Bioavailability and bioefficacy of folate and folic acid in man

Ingeborg A. Brouwer1,2*, Maryke van Dusseldorp1†, Clive E. West1,3 and Régine P.M. Steegers-Theunissen2,4

1Division of Human Nutrition and Epidemiology, Wageningen University, The Netherlands
2Department of Obstetrics and Gynaecology, University Hospital Nijmegen St Radboud, The Netherlands
3Department of Gastroenterology, University Hospital Nijmegen St Radboud, The Netherlands
4Department of Epidemiology, University Hospital Nijmegen St Radboud, The Netherlands

Folic acid is important because supplementation around the time of conception has been proven to lower the risk of having offspring with a neural-tube defect. Furthermore, both dietary folate and folic acid decrease plasma total homocysteine concentrations. Elevated plasma homocysteine concentrations are considered to be an independent risk factor for cardiovascular disease. The aim of the present review is to give an overview of factors influencing bioavailability and bioefficacy (the proportion of ingested nutrient converted to its active form) of food folate and folic acid, and to discuss the functional bioefficacy of folate and folic acid in decreasing plasma homocysteine concentrations. We use the mnemonic SLAMENIGHI to group factors influencing bioavailability and bioefficacy: Species of folate; Linkage at molecular level; Amount of folate and folic acid consumed; Matrix; Effect modifiers; Nutrient status; Genetic factors; Host-related factors; mathematical Interactions between the various factors. Bioefficacy of folate from some foods is <50% that of folic acid. This factor is most probably explained by the matrix factors, encapsulation and binding. However, often such effects cannot be distinguished from factors such as species, chain length of folate in food, effect modifiers and the amount of folate consumed in a meal. Folic acid provided as a supplement is well absorbed. However, the homocysteine-lowering capacity of doses of folic acid >500 μg is limited. It is unclear whether unmetabolised folic acid poses health risks. This factor is of importance, because food fortification is now implemented in many countries and folic acid supplements are freely available. In particular circumstances host-related factors, such as gastrointestinal illness and pH of the jejunum, can influence
bioavailability. Genetic factors also deserve attention for future research, because polymorphisms may influence folate bioavailability.

Folate: Folic acid: Bioavailability: Bioefficacy: Homocysteine

Introduction

Folate is a B vitamin that serves as a methyl group donor in C₇ metabolism. The term folate refers to all derivatives with the biological activity of pteroylmonglutamic acid (folic acid). Folic acid is the synthetic fully-oxidised form of pteroylglutamic acid monoglutamate; it is not present in significant quantities in nature but is synthesised commercially. In nature various reduced forms of folate with one or more glutamate moieties occur.

During the last decade folic acid has received much attention because new functions, apart from those related to the classical treatment of megaloblastic anaemia, have been discovered. Folic acid supplementation around the time of conception has been proven to make a contribution to the prevention of neural-tube defects (Medical Research Council Vitamin Study Research Group, 1991; Czeizel & Dudás, 1992). The Federal Government of the USA responded to these findings by introducing mandatory fortification of grain products with folic acid. This fortification programme stresses the importance of understanding the factors that affect the bioavailability (the proportion of the ingested amount available for metabolic processes) of folic acid added to foods.

Furthermore, dietary folate and folic acid both decrease total homocysteine levels in plasma effectively (Homocysteine Lowering Trialists’ Collaboration, 1998; Brouwer et al. 1999). This factor is important because elevated plasma homocysteine concentrations have been identified as an independent risk factor for cardiovascular disease (Boushey et al. 1995; Graham et al. 1997). Plasma homocysteine concentrations can be regarded as a functional indicator of folate status (Jacob et al. 1995).

The present review examines the factors influencing bioavailability and bioefficacy of natural food folate and folic acid from fortified food products. (Bioefficacy is the proportion of the ingested nutrient converted to an active form of the nutrient; here the proportion of folate or folic acid converted to 5-methyltetrahydrofolate. Bioefficacy is a function of bioavailability and is often referred to as bioconversion.) The functional bioefficacy of folate and folic acid in decreasing plasma homocysteine levels is also discussed.

Intestinal absorption

Dietary folates are a mixture of various mono- and pteroylpolyglutamates (with two to seven glutamate moieties). Before absorption in the jejunum, dietary polyglutamyl folates must first be deconjugated by the enzyme pteroylpolyglutamate hydrolase (folate conjugase) to a monoglutamyl form.

Before the fully-oxidised monoglutamyl form of the vitamin, folic acid, enters the portal circulation through the mucosal cells of the jejunum it is reduced to tetrahydrofolate and is either methylated or formylated (Perry & Chanarin, 1973; Selhub et al. 1973, 1983; Strum, 1979). However, when a single dose of more than 250 μg folic acid is fed, unmetabolised folic acid has been shown to be present in serum (Kelly et al. 1997).
Definition of bioavailability

In pharmacokinetics, bioavailability is described as the area under the curve derived from an oral dose: the area under the curve derived from an intravenous reference dose (Rowland & Tozer, 1989). However, this definition is not applicable with respect to folate bioavailability because it assumes that clearance is independent of the route of administration. This is not the case for folates (Gregory et al., 1992). As a result of the reduction and either methylation or formylation that takes place in the jejunal mucosa during absorption, it is not possible to determine absolute bioavailability, but only bioavailability relative to the bioavailability of the fully-oxidised monoglutamate (folic acid; Rogers et al., 1997).

Within our group, the definitions of bioavailability, bioconversion and bioefficacy have developed over the years and reflect our current thinking (van Lieshout et al., 2001). However, these definitions do not include activity of ingested nutrients carrying out metabolic functions. Thus, we have introduced the term ‘functional bioefficacy’ which is the proportion of an ingested nutrient which carries out a certain metabolic function. Since plasma total homocysteine is a functional index of folate status, changes in plasma total homocysteine concentration in response to a given intake of folate or folic acid can be used as a measure of functional bioefficacy according to this definition. Changes in plasma folate or erythrocyte folate can be regarded as measurements of bioefficacy.

Factors influencing folate and folic acid bioavailability

de Pee & West (1996) published a review on dietary carotenoids and their role in combating vitamin A deficiency. They introduced the mnemonic ‘SLAMANGHI’ to order the factors influencing the bioavailability of carotenoids (de Pee & West, 1996), and the word was subsequently modified to SLAMENGHI (Castenmiller & West, 1998). The SLAMENGHI factors are not specific for carotenoid bioavailability, but can also be applied to the bioavailability and bioefficacy of other nutrients. In the present review we will discuss the factors influencing bioavailability and bioefficacy of folate with reference to SLAMENGHI: Species of folate; Linkage at molecular level; Amount of folate and folic acid consumed; Matrix; Effect modifiers; Nutrient status; Genetic factors; Host-related factors; mathematical Interactions between the various factors.

Species of folate

In this section the effects of different species of folate, particularly on bioefficacy, will be discussed. Folate occurs in many different forms. As discussed earlier (p. 268), folic acid (the major synthetic compound, which exists only in small amounts in nature) is the fully-oxidised monoglutamate form of the vitamin and does not have moieties that can be transferred as C₁ units. The more reduced forms of folate, dihydrofolate and tetrahydrofolate can be substituted with such moieties (Wagner, 1995). These reduced forms, e.g. 5-methyltetrahydrofolate and formyltetrahydrofolates, are much more common in nature.

The bioefficacy of oxidised and reduced folates with or without various C₁ units has been investigated in a series of intervention studies with human subjects (Table 1). Findings from these studies are not consistent. Perry & Chanarin (1970) found a greater increase in serum folate levels after ingestion of reduced folates than after ingestion of folic acid. However, urinary excretion of folic acid was higher than that of the other monoglutamyl forms of folate.
Table 1. Effect of species of folate on folate bioefficacy (human intervention studies)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Design</th>
<th>Results</th>
<th>Conclusions and comments</th>
</tr>
</thead>
</table>
| Perry & Chanarin | Subjects: sixty-nine medical students (five groups; eleven to sixteen per group)
Design: parallel
Previous loading: 20 mg PteGlu/d for 3 d
Treatment: Single dose of 10 μg/kg (20 μg/kg for H₂PteGlu₁)
Folate species: PteGlu₁, H₂PteGlu₁, H₃PteGlu₁, 5-formylH₂PteGlu₁, 5-methylH₃PteGlu₁
Blood collection at 0, 1, 2 and 3 h + 6 h urine collection
Measurement: plasma concentration and urinary excretion of folate | Bioefficacy relative to PteGlu₁ was highest for both measurements highest for 5-methylH₄PteGlu₁, followed by 5-formylH₂PteGlu₁, and lowest for H₂PteGlu₁. However, bioefficacy of all reduced forms was higher compared with PteGlu₁ when measured by 2 h change in serum folate, whereas it was lower when measured by urinary excretion | This study suggests that differences exist in bioefficacy between several monoglutamyl forms of folate. However, the short duration of the measurement period (6 h urine collection and 3 h blood collection) might not be long enough to measure true differences |
| Brown et al. (1973) | Subjects: twenty-one medical students and hospital staff volunteers (fasting)
Design: cross-over, with 1 week between tests (parallel for pteroate, 5-formiminoH₂PteGlu₁, and 5,10-methylene-H₄PteGlu₁; seven subjects per group)
Previous loading: 10 mg PteGlu₁ dose orally 1 week before first test. Thereafter, 5 mg loading doses after each test
Treatment: oral administration of 0.68 μmol (300 μg)
Folate species: pteroate, 5-formiminoH₂PteGlu₁, 5,10-methylene-H₄PteGlu₁, H₂PteGlu₁, PteGlu₁, 5-formylH₂PteGlu₁, 5-methylH₃PteGlu₁, 5,10-methylene-H₄PteGlu₁, H₂PteGlu₁, 10-formylH₂PteGlu₁
Blood collection after 1 and 2 h
Measurement: increase in serum folate concentration | Pteroate, H₂PteGlu₁ and 5, 10-methyleneH₂PteGlu₁ increased by <3 ng/ml. PteGlu₁, 5-formylH₂PteGlu₁, 5-formiminoH₂PteGlu₁, and 5-methylH₂PteGlu₁ increased by 6–9 ng/ml.
5,10-methyleneH₂PteGlu₁, H₂PteGlu₁, and 10-formylH₂PteGlu₁ increased by >10 ng/ml | This study suggests that the various monoglutamyl forms of folate differ in bioefficacy. However, the short duration of the serum collection might also be due to differences in absorption time |
| Tamura & Stokstad | Subjects: six healthy males (fasting)
Design: within-person comparison
Previous loading with PteGlu₁: 2 × 10 mg on first day, 5 mg on second day, 2 mg on third day. Then 2 mg every other day
Treatment: oral dose of 0.5 mg (equivalent to PteGlu₁)
H₂PteGlu₁ and 5-methylH₂PteGlu₁, a dose of 0.75 mg for 5-formylH₂PteGlu₁
Folate species: H₂PteGlu₁, 5-methylH₂PteGlu₁, 5-formyl-H₂PteGlu₁
Measurement: 24 h urinary excretion of folate | Folate bioefficacy compared with PteGlu₁:
H₂PteGlu₁ 104.7 (range 40–136) % (n 6)
5-methylH₂PteGlu₁ 120.8 (82–152) % (n 6)
5-formylH₂PteGlu₁ 70.0 (64–76) % (n 2) | No significant difference in relative bioefficacy between H₂PteGlu₁, 5-formylH₂PteGlu₁, and 5-methylH₂PteGlu₁, compared with PteGlu₁. There was a wide variation in response between subjects |
Design: cross-over with 1 week between tests
No previous loading
Treatment: single dose of 1 mg 5-formylH₄PteGlu₁ or PteGlu₁
Folate species: 5-formylH₄PteGlu₁, v. PteGlu₁
Measurement: AUC of serum folate concentrations (3 d)

The value of AUC for PteGlu₁:5-formyl-H₂PteGlu₁ was 1·02

This study suggests that bioefficacy of PteGlu₁ and 5-formylH₂PteGlu₁,
in aqueous solution are similar

Gregory et al. (1992) Subjects: seven adult males (fasting)
Design: within-subject comparisons (3 week intervals)
Previous saturation with 2 mg folic acid/d for 7 d
Treatment: the different species were given orally in the
3′5′-2H₂-labelled (2H₃) form (50 % 2H₂, 41 % 3H₃,
9 % 2H₂), and [glu-2H₃] PteGlu₁ (2H₂, 88 % 2H₂, 12 %
2H₂, 0% 2H₀) was given intravenously as control
Folate species: PteGlu₁, 10-formylH₂PteGlu₁, 5-methylH₄-
PteGlu₁, 5-formylH₂PteGlu₁, H₂PteGlu₁
Measurement: urinary excretion of 2H₂ and 2H₄ for 48 h

Urinary 2H₂:2H₄ excretion values:
PteGlu₁, 1·53,
10-formylH₂PteGlu₁, 1·02,
5-methylH₂PteGlu₁, 0·99,
5-formylH₂PteGlu₁, 1·13,
H₂PteGlu₁, 0·71

This study indicates that bioefficacy of monoglutamyl folates differs. Bioefficacy
of folic acid appears to be better than
that of the reduced forms

PteGlu₁, pteroylmonoglutamate (folic acid); H₂PteGlu₁, dihydrofolate; H₄PteGlu₁, tetrahydrofolate; AUC, area under the curve.
Brown et al. (1973) found that the bioefficacy of other monoglutamate forms was greater than that of folic acid, except that the bioefficacy of 5-formyltetrahydrofolate was similar and that of tetrahydrofolate was less (Brown et al. 1973). On the basis of a study using urinary excretion of orally-administered folates labelled with 2H$_2$:intravenously-administered folic acid labelled with 3H$_4$, Gregory et al. (1992) concluded that folic acid was more bioavailable than the reduced forms of the vitamin. Other studies have found no differences in bioefficacy between folic acid and the reduced forms (Tamura & Stokstad, 1973; Pietrzik & Remer, 1989; Bhandari & Gregory, 1992).

One problem with most studies investigating folate bioefficacy is that the variation in response between subjects can be quite substantial. Another problem is that it is not possible to determine whether these differences are caused by differences in absorption (bioavailability) or in post-absorption processes (bioconversion). In all studies, except that of Pietrzik & Remer (1989), subjects received one or more doses of folic acid for periods up to 7 d in order to saturate the tissues with folic acid.

To our knowledge there are no studies published investigating the effect of different species of folate on plasma total homocysteine concentrations, i.e. on functional bioefficacy.

Linkage at molecular level

Folate not only occurs as different species as discussed earlier, but also with more than one glutamate moiety. In this section the bioefficacy in human volunteers of folate with different numbers (one to seven) of glutamate moieties in the side chain will be discussed (Table 2).

As stated earlier, pteroylpolyglutamates are the major forms of folate in foods, and first have to be hydrolysed to monoglutamates before absorption in the small intestine can take place. A conjugase present in the jejunum is responsible for removing glutamate moieties from pteroylpolyglutamates (Reisenauer et al. 1977). Under normal circumstances, the activity of this folate conjugase enzyme is not rate limiting in the absorption process (Reisenauer & Halsted, 1987). This finding is in line with those from earlier studies using 3H-labelled folate. The heptaglutamate is absorbed nearly as well as the monoglutamate (Rosenberg & Godwin, 1971; Godwin & Rosenberg, 1975). Two studies using 24 h urinary excretion of folate and the area under the curve of serum folate concentrations also found no significant differences in bioavailability of mono-, tri- and heptaglutamates (Tamura & Stokstad, 1973; Bailey et al. 1988). However, a well-designed study using labelled folates suggested that the bioavailability of hexaglutamate is less than that of the monoglutamate (Gregory et al. 1991). Earlier studies also suggested that less of the monoglutamate disappeared from the jejunum than the heptaglutamate (Halsted et al. 1975, 1978). Although the results of the studies are not unequivocal, absorption of the polyglutamates is often found to be less than that of the monoglutamate. This may imply that bioavailability of polyglutamates is less than that of monoglutamates. However, it cannot be excluded that uptake of polyglutamates takes longer, and that the net effect in the long term is similar to that of monoglutamates.

Amount of folate and folic acid

Bioavailability of folate or folic acid is likely to be influenced by the amount ingested. For absorption, there are two different transport systems. In the first transport system folates are bound to membrane-associated folate-binding proteins and transported across the brush-border...
Table 2. Effect of linkage at molecular level, pteroylglutamate chain length, on folate bioavailability and bioefficacy (human intervention studies)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Design</th>
<th>Results</th>
<th>Conclusions and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamura & Stokstad (1973)</td>
<td>Subjects: six healthy males (fasting) Design: within-person comparison Previous loading with PteGlu_1: 2 × 10 mg on first day, 5 mg on second day, 2 mg on third day. Then 2 mg every other day for the duration of the study Treatment: oral dose of 0.75–2.0 mg equivalent to PteGlu_1 Chain length: PteGlu_3, PteGlu_7, v. PteGlu_1 Measurement: 24 h urinary excretion of folate</td>
<td>Folate availability compared with PteGlu_1: PteGlu_3 85·2 (range 27–144) % (n 6) PteGlu_7 90·4 (13–140) % (n 14)</td>
<td>There were no significant differences in relative bioavailability among PteGlu_3, PteGlu_1, and PteGlu_7. There was wide variation in response between the subjects</td>
</tr>
<tr>
<td>Godwin & Rosenberg (1975)</td>
<td>Subjects: eleven healthy fasting volunteers (four men, seven women) Design: cross-over with 3 or 4 d interval No previous loading Treatment: oral dose of 300 ml water with either 0·6 μmol [^{3}H]PteGlu, or 0·6 μmol [^{3}H]PteGlu_1 After 4 h a flushing dose of 15 mg unlabelled folic acid was given Chain length: PteGlu_1, v. PteGlu_7 Measurement: urinary excretion of folate over 48 h</td>
<td>Folate urinary excretion (%): PteGlu_1 70·8 (SD 13·0) PteGlu_7 56·1 (SD 11·2)</td>
<td>This study shows that physiological doses of both PteGlu_1 and PteGlu_7 are absorbed. PteGlu_1 seems to be slightly better absorbed than PteGlu_7</td>
</tr>
<tr>
<td>Halsted et al. (1975)</td>
<td>Subjects: five healthy volunteers Design: jejunal perfusion of [^{3}H]PteGlu_1 and [^{14}C]PteGlu_7 No previous loading Treatment: equimolar solutions of [^{3}H]PteGlu_1 and [^{14}C]- PteGlu_7 were provided Chain length: PteGlu_1, v. PteGlu_7 Measurement: luminal disappearance</td>
<td>Percentage luminal disappearance: PteGlu_1, 74·7 PteGlu_7, 52·6</td>
<td>PteGlu_1 and PteGlu_7 were both taken up by the jejunum. Uptake of PteGlu_1 appeared to be higher than that of PteGlu_7</td>
</tr>
<tr>
<td>Halsted et al. (1978)</td>
<td>Subjects: six healthy adults, four patients with coeliac sprue Design: single 48 h experiment No previous loading Treatment: jejunal perfusion with solution containing 2 μmol/l each of [^{3}H]PteGlu_1 and [^{14}C]PteGlu_7 Chain length: PteGlu_1, v. PteGlu_7 Measurement: urinary isotopic recovery after jejunal folate perfusion</td>
<td>Urinary recovery of PteGlu_1 was lower than that of PteGlu_7</td>
<td>Bioavailability of the monoglutamate appeared to be greater than that of the polyglutamate</td>
</tr>
</tbody>
</table>

Continued
<table>
<thead>
<tr>
<th>Authors</th>
<th>Design</th>
<th>Results</th>
<th>Conclusions and comments</th>
</tr>
</thead>
</table>
| Bailey et al. (1984) | Subjects: thirteen healthy male subjects in the age categories 20-29 years and 65-83 years
Design: single 48 h experiment
Treatment: jejunal perfusion with solution containing 3 μmol/l each of [³H]PteGlu, and [¹⁴C]PteGlu
Chain length: PteGlu, v. PteGlu
Measurement: urinary isotopic recovery after jejunal folate perfusion and luminal disappearance | Both urinary recovery and luminal disappearance were higher for PteGlu, than for PteGlu, in subjects in both age categories | This study suggests that bioavailability of PteGlu, is higher than that of PteGlu, |
| Bailey et al. (1988) | Subjects: nine healthy males (fasting)
Design: cross-over with 2 weeks interval
No previous loading
Treatment: single dose of 750 μg PteGlu, or equivalent amount of PteGlu, given in solution or with bran or spinach
Chain length: PteGlu, v. PteGlu
Measurement: AUC of serum folate concentrations for 8 h | AUC of PteGlu, and PteGlu, were not different when ingested as solution or with spinach. AUC for PteGlu, ingested with bran was lower than PteGlu, ingested with bran | This study suggests no effect of chain length on bioefficacy when folates are ingested in solution, but a greater inhibitory effect of dietary fibre on bioefficacy of PteGlu, compared with that on bioefficacy of PteGlu, |
| Keagy et al. (1988) | Subjects: seven healthy young men
Design: all subjects received all treatments
Constant loading with 500 μg folic acid/d
Treatment: folate absorption tests were conducted during the last 4 d of a 9 d period in which subjects received PteGlu, and PteGlu, in a formula on alternate days
Chain length: PteGlu, and PteGlu,
Measurement: serum folate concentration after 1 and 2 h and urinary excretion of folate (24 h) | PteGlu, produced a lower rise in serum folate and in urinary excretion. PteGlu, excretion was 63% of the PteGlu, excretion | This study suggests that bioefficacy of PteGlu, is either lower, or that absorption takes longer compared with PteGlu, |
This study suggests that PteGlu₆ is less bioavailable than PteGlu₁.

The $^{2}\text{H}_2$:$^{3}\text{H}_4$ excretion value for tomato, lima beans and citrate buffer was similar to that of the control (1·00 (SD 0·17)). The $^{3}\text{H}_2$:$^{3}\text{H}_4$ value for orange juice was significantly lower ($P<0·05$) (about 66% relative to that in the control trials).

These findings indicate that orange juice affects the absorption of ingested polyglutamate, which would imply that the effect occurs at the level of the intestinal deconjugation process by pteroylpolyglutamate hydrolase.

PteGlu₁, pteroylmonoglutamate (folic acid); PteGlu₆, pteroylhexaglutamate; PteGlu₇, pteroylheptaglutamate; AUC, area under the curve.
membrane by a carrier-mediated mechanism. However, at high intraluminal concentration of folate (>10 μmol/l) a second non-saturable diffusion-mediated transport system plays a major role in folate absorption (Mason, 1990). The effect of the amount ingested is most likely to be of significance if the saturable transport system is saturated. At physiological concentrations (<5 μmol/l) of folate in the lumen, transport occurs mainly via the saturable transport system (Mason, 1990). A level of intake that causes saturation of this transport system is unlikely to be reached with normal intakes of natural folate from food, but could easily be reached with synthetic folic acid.

Many studies have investigated effects of the amount of synthetic folic acid (pteroylmonoglutamate) on bioefficacy (Table 3). Heseker & Schmitt (1987) showed that plasma folate concentrations reached a steady-state after 4 weeks of supplementation with 1 mg folic acid/d. Levels in erythrocytes increased over the total intervention period of 17 weeks. This pattern synchronises with the lifetime of the erythrocyte, which is known to incorporate folate only during erythropoiesis (Shane, 1995). Truswell & Kounnavong (1997) provided subjects with folic acid supplements, containing 100, 500 or 1000 μg folic acid/d, for 3 weeks in addition to the regular diet. The greatest relative increase in plasma folate was provided by the 100 μg folic acid dose, while the greatest absolute increase was established by the 1000 μg dose. The study does not make clear whether the same level of serum folate can be reached in the long term (Truswell & Kounnavong, 1997). Malinow et al. (1998) also showed in a cross-over study that a dose of 127 μg folic acid/d for 5 weeks was relatively more effective in raising plasma folate (30.8 %) than doses of 499 (64.8 %) and 665 (105.7 %) μg/d. This observation suggests that low doses of folic acid increase plasma folate concentrations more effectively than do higher doses. However, the effect on raising plasma folate concentrations may be slightly underestimated in the groups receiving the higher doses, because the wash-out period between the intervention periods was only 5 weeks (Malinow et al. 1998). This period is probably too short to avoid carry-over effects (Brouwer et al. 1999).

As discussed earlier, the effect of folic acid on plasma total homocysteine concentrations can be described as functional bioefficacy. Many authors have investigated the effect of different amounts of folic acid on plasma total homocysteine concentrations. In a meta-analysis (Homocysteine Lowering Trialists’ Collaboration, 1998) Clarke compared most of these studies. This meta-analysis showed similar homocysteine-lowering effects for doses between 0.5 and 5 mg folic acid. Thus, it would appear that doses of folic acid >500 μg folic acid/d have no additional homocysteine-lowering effect. In addition to the studies included in the meta-analysis, a few other studies have examined the effect of lower doses of folic acid on plasma total homocysteine concentrations. Ward et al. (1997) showed that 200 μg folic acid/d had a similar effect to that of 400 μg folic acid/d. However, 6 weeks of supplementation with 100 μg folic acid/d was not sufficient to reach a similar level of plasma total homocysteine (Ward et al. 1997). The latter study does not exclude the possibility that supplementation with 100 μg folic acid for a longer period would have resulted in lower concentrations of plasma total homocysteine. Malinow et al. (1998) found no significant decrease in plasma total homocysteine concentrations after 5 weeks of supplementation with 127 μg folic acid/d. However, the short wash-out period between the experimental and placebo periods makes it difficult to interpret their results.

Kelly et al. (1997) found unmetabolised fully-oxidised folic acid (pteroylmonoglutamate) in serum of subjects receiving >266 μg folic acid/d. They suggest that the excess of folic acid cannot be used for lowering plasma total homocysteine. This observation is in line with other studies that show no additional homocysteine-lowering effect of doses of >500 μg folic acid/d, or even >200 μg folic acid/d (Ward et al. 1997; Bonnette et al. 1998; Homocysteine Lowering
Table 3. Effect of amount of folic acid consumed on folic acid bioefficacy and functional bioefficacy (intervention studies with human subjects)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Design</th>
<th>Results</th>
<th>Conclusions and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heseker & Schmitt (1987)</td>
<td>Subjects: six healthy subjects (four men, two women)</td>
<td>Mean folate concentration in plasma reached a steady-state after about 4 weeks. This level was maintained by continuous doses of folic acid. Levels in erythrocytes increased continuously during 17 weeks</td>
<td>A daily dose of 1 mg was sufficient to reach a steady-state for plasma folate after 4 weeks. Erythrocytes only incorporate folate during erythropoiesis. Lifetime of the erythrocyte is approximately 120 d. Thus, it will take approximately 120 d to reach a steady-state in erythrocytes</td>
</tr>
<tr>
<td></td>
<td>Design: parallel</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No previous loading</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Treatment: 500 µg folic acid was administered twice daily for 17 weeks in addition to their regular diet</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Measurement: plasma and erythrocyte folate concentrations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ward & al. (1997)</td>
<td>Subjects: thirty healthy males</td>
<td>Both 100 and 200 µg folic acid/d significantly decreased total plasma homocysteine, 400 µg/d had no further decreasing effect. Serum folate increased gradually with all three doses. Erythrocyte folate increased over the study period</td>
<td>A dose of 200 µg folic acid/d seems as effective as 400 µg/d in lowering total plasma homocysteine. It is not clear whether 100 µg/d in the long term could be as effective as 200 µg/d</td>
</tr>
<tr>
<td></td>
<td>Design: sequential design</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No previous loading</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Treatment: folic acid was administered daily at doses increasing from 100 µg (6 weeks), to 200 µg (6 weeks), to 400 µg (14 weeks) in addition to the regular diet</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Measurement: fasting total plasma homocysteine, serum folate and erythrocyte folate (measured at start and end of study)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truswell & Kounnavong (1997)</td>
<td>Subjects: Expt 1 n 13; Expt 2 n 16; Expt 3 n 6; Completed all three experiments n 6</td>
<td>The relative greatest increase was for the first 100 µg folic acid. Serum folates appeared to take longer to reach the highest possible level after small doses of folic acid than after doses of 1000 µg/d or more</td>
<td>The wash-out period between the experiments was only 4 weeks. Thus, the starting value of serum folate increased from Expt 1 to Expt 3</td>
</tr>
<tr>
<td></td>
<td>Design: parallel, consecutive experiments (28 d between experiments)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No previous loading</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Treatment: subjects received folic acid supplements (in aqueous solution) in addition to their regular diet (/d): Expt 1 100 µg for 3 weeks, then 1000 µg for 3 weeks Expt 2 500 µg for 3 weeks, then 1500 µg for 3 weeks Expt 3 1000 µg for 3 weeks, then 2000 µg for 3 weeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Measurement: response in serum folate after 2 and 3 weeks</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued
<table>
<thead>
<tr>
<th>Authors</th>
<th>Design</th>
<th>Results</th>
<th>Conclusions and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelly et al. (1997)</td>
<td>Subjects: Expt 1 n 14; Expt. 2 n 6 (+5); Expt 3 n 30, elderly; Expt 4 n 16, elderly; Design: parallel</td>
<td>Unchanged folic acid was found in subjects consuming more than 266 μg folic acid/d</td>
<td>The implication of having unchanged folic acid in serum is not clear</td>
</tr>
<tr>
<td></td>
<td>Treatment: Expt 1 subjects received folic acid-fortified foods for 5 d (amount of folic acid ranging from 90 to 1200 μg/d)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expt 2 each subject received 400, 300 and 200 μg folic acid/d (in isotonic saline; 9 g NaCl/l), separated by 2-week intervals</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expt 3 after pretreatment with 400 μg folic acid/d for 18 d, each subject (geriatric patients) was given a constant dose of 150–600 μg/d in bread for three consecutive days</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expt 4 elderly patients routinely received fortified milk and cereals (172–190 μg/d). Each subject was given low-fat milk (200 ml) fortified with folic acid (200 μg/d)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Measurements: fasting and postprandial (2·25 h after meal) blood samples were taken. Total folate and folic acid were determined in serum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caudill et al. (1997, 1998)</td>
<td>Subjects: twelve pregnant and twelve non-pregnant women No previous loading</td>
<td>Less excretion of folate catabolites in the group receiving 450 μg folate/d than in the group receiving 850 μg folate/d</td>
<td>450 μg of folate/d appeared to be used more efficiently than 850 μg/d</td>
</tr>
<tr>
<td></td>
<td>Design: parallel</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Treatment: women received 120 μg folate/d and either 330 or 730 μg folic acid/d for 12 weeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Measurement (1997): serum folate, erythrocyte folate and urinary 5-methylfolate excretion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Measurement (1998): excretion of folate catabolites, para-aminobenzoyleglutamate and acetylaminobenzoyleglutamate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homo- cysteine Lowering Trialists' Collaboration, (1998)</td>
<td>Meta-analysis of randomised trials Subjects: individual data on 1114 subjects included in twelve trials</td>
<td>There was no evidence for differences in homocysteine-lowering effects between daily doses of <1 mg (mean dose 0·5 mg), of 1–3 mg, or of >3 mg folic acid</td>
<td>Doses of 0·5 mg folic acid appeared to be as effective in lowering total plasma homocysteine as doses above that level. No studies investigating doses <0·4 mg folic acid were included in the meta-analysis</td>
</tr>
<tr>
<td></td>
<td>Design: meta-analysis of effects of folic acid-based supplements on total plasma homocysteine concentrations. Folic acid was provided in various doses (0·4–5 mg/d) in addition to the diet</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Measurement: total plasma homocysteine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Subjects</td>
<td>Design</td>
<td>Treatment</td>
</tr>
<tr>
<td>------------------</td>
<td>----------</td>
<td>---------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Malinow et al. (1998)</td>
<td>Subjects: seventy-five subjects with coronary artery disease (twenty-five per treatment)</td>
<td>No previous loading</td>
<td>Treatment: subjects received 30 g cereal supplemented with 127, 499 or 665 μg folic acid/d for 5 weeks. Wash-out period was 5 weeks</td>
</tr>
<tr>
<td>Schorah et al. (1998)</td>
<td>Subjects: ninety-four healthy volunteers</td>
<td>No previous loading</td>
<td>Treatment: subjects received either unfortified cereals, or cereals fortified with 200 μg folic acid/d, or cereals fortified with 200 μg folic acid/d and other vitamins</td>
</tr>
<tr>
<td>Bonnette et al. (1998)</td>
<td>Dietary controlled trial</td>
<td>Subjects: twelve pregnant women (weeks 14–26) and twelve non-pregnant women</td>
<td>Design: 2 × 2 factorial</td>
</tr>
</tbody>
</table>
Trialists’ Collaboration, 1998; Schorah et al. 1998). Thus, although bioefficacy of the excess folate can be high, its functional bioefficacy is low.

Matrix

Matrix effects on bioavailability involve both encapsulation and binding. Natural food folate can be encapsulated in plant cells or subcellular components. Generally for folic acid added to food, binding is more important, although in food preparation encapsulation may occur. Comparison of folate bioefficacy among different foods (Table 4) involves not only matrix effects, but also effects of molecular linkage, species and effect modifiers. However, studies comparing folate bioefficacy among foods cannot distinguish these factors.

Retief (1969) was one of the first researchers to study the effects of different foods on folate bioefficacy. His study is not included in Table 4 because it involved only one subject. Studies investigating the effect of food matrix of single foods on the bioefficacy of dietary folate have shown that folate is absorbed to some extent (Retief, 1969; Tamura & Stokstad, 1973; Babu & Srikantia, 1976; Sauberlich et al. 1987; Keagy et al. 1988). However, the bioefficacy of food folate relative to folic acid differed enormously between products (Retief, 1969; Tamura & Stokstad, 1973; Babu & Srikantia, 1976; Sauberlich et al. 1987; Keagy et al. 1988).

Few studies have investigated the bioefficacy of folate from mixed diets. Sauberlich et al. (1987) estimated from a strictly-controlled trial that the bioefficacy of folate in a mixed diet would be no higher than 50%. Our group found that the bioefficacy of folate from vegetables and citrus fruit was 60–98% relative to that of folic acid, depending on the end point chosen. The fact that the folic acid tablets were taken every other day may have overestimated the effect of food folate slightly (Brouwer et al. 1999). Cuskelly et al. (1996) provided women on average 400 μg folate/d in foods in addition to their normal diets. Since dietary intake was not strictly supervised as in controlled dietary intervention studies, and because of the small number of subjects, the power may not have been sufficient to observe a significant effect (Cuskelly et al. 1996). Riddell et al. (2000) performed a study in a non-controlled setting. They showed that intake of additional folic acid supplements and fortified cereals significantly decreased total plasma homocysteine concentrations (P < 0.001) and improved serum folate concentrations. Although advising subjects to increase intake of dietary folate improved their folate status and decreased total plasma homocysteine concentrations, it only significantly increased serum folate concentrations (P < 0.001). The study suggested that bioefficacy was less than 50% for dietary folate compared with folic acid. As the intake of dietary folate was not controlled and the subjects were provided with a list of products high in dietary folate, they may have overestimated their intake. This approach may have led to the lack of effect. The folate-rich products on the list came from several food groups. It is likely that the bioefficacy of the folate from the products ranged from good to poor (Riddell et al. 2000). A controlled dietary study carried out by Appel et al. (2000) compared diets with a modified fat content and increased intake of fruits and vegetables. The study showed that the most pronounced effects on plasma total homocysteine concentrations were seen in the group with the highest dietary folate intake. Unfortunately, it was not possible to calculate bioefficacy of folate from this study (Appel et al. 2000). Thus, folate from a mixed diet might be absorbed by more than 50%. Bioefficacy would seem to be strongly dependent on the products consumed. It is difficult to predict the proportion of folate from a mixed diet that is absorbed because folate occurs in many different food products. Bioefficacy of folate from a mixed diet may also be expected to depend on factors other than the matrix.
Table 4. Effect of the food matrix of single foods and mixed diets on the bioavailability and bioefficacy of folate and folic acid

<table>
<thead>
<tr>
<th>Authors</th>
<th>Design</th>
<th>Results</th>
<th>Conclusions and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamura & Stokstad</td>
<td>Human intervention study</td>
<td>Bioefficacy of food relative to folic acid (%):</td>
<td>The large amounts of food, e.g. 500–700 g cabbage and lettuce may have adversely affected the bioefficacy. Bioefficacy of folate varies considerably between products. For all products the mean relative bioefficacy is lower than that for folic acid.</td>
</tr>
<tr>
<td></td>
<td>Subjects: healthy males (n 6)</td>
<td>Food</td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td>Design: cross-over</td>
<td>Orange juice</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Previous loading with folic acid: 2 × 10 mg on first day, 5 mg on second day, 2 mg on third day, then 2 mg every other day</td>
<td>Romaine lettuce</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Treatment: each subject received different foods i.e. orange juice, romaine lettuce, romaine-lettuce extract, egg yolk, banana, lima beans (dry and frozen), liver, brewer’s yeast, brewer’s yeast extract, cabbage (cooked and raw), defatted soyabean meal, wheat germ</td>
<td>Romaine-lettuce extract</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Measurement: urinary folate excretion (24 h)</td>
<td>Egg yolk</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Banana</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lima beans (dry, cooked)</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lima beans (frozen, cooked)</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liver (cooked)</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brewer’s yeast</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brewer’s yeast extract</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cabbage (cooked)</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cabbage (raw)</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Defatted soyabean meal</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wheat germ</td>
<td>30</td>
</tr>
<tr>
<td>Colman et al. (1975)</td>
<td>Human intervention study</td>
<td>Erythrocyte folate: The slope of the regression lines for the group receiving 500 µg folic acid in maize meal was similar to that of the group receiving 300 µg folic acid in tablet form</td>
<td>This study suggests that the bioefficacy of 500 µg folic acid in maize meal was equal to that of 300 µg folic acid in a supplement.</td>
</tr>
<tr>
<td></td>
<td>Subjects: women in late-stage pregnancy</td>
<td>Serum folate: The slope of the regression lines for all four intervention groups was significantly greater than that for the control group. The slopes were similar for 300 µg folic acid in maize, 300 µg folic acid in a supplement and for 500 µg folic acid in maize</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design: parallel (intervention period on average 30 d)</td>
<td>Relative bioefficacy (%) of folic acid in fortified products compared with folic acid in aqueous solution:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No previous loading</td>
<td>Maize</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Treatment groups provided with a single dose daily:</td>
<td>Rice</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Subjects received 1000 (n 20), 500 (n 27), or 300 µg folic acid in maize meal (n 23) or 300 µg folic acid in tablet form (n 34). Control subjects received no folic acid (n 18)</td>
<td>Bread</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Measurement: concentration of folate in erythrocytes and serum at delivery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colman et al. (1975)</td>
<td>Human intervention study</td>
<td>Relative bioefficacy (%) of folic acid in fortified products compared with folic acid in aqueous solution:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subjects: healthy adults (n 7)</td>
<td>Maize</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Design: cross-over</td>
<td>Rice</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Previous loading with 15 mg folic acid/d for 3 d</td>
<td>Bread</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Treatment: subjects received 1 mg folic acid in either an aqueous solution, or in maize, in bread, or rice for four consecutive days</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Measurement: sum of increases in serum folate 1 and 2 h after ingesting the folic acid on day 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Continued

<table>
<thead>
<tr>
<th>Authors</th>
<th>Design</th>
<th>Results</th>
<th>Conclusions and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Margo et al.</td>
<td>Human intervention study</td>
<td>The increase in erythrocyte folate concentrations was similar to the increase observed in the groups receiving 300 (\mu)g folic acid as a supplement or 500 (\mu)g folic acid in maize meal (Colman et al. 1975)</td>
<td>It is not clear whether the amount of folic acid in the bread was measured before or after processing of the bread</td>
</tr>
<tr>
<td>(1975)</td>
<td>Design: one group compared with Colman et al. (1975)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subjects: women in late-stage pregnancy (n 15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No previous loading</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Treatment: subjects received 900 (\mu)g folic acid/d in bread</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Measurement: Erythrocyte folate concentrations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Babu & Srikantia</td>
<td>Human intervention study</td>
<td>Bioavailability (%) as measured by dose–response curves:</td>
<td>There was considerable variation in bioavailability between the subjects</td>
</tr>
<tr>
<td>(1976)</td>
<td>Subjects: healthy males (n 10)</td>
<td>bengal gram 69</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design: cross-over</td>
<td>green gram 55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Previous loading with 5 mg/d for 6 d, followed by 2 mg every other day + 400 (\mu)g folic acid was provided with each food</td>
<td>tomato 37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Treatment: a single meal of the following foods was provided which contained ((\mu)g folate):</td>
<td>spinach 63</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>banana 192–252</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>egg 210–350</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>goat liver 315</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>brewer’s yeast 300</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Measurement: 24 h urinary excretion (dose–response curve)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sauberlich et al.</td>
<td>Human intervention study</td>
<td>Plasma folate concentrations decreased 60 % during the depletion period and continued to decrease until subjects received 200 (\mu)g dietary folate/d. An amount of 300 (\mu)g dietary folate was sufficient to increase plasma folate slightly. Erythrocyte folate concentrations still continued to decrease. Dietary folates seemed to be no more than 50 % bioavailable compared with synthetic folate acid</td>
<td>This strictly controlled study revealed that bioefficacy of dietary folate from a mixed diet was no more than 50 % compared with that of folic acid</td>
</tr>
<tr>
<td>(1987)</td>
<td>Subjects: healthy nonpregnant women (n 10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design: parallel and consecutive</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No previous loading with folic acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Treatment: after a depletion period of 28 d subjects received increasing amounts of food folate or synthetic folic acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Measurement: plasma and erythrocyte folate concentrations, lymphocyte deoxyuridine suppression, neutrophil segmentation and urinary folate excretion</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Keagy et al. (1988) Human intervention study
Subjects: healthy young men (n = 7)
Design: all subjects received all treatments
Constant loading with 500 µg folic acid/d
Treatment: four folate absorption tests were conducted during the last 4 d of each 9 d period in which subjects received either a formula, wheat bran, or white beans. Folic acid and PteGlu were given on alternate days during the absorption tests
Measurement: increase in serum folate after 1 and 2 h and 24 h urine excretion

Adding wheat bran to the formula diet increased the AUC for folic acid. PteGlu was not affected by wheat bran. Wheat bran increased the absorption of folic acid relative to PteGlu, whereas beans minimised the difference between the AUC

The apparent enhancing effect of wheat bran on folic acid bioefficacy could be due to endogenous folate in the wheat bran or to interaction of bran with inhibitors of folate absorption

Bailey et al. (1988) Human intervention study
Subjects: nine healthy males (fasting)
Design: cross-over with 2 week interval
No previous loading
Treatment: single dose of 750 µg PteGlu, and equivalent amount of PteGlu given in solution or with bran or spinach
Measurement: AUC of serum folate concentrations for 8 h

AUCs of PteGlu and PteGlu were not different when ingested as solution or with spinach. AUC for PteGlu ingested with bran was lower than PteGlu ingested with bran

This study suggests that glutamate chain length has no effect on bioefficacy when folates are ingested in solution, but that dietary fibre reduces bioefficacy of PteGlu compared with that of PteGlu

Cuskelley et al. (1996) Human intervention study
Subjects: forty-one women (five groups)
Design: parallel (3 months)
No previous loading
Treatment: subjects received either folic acid supplements (400 µg/d) or folic acid-fortified food (additional 400 µg/d), or dietary folate, or dietary advice or nothing (control) for 3 months
Measurement: erythrocyte folate concentrations

Folic acid supplements and foods fortified with folic acid both effectively increased erythrocyte folate concentrations, while food folate had no significant effect on erythrocyte folate concentrations

The study is based on small numbers of women in each group and the food and supplement intake was not controlled. However, intake of dietary folate was assessed by a validated dietary assessment method

Pfeiffer et al. (1997) Human intervention study
Subjects: fourteen adults
Design: cross-over
No previous loading
Treatment:
1. subjects received [13C5]folic acid in white bread, whole-wheat bread, rice or pasta or in solution concurrently with [2H2]folic acid intravenously
2. subjects received [13C5]folic acid with or without a light breakfast

The bioefficacy of [13C5]folic acid in the fortified products appeared to be lower than that of folic acid in solution, but these differences were not significant (P = 0.607). The absorption of folic acid seemed slightly lower when consumed after breakfast than without food but the difference was also not significant (P = 0.085)

The bioefficacy of [13C5]folic acid in fortified cereal grains was high. Between-subject variation in this study was high in comparison with studies using previous loading with folic acid. The sensitivity of this protocol was such that only urinary excretion ratios <50% of the control could be detected

Continued
<table>
<thead>
<tr>
<th>Authors</th>
<th>Design</th>
<th>Results</th>
<th>Conclusions and comments</th>
</tr>
</thead>
</table>
| Brouwer et al. (1999) | Human intervention study
 Design: parallel dietary-controlled study (4 weeks)
 Subjects: sixty-six subjects (twenty-two per group)
 No previous loading
 Treatment: subjects received either a diet with a normal folate content plus placebo tablets daily (placebo group), or a diet with the same folate content plus 500 µg folic acid and placebo tablets every other day (folic acid group), or a diet high in folate (extra 350 µg/d; dietary folate group)
 Measurement: change in concentrations of folate in plasma and erythrocytes, and plasma concentrations of total homocysteine | Compared with folic acid the relative bioefficacy (%) was dependent on the end point:
 plasma folate 78
 erythrocyte folate 98
 plasma homocysteine 60 | Folate from vegetables and fruit decreased total plasma homocysteine concentrations and improved the folate status. The effects are probably slightly overestimated because folic acid was provided as a supplement every other day instead of each day |
| Riddell et al. (2000) | Human intervention study
 Design: parallel (12 weeks)
 Subjects: sixty-five subjects (four groups)
 No previous loading
 Treatment: all subjects were advised to consume a fat-modified diet. Subjects in the dietary folate group were advised to increase their folate intake to about 600 µg/d, the cereal group was asked to consume 350–400 µg folic acid from fortified cereals (total folate + folic acid about 600 µg/d), the supplement group was instructed to take 450 µg folic acid/d from supplements, and the control consumed just the fat-modified diet
 Measurement: change in concentrations of folate in plasma and erythrocytes, and plasma concentrations of total homocysteine and vitamin B₁₂. | Relative change in total homocysteine compared with the control group (%):
 Folic acid supplements (actual intake 437 µg folic acid/d) –21
 Folic acid fortification (actual intake 298 µg folic acid/d) –24
 Folate-rich diet (418 µg increase in dietary folate) –9
 Change in serum folate (nmol/l) compared with the control group:
 Folic acid supplements 27
 Folic acid fortification 21
 Folate-rich food 7 | Folic acid supplements and intake of products fortified with folic acid appear to be most effective in decreasing total homocysteine and increasing serum folate levels. The subjects were free-living. Dietary intake was not controlled. Subjects completed a 4 d diet record. Subjects may have overestimated their actual intake of folate-rich products as they had a list of folate-rich products and therefore knew what to record |
| Appel et al. (2000) | Human intervention study
 Design: parallel, dietary controlled study (8 weeks), 3 weeks run-in
 Subjects: 118 subjects (three groups)
 No previous loading
 Treatment: Subjects received either a control diet, low in fruits, vegetables and dairy products, with a fat content typical of US consumption, or a diet rich in fruits and vegetables, or a combination diet rich in fruits, vegetables and low in fat content
 Measurement: change in total plasma homocysteine concentration | Change in total homocysteine (µmol/l):
 control diet +0.46
 fruits and vegetables +0.21
 combination diet –0.34
 The change in total plasma homocysteine was inversely correlated with the change in serum folate levels | Modification of the diet can influence total plasma homocysteine concentrations. The change appeared to be influenced mainly by the intake of folate in the diet |

PteGlu¹, pteroylmonoglutamate; PteGlu₇, pteroylheptaglutamate; AUC, area under the curve.
The US Federal Government introduced mandatory fortification of flour products with folic acid as from 1 January 1998. This action was taken in order to increase the folic acid intake of women in the fertile age-group, because an increased intake would be expected to lower the risk of having offspring with a neural-tube defect (US Department of Health and Human Services, Food and Drug Administration, 1996). Thus, it is important to know the bioefficacy of folic acid added as fortificant to flour, and the effect of other foods that may be eaten at the same time. It is now well established that the introduction of fortified flour products in the USA has improved the folate status of the population substantially. This improvement was shown in measurements made in middle-aged and older adults in the Framingham Offspring Study cohort (Jacques et al. 1999) and in California (Lawrence et al. 1999) since the fortification was introduced.

Several studies from a research group in Johannesburg (Colman et al. 1975; Margo et al. 1975; Colman, 1982) investigated the effects of maize meal, rice and bread on the bioefficacy of folic acid (Table 4). Bioefficacy of folic acid consumed with bread was found to be 58 (range 42–84) % of that when it was consumed with water (Colman et al. 1975). In contrast, wheat bran has been found to stimulate rather than inhibit the serum folate response to ingested folic acid (Keagy et al. 1988). The enhancing effect of bran might be caused by endogenous folate in wheat bran, but interaction of bran with folate inhibitors cannot be excluded. Bailey et al. (1988) also showed no inhibitory effect of bran on the absorption of folic acid, although bran decreased absorption of pteroylheptaglutamate. Pfeiffer et al. (1997) used a dual-label stable-isotope protocol to determine absorption of folic acid from fortified cereal-grain products. No significant differences were found between absorption of folic acid added to white bread, whole wheat bread, rice, pasta or water. The fact that the between-subject variation was high in this study may have considerably affected the interpretation of the results (Pfeiffer et al. 1997).

Effect modifiers

Effect modifiers are components in foods that influence nutrient bioavailability and bioefficacy. The effect of folate antagonists and other drugs will not be discussed in the present review.

Since the intestinal brush-border conjugase is Zn dependent, Zn intake and Zn status (see p. 286) can be expected to affect folate absorption. Supplementation with 3·5 or 14·5 mg Zn/d in combination with folic acid for 25 d was shown to have no effect on the concentration of folate in serum, erythrocytes and urine. This finding suggests that absorption of folic acid is not influenced by Zn intake (Kauwell et al. 1995). However, we are not aware of studies investigating the effect of Zn supplementation on the bioefficacy of dietary folate.

Certain components in the food may have the ability to inhibit the activity of the folate conjugase enzyme and thereby decrease the bioavailability of pteroylpolyglutamate. Tomatoes and orange juice inhibit the pteroylglutamate hydrolase (folate conjugase) activity in the human intestine (Bhandari & Gregory, 1990). Furthermore, citrate, and to a lesser extent malate and formate, have been shown to affect intestinal brush-border conjugase activity in vitro (Wei & Gregory, 1998). This finding suggests that organic acids affect the absorption of dietary polyglutamate folate by interfering with the intestinal deconjugation of the glutamate chain.

Alcohol could be another effect modifier. Folate deficiency is prevalent among chronic alcoholic patients whose dietary intake of minerals and vitamins is often inadequate. However, alcohol may also affect folate absorption (Halsted, 1995). In ethanol-fed pigs hydrolysis of pteroylpolyglutamates appears to be disturbed (Naughton et al. 1989; Reisenauer et al. 1989). This observation has not been confirmed in studies with human subjects, although ethanol...
ingestion in five chronic alcoholic patients increased urinary excretion of folic acid (Russell et al. 1983). In combination with a diet deficient in folate, intake of ethanol decreased the uptake of folic acid in alcoholic subjects (Halsted et al. 1971). In normal non-alcoholic subjects ingestion of ethanol also decreased plasma folate concentrations (Eichner & Hillman, 1973). Thus, alcohol seems to affect folate bioefficacy.

Nutrient status

Status of the host with respect to folate, vitamin B₄₁₂ and Zn may influence folate bioefficacy. Only a few studies have investigated the effect of folate status on folate bioavailability. Babu & Lakshmaiah (1987) showed no effect of folate deficiency on jejunal conjugase activity in rats. To our knowledge, there are no studies comparing folate bioefficacy in folate-deplete and folate replete subjects. However, the study by Bower et al. (1993) showed that the increase in serum folate concentration after a pteroylpolyglutamate load (4.5 mg pteroylheptaglutamate) was higher in subjects with higher serum folate levels compared with subjects with lower baseline serum folate levels. This finding could be explained by a longer circulation time of folate in serum of replete subjects, implying that in depleted subjects folate is transferred rapidly from serum to tissues (Bower et al. 1993).

Distribution of folate over the tissues changes during folate deficiency. Liver of folate-deficient rats contains more polyglutamates of higher chain length than do those of folate-replete rats (Cassady et al. 1980; Ward & Nixon, 1990; Varela-Moreiras & Selhub, 1992). Folate concentrations decrease and chain length increases in liver, spleen and kidney in folate-deficient rats, but both concentration and chain length are similar in brain of folate-deficient and folate-replete rats (Richardson et al. 1979). Thus, folate status affects folate distribution over the tissues, but it is not clear whether it also affects folate bioefficacy.

Vitamin B₁₂ can influence folate bioefficacy, as its function is interrelated with that of folate. Methylcobalamin serves as a cofactor for methionine synthase, the enzyme responsible for the remethylation of homocysteine into methionine. In the same reaction 5-methyltetrahydrofolate is demethylated to provide tetrahydrofolate (Savage & Lindenbaum, 1995). In cobalamin deficiency, 5-methyltetrahydrofolate cannot be converted to tetrahydrofolate. This lack of formation of tetrahydrofolate, referred to as the ‘methyl folate trap’, has consequences for the formation of other folate coenzymes (Herbert & Zalusky, 1962). Although this theory has been criticised and many variations of the theory have been put forward (Savage & Lindenbaum, 1995), all these variations suggest that vitamin B₁₂ deficiency influences folate bioefficacy because it changes the distribution of the various folate forms. This process also influences the overall folate status, because tetrahydrofolate is a much better substrate than 5-methyltetrahydrofolate for the enzyme folate polyglutamate synthetase. This enzyme is required for the synthesis of polyglutamates (Cichowicz & Shane, 1987a,b). Polyglutamyl folates are retained better in cells and are more effective coenzymes than are monoglutamyl folates (Lowe et al. 1993).

Adequate Zn status is known to be important in folate bioefficacy. Tamura et al. (1978) showed that Zn depletion reduced the increase in serum folate concentration after supplementation with pteroylheptaglutamate by 53 %, while absorption of the monoglutamate form seemed to be unaffected (Tamura et al. 1978). This finding suggested that intestinal pteroylpolyglutamate hydrolase is Zn dependent and that Zn depletion inhibits hydrolysis of polyglutamates. Chandler et al. (1986) confirmed the Zn dependency of the brush-border folate hydrolase. Tamura (1995) reviewed the literature concerning the nutrient interaction of folate and Zn. He
concluded that although folate conjugase is Zn dependent its clinical significance is not clear (Tamura, 1995).

Genetic factors

Some genetic mutations are known to influence folate metabolism. This section will discuss some commonly-occurring genetic factors influencing folate bioavailability and bioefficacy.

In mice expression of the reduced folate carrier RFC-1 gene regulates the pH-dependent folate absorption in the small intestine (Chiao et al. 1997). The organisation and structure of the human RFC-1 gene encoding for a folate transporter has also been determined (Tolner et al. 1998). However, the significance of this gene for folate absorption needs further investigation.

Another gene that is linked to folate status is the gene encoding for methylenetetrahydrofolate reductase. A variant of methylenetetrahydrofolate reductase was found to have lower specific activity and higher sensitivity to heat (Kang et al. 1988). This thermolabile variant is caused by an alanine-to-valine missense mutation (Goyette et al. 1994). Jacques et al. (1996) demonstrated that individuals homozygous for this mutation with plasma folate concentrations <15·4 nmol/l had 24% higher fasting plasma total homocysteine concentrations than individuals with the normal genotype and similar plasma folate concentrations. No difference between genotypes was seen among individuals with plasma folate concentrations ≥15·4 nmol/l. They suggested that individuals homozygous for this polymorphism need more folate to regulate their plasma homocysteine concentrations (Jacques et al. 1996). This observation implies that the functional bioefficacy of folate is diminished by this polymorphism when folate status is not optimal. However, high intakes of folate or of folic acid would seem to be able to overcome the negative effects of the polymorphism.

Methionine synthase is the enzyme involved in the remethylation reaction from homocysteine to methionine. To our knowledge, no polymorphisms in the gene encoding for this enzyme have been shown to influence folate status or functional bioefficacy.

Host-related factors

Host-related factors are factors of the host other than nutrient status and genetic factors that could influence bioavailability or bioefficacy. Examples of such factors are age, pregnancy, illness and malabsorption.

Bailey et al. (1984) investigated the absorption of pteroylpolyglutamates and pteroylmonoglutamates in different age-groups. They found that neither absorption nor activity of folate conjugase was affected by age.

Pregnancy increases the demand for folate. This higher demand may be explained by accelerated folate breakdown (Kownacki Brown et al. 1993; McPartlin et al. 1993). However, Caudill et al. (1997) found no differences between pregnant and non-pregnant women with respect to increase in serum folate or erythrocyte folate concentrations or in urinary excretion of 5-methyltetrahydrofolate after supplementation with 450 and 850 µg folate/d. Although the same research group suggested, from results of a controlled dietary trial, that pregnant women made more efficient use of 450 µg folic acid than of 850 µg folic acid, they found no significant difference in catabolism between pregnant and non-pregnant women (Caudill et al. 1998). Thus, it is not clear what causes the higher demand for folate during pregnancy.

Two randomised trials have shown that folic acid supplementation in the periconceptional
period reduces the risk of having offspring with neural-tube defects (Medical Research Council Vitamin Study Research Group, 1991; Czeizel & Dudás, 1992). Decreased capacity to absorb folate by the mother has been suggested as a cause for the folate-related cases of neural-tube defects. However, Bower et al. (1993) showed that intestinal hydrolysis of pteroylpolyglutamates was not impaired in women who had previously had a child with a neural-tube defect. Moreover, Davis et al. (1995) found no difference in the absorption of folic acid between those mothers with and those without a history of bearing a child with a neural-tube defect (Davis et al. 1995). In contrast, Neuhouser et al. (1998) found that women who had previously given birth to a child with a neural-tube defect required a larger dose of folic acid or folate to elicit a plasma response equivalent to that of the general population. Thus, diminished maternal bioavailability of folate may lead to neural-tube defects in their offspring.

Halsted (1990) summarised studies from his group investigating the effect of gastrointestinal diseases on the absorption of 3H-labelled folate and 14C-labelled pteroylheptaglutamate. Absorption of folate and pteroylheptaglutamate was not affected by ulcerative colitis, but was diminished by tropical and coeliac sprue (Halsted, 1990). The saturable folate transport system in the jejunum, and thus folate bioavailability, is pH dependent, with an acidic pH optimum (Halsted, 1979; Mason, 1990).

Mathematical interactions

Mathematical interactions arise when the combined effect of two or more factors is different from that of the sum of separate effects of the factors. To our knowledge there are no reports in which this complicated problem has been addressed.

Conclusions

Various factors can influence bioavailability and bioefficacy of nutrients. Of the factors influencing bioavailability and bioefficacy of folate and folic acid, two stand out: the effect of the food matrix and the amount of folic acid consumed. Bioavailability of folate from some foods is less than 50% that of folic acid. The most likely explanation for this difference would be matrix factors: encapsulation and binding. However, often matrix effects cannot be distinguished from other factors, such as the form and chain length of folate in food. Food folate can be substituted with various C$_1$ groups and with one to seven glutamate moieties. Although some studies suggest that C$_1$ substitution of folate affects bioavailability, this effect seems to be only a minor factor. There is evidence that chain length affects bioavailability; studies in the present review suggest that polyglutamates are less bioavailable than monoglutamates. However, we think that differences in chain length can explain at most half the difference in bioefficacy between food folate and folic acid. Bioavailability and bioefficacy might also be influenced by other factors in food, such as organic acids. Indeed, organic acids have been shown in *in vitro* studies to inhibit the conjugase responsible for the removal of glutamate residues from polyglutamates to provide monoglutmates. Such a role for organic acids in decreasing the bioavailability of folate needs to be confirmed in *in vivo* studies. On the basis of the studies in the present review we conclude that matrix is the main factor influencing bioavailability and bioefficacy.

The amount of folic acid consumed also appears to be a very important factor. The bioavailability of folic acid provided in supplements is good. However, the homocysteine-
lowering capacity (functional bioefficacy) of doses of folic acid >500 μg is limited, and it is not clear whether unmetabolised folic acid poses health risks. This factor is important, because now food fortification is implemented in many countries and folic acid supplements are freely available.

In particular circumstances host-related factors, such as illness and pH of the jejunum can influence bioavailability and bioefficacy. Genetic factors also deserve our attention in future research. Mutations of certain genes may influence folate bioavailability and bioefficacy. In this respect, we should not only search for mutations, but also investigate the clinical implication and possible therapies to overcome the negative impact of such mutations.

The techniques presently available for measuring bioavailability and bioefficacy make quantification of the effect of the various factors very difficult. The accuracy of most techniques depends on reaching a steady-state situation in the body. To establish such a state, most studies have used a folic acid preloading scheme to saturate tissues with folic acid. Saturation of the tissues reduces the intra-individual variation in response to treatment. However, it is not clear how this factor affects bioavailability and bioefficacy. Thus, further development of techniques such as stable-isotope techniques is needed. A major disadvantage of stable-isotope techniques is the availability, and hence the price, of a range of labelled compounds. Thus, it is difficult to obtain sufficient amounts of these compounds for experiments with sufficient subjects and/or of sufficient duration. This factor explains why no such intervention studies with appropriately large intervention groups have been carried out up until now. Stable-isotope studies could be improved by developing more sensitive methods for measuring isotopic enrichment of folate in plasma. This factor would enable studies to be carried out with limited perturbation of the steady-state and at lower cost. In conclusion, food matrix and the amount of folic acid consumed are the major factors influencing bioavailability and bioefficacy in healthy individuals. Food manufacturers can play an important role in increasing the bioavailability. Development of new methods of food preparation could modify the food matrix in such a way that folate will become more bioavailable. It is clear that processing and storage of foods can have negative effects on the amount of folate in food (Witthöft et al. 1999). Thus, future research should also focus on improving storage and processing techniques, so that more folate will be retained in the food until consumption. Optimum techniques for processing food at the household level to retain folate and to increase bioavailability should also be determined. Better bioavailability of food folate would make it easier for individuals to reach adequate folate status. Many individuals do not consume sufficient folate (Brussaard et al. 1995). Folate status can also be improved by increasing intake of folic acid. This increase could be achieved by consumption of foods fortified with folic acid and by using folic acid supplements. However, intakes of folic acid >500 μg/d seem to have no additional functional bioefficacy, at least in healthy individuals without a genetic polymorphism that influences folate bioefficacy. Moreover, it is unclear whether such doses pose health risks. Thus, high intakes of folic acid by the general population should be avoided.

Acknowledgement

The authors would like to thank Alida Melse-Boonstra for her valuable comments with regard to the text.
References

Mason JB (1990) Intestinal transport of monoglutamyl folates in mammalian systems. In *Folic Acid Metabolism in

AN INTERNATIONAL RESEARCH JOURNAL
PUBLISHED BY
CABI PUBLISHING ON
BEHALF OF THE NUTRI-
TION SOCIETY

To order your subscription
or for more information
contact:

CABI Publishing,
CAB International,
Wallingford,
Oxon, OX10 8DE, UK
Tel: +44 (0)1491 832111
Fax: +44 (0)1491 829 292
Email: publishing@cabi.org

CABI Publishing,
CAB International,
10 East 40th Street,
Suite 3203,
New York, NY 10016,
USA
Tel: 212 481 7018
Toll free: 800 528 4841
Fax: 212 686 7993
Email: cabi-nao@cabi.org

Public
Health
Nutrition

Essential reading for everyone involved in public health nutrition, practitioners and researchers
The source for an evidence based approach to the solution of nutrition related health problems
Recently described by an eminent international scientist as essential reading for all people working in this field

Print only
Internet only
Print/Internet Package
£275.00
£265.00
£285.00
$480.00 Americas only
$465.00 Americas only
$500.00 Americas only
€ 435.00 EU only
€ 420.00 EU only
€ 455.00 EU only

A special subscription rate is available for members of The Nutrition Society
Print only, Internet only and Internet/Print Package price
$85.00 North and South America
£52.00 Rest of the World
€80.00 Europe

2002 Volume 5 in 6 issues
We also publish special issues that cover proceedings of meetings or other special reports (all included at no extra cost).
Electronic and paper copies available.

If you have research findings of interest to a wide Public Health Nutrition audience send us your work. For details on layout consult any issue of the journal or visit our web site.

For more information about The Nutrition Society visit www.nutsoc.org.uk

Available on the Internet at
www.cabi-publishing.org/journals

Journal Editors
Dr Barrie Margetts (Editor-in-Chief)
Institute of Human Nutrition
University of Southampton, UK

Dr Lenore Arab
(Editor, North America)
Schools of Public Health and Medicine, University of North Carolina at Chapel Hill, USA

Electronic and paper copies available.

Downloaded from https://www.cambridge.org/core; IP address: 54.191.40.80, on 08 Apr 2017 at 10:27:41, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1079/NRR200126