾ 365
(%)

Sensitivity 100 95.2 90.4

Specificity 98.8 100 100

Positive predictive
value

95.4 100 100

Negative predictive
value

100 98.8 97.7

Table 3. Maximum recurrence interval (days) observed for a cluster of greater
than three simulated cases

30-day max temporal
window

180-day max temporal
window

Outbreak
simulation 1

1 233 688 n/a

Outbreak
simulation 2

345 5433

Outbreak
simulation 3

n/a Not detected
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been shown to be associated with increased area-based poverty
[31–33]. This might have affected our ability to detect increases
in case counts relative to baseline legionellosis. If our simulated
case clusters were embedded in areas of high poverty, these clus-
ters might have been more difficult to detect given potentially
higher baseline legionellosis burden in these areas.

Finally, these findings might not be fully generalisable to jur-
isdictions with low legionellosis incidence. A small, slowly grow-
ing potable water outbreak was not detected in our simulations,
but might be easier to detect in other jurisdictions with lower
baseline case counts. Similarly, inserting the same simulated cool-
ing tower-associated outbreaks into data from jurisdictions with a
lower count of background sporadic cases might result in shorter
time-to-detection, higher RIs and improved validity statistics.

Conclusion

This cluster detection system was easily adapted for use in
Allegheny County and quickly detected simulated cooling tower-
associated outbreaks that otherwise might have required more
time to detect by surveillance methods that rely on the human
review of descriptive epidemiology. Health departments should
consider adopting this system for improved community-acquired
LD outbreak detection and potential disease prevention. In
September 2017, Allegheny County began using this system for
weekly prospective LD cluster detection.
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SaTScan software was developed under the joint auspices of Martin
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