The impact of low concentrations of aflatoxin, deoxynivalenol or fumonisin in diets on growing pigs and poultry

Yueming Dersjant-Li, Martin W. A. Verstegen and Walter J. J. Gerrits*

Animal Nutrition Group, Department of Animal Science, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands

In the present review, the quantitative impact of dietary aflatoxin, deoxynivalenol (DON) and fumonisin concentrations on performance of pigs and broilers is evaluated, with special emphasis on low concentrations of these toxins. Also, responses in performance of pigs and broilers to these three toxins are related to their absorption and elimination kinetics. By applying simple linear regression, information from many literature sources is integrated and condensed into, for example, estimates of depression in rates of weight gain, relative to non-contaminated diets, with increasing toxin concentrations. It was estimated that with each mg/kg increase of aflatoxin in the diet, the growth rate would be depressed by 16 % for pigs and 5 % for broilers. For DON, with each mg/kg increase in the diet, the growth depression was estimated at about 8 % for pigs, while broilers showed no response to DON concentrations below 16 mg/kg. Fumonisin showed the lowest impact on growth performance; with each mg/kg increase, the depression in growth rate was estimated at 0·4 and 0·0 % for pigs and broilers, respectively. Dietary concentrations that cause a 5 % reduction in growth rate were estimated at 0·3 and 1·0 mg/kg for aflatoxin for pigs and broilers, respectively; 1·8 and 0·6 mg/kg for pure and naturally contaminated DON for pigs, respectively; 21 and 251 mg/kg for fumonisin for pigs and broilers, respectively.

Aflatoxin: Deoxynivalenol: Fumonisin: Toxins: Farm animal nutrition

Introduction

Mycotoxins, produced as a result of fungal infestation of crops, are of worldwide concern for crop producers and consumers. There are a wide variety of toxins, produced by numerous fungi, depending on the type of crop, geographical location and climatic conditions. The mycotoxin content of harvested crops depends on growing and storage conditions, and can be increased in the case of physical damage of the crops, for example, as a result of insect infestation. Mycotoxins are a potential threat to human health. Joint FAO/WHO expert committees are providing estimates of relative health risks associated with specific proposed maximum limits for particular toxins. Feeding contaminated materials to animals, especially single-stomached animals, impairs feed intake, efficiency of feed utilization and/or animal health. Moreover, residues of mycotoxins, consumed by animals, can appear in animal products destined for human consumption, with aflatoxin M1 in milk being an obvious example. Accumulation of residues in edible animal products, however, depends on absorption and elimination kinetics, which differ between toxins and animal species. Knowledge of the effects of low mycotoxin intakes is of increasing interest because of potential long-term or cumulative effects (human consumers), or slightly (but significant worldwide) reduced animal performance. Increased variability in performance is also of concern.

Ingestion of mycotoxins can cause tissue and organ damage and can eventually result in death. Several reviews have been published on the effects of aflatoxin (Clarkson, 1979), deoxynivalenol (DON) (Rotter et al. 1996a) and fumonisin (Colvin et al. 1993; Diaz & Boermans, 1994; Dutton, 1996) in farm animals. Most reviews, however, have focused on toxicological effects of a particular mycotoxin and its effect on animal health.

Abbreviations: AFB1, aflatoxin B1; DON, deoxynivalenol; FB1, fumonisin B1; 5GRC, 5 % growth reduction concentration; iv, intra-venous; MGR, marginal growth rate reduction.

* Corresponding author: Dr Walter J. J. Gerrits, fax +31 317 484260, email walter.gerrits@wur.nl
Aflatoxins can be produced by three species of Aspergillus: A. flavus, A. parasiticus and the rare A. nomius, growing on a variety of feedstuffs, mainly in maize, peanuts and cottonseed. The most common aflatoxins are aflatoxin B1 (AFB1), aflatoxins B2, G1 and G2. Aflatoxins M1 and M2 are the hydroxylated metabolites of AFB1 and aflatoxin B2 and may be found in milk or milk products. AFB1 is an active hepatocarcinogen and is considered the most toxic of the aflatoxins. The fungus can only colonize kernels that have been damaged and grows best and with maximal toxin production at 18 % moisture and a temperature of 25–26°C (Clarkson, 1979). Natural occurrence of aflatoxin in feed ingredients varies with growing and storage conditions, usually between 0 and 1 mg/kg.

DON is produced by strains of Fusarium graminearum and F. culmorum. DON is one of the most common contaminants of wheat, maize, and barley worldwide (Rotter et al. 1996a). It is a very stable compound that does not degrade at high temperatures (Scott, 1991). Environmental conditions that favour DON production in the field are low temperature and high humidity. The natural occurrence of DON in feed ingredients mainly varies within 0 and 5 mg/kg. The effect of dietary DON on pigs is characterized by feed refusal, with little permanent damage to tissues and organs.

Fumonisins are produced by F. verticillioides (F. Moniliforme), F. proliferatum and F. napiforme. A fungus of Alternaria spp. was also shown to produce fumonisin B1 (FB1). The predominant molecular form produced by F. verticillioides strains is FB1. Fumonisins are mainly detected in maize and maize-based diets. Diaz & Boermans (1994) reviewed the natural occurrence of fumonisins ranging between 0 to 10 mg/kg. Ingestion of dietary fumonisins can cause porcine pulmonary oedema, which is characterized by severe lung oedema and hydrothorax (Harrison et al. 1990).

The natural contamination of feedstuffs by mycotoxins is often at lower concentrations than those used in an experimental setting. In addition, contaminated batches can be diluted before use in animal feed. Therefore, in the present review, the quantitative impact of dietary aflatoxin, DON and fumonisin concentrations on performance of pigs and broilers is evaluated, with special emphasis on low concentrations of these toxins. Furthermore, the quantitative responses of pigs and poultry to these toxins are compared and discussed in relation to their absorption, metabolism and elimination kinetics.

Methodology

Literature sources in which the responses of feed intake and growth rate were measured with increasing toxin intakes were included in the present study. Experimental data from these sources were subjected to the following analyses: within each trial within a study, data were analysed for the response of feed intake, growth rate and feed:gain to increased dietary toxin concentrations by simple linear regression. The results are presented in Tables 1–6. Integrating data from various studies, the relationship between dietary toxin concentrations and animal performance was analysed by pooling the data from different studies, using linear regression. This analysis was performed for each toxin for pigs and poultry separately and the results are presented in Figs. 1–6. Considering that the literature data were produced under different experimental conditions (such as feed quality, husbandry conditions and age of animals), the growth rates produced in different studies might not be comparable. Therefore, the reduction in growth rate, expressed as a percentage of that in animals fed a toxin-free control diet was calculated and used for the regression analysis. In this analysis, for reasons of simplicity, it has been assumed that all data points are equally important, regardless of the period of exposure to the toxins, number of replications, and the number of animals per replicate. Each experimental treatment was considered as one observation.

For the analysis of the data from different experiments, a straight line was fitted to the data \(Y = a + bX\), in which \(Y\) is depression in the rate of weight gain of pigs or broilers compared with the toxin-free control treatment, expressed as a percentage, \(X\) is dietary toxin concentration (mg/kg), \(a\) is the intercept and \(b\) is the slope of the relationship. Although theoretically, this relationship should not have an intercept, an intercept was included for the following reasons: (1) leaving the intercept out interferes with the accuracy with which the slope of the relationship can be estimated; (2) in some studies, naturally contaminated diets were used. Toxins, other than the one of interest, may, in these studies, have affected the growth rate of the animals. Also, these naturally contaminated diets can potentially have a lower nutritional value or specifically reduce feed intake (not directly related to the toxin studied) compared with the toxin-free control diet used in that particular study. Throughout the present paper, this marginal growth rate reduction (MGR) per mg/kg increase in dietary toxin concentration is indicated (%/mg per kg).

Different studies varied with regard to the origin of the toxin, including purified toxins, toxins from cultured material or from naturally contaminated materials. When there were sufficient data available for each toxin origin, the data were analysed for purified and naturally contaminated (and cultured) toxin origins separately (for DON). When data were not sufficient, the pooled data for toxin from all origins were used for the analysis.

The lowest concentration at which a toxin affects animal performance (threshold concentration) is an interesting parameter for nutritionists, but impossible to analyse in data pooled across studies. It was therefore arbitrarily chosen to present the toxin concentration that causes a 5 % reduction in growth rate relative to a toxin-free control diet as a biologically significant effect, throughout the present paper indicated as the 5 % growth reduction concentration (5GRC; mg toxin/kg diet). A 5 % reduction in growth rate is quite significant to farmers and is usually within the power of an experiment. Because the intercept of the regression line \((a)\) is positive in some cases (see Figs. 1–6), the 5GRC \(X_a\) was calculated as follows. When the intercept \(a\) is positive, \(X_a = 5/b\); when the intercept \(a\) is negative, \(X_a = (5 – a)/b\). The 5GRC calculated from the regression analysis was compared with studies in which low toxin doses were used.
Impact of low mycotoxin intake

Results

Aflatoxins in pigs

Literature data on the effect of aflatoxin on growth performance of pigs are summarized in Table 1. The tested aflatoxin concentrations in the diets used in these literature sources ranged from 0·2 to 4 mg/kg. Either naturally contaminated or cultured material was used in these studies as specified in Table 1. Fig. 1 presents the response of growth performance of pigs (expressed as percentage decrease as compared with the toxin-free control group) to increased aflatoxin concentrations, obtained by pooling all literature data. Generally, the rate of weight gain decreased linearly with increasing aflatoxin concentrations in the diets. The MGR and 5GRC for aflatoxin in pigs were estimated at 16 %/mg per kg and 0·3 mg/kg, respectively.

The estimated growth rate with increasing aflatoxin concentrations in the diet was mainly related to the reduced feed intake. With increasing dietary aflatoxin concentrations, feed intake was linearly decreased. The effect of aflatoxin on feed:gain, however, was inconsistent (see Table 1). Some studies showed an increase in feed:gain (Armbrecht et al. 1971; Southern & Clawson, 1979; Lindemann et al. 1993 (trial 1)), whereas others showed no effect (Harvey et al. 1989; 1995b; Lindemann et al. 1993 (trial 2)).

The estimated 5GRC for aflatoxin in pigs (0·3 mg/kg) was high compared with literature sources in which comparable aflatoxin concentrations were tested. Panangala et al. (1986) reported that an AFB1 concentration of 0·3 mg/kg reduced feed intake and weight gain of pigs by 28 and 22 % (1986) reported that an AFB1 concentration of 0·3 mg/kg reduced feed intake and weight gain of pigs by 28 and 22 %.

As illustrated by Fig. 2, responses to aflatoxin concentrations between 0·2 and 2·5 mg/kg in the literature are inconsistent. Panagala et al. (1986) compared with the study of Panangala et al. (1986) may be partly related to the composition of toxin. Panagala et al. (1986) used AFB1, whereas Southern & Clawson (1979) used aflatoxin, which contained 74 % AFB1, 7·5 % aflatoxin B2 and 18·5 % aflatoxin G1.

Aflatoxins in broilers

Literature data on the performance of broilers at different dietary aflatoxin concentrations are summarized in Table 2. The tested aflatoxin concentrations ranged between 0·07 to 10 mg/kg diet and originated from cultured materials, naturally contaminated feed or purified aflatoxin. Fig. 2 presents the response of growth performance of broilers (expressed as percentage decrease as compared with a toxin-free control group) to increased aflatoxin concentrations, obtained by pooling literature data. When the source of aflatoxin was not mentioned, the data were not included in the analysis. The MGR and 5GRC for aflatoxin in pigs, estimated from these data, were 5 %/mg per kg and 1 mg/kg, respectively.

Literature data indicated that the reduced growth rate with increasing aflatoxin concentrations in the diet is associated both with a reduced feed intake and an increased feed:gain. As illustrated by Fig. 2, responses to aflatoxin concentrations between 0·2 and 2·5 mg/kg in the literature are inconsistent. Mani & Sundaresan (1998) reported that dietary AFB1 concentrations between 0·2 and 0·5 mg/kg significantly reduced weight gain of broilers, while feed intake numerically decreased and feed:gain numerically increased.

Fig. 1. The relationship between dietary aflatoxin and decrease in weight gain of pigs relative to a toxin-free control group ($Y = 12.7 + 15.6X; R^2 = 0.52$). Data were derived from Table 1: (○), Harvey et al. (1989; cultured material); (●), Armbrecht et al. (1971; cultured material); (□), Lindemann et al. (1993; naturally contaminated material); (■), Panangala et al. (1986; naturally contaminated material); (◇), Southern & Clawson (1979; naturally contaminated material); (+), Harvey et al. (1995a; naturally contaminated material); (●), Harvey et al. (1995b; naturally contaminated material).

Fig. 2. The relationship between dietary aflatoxin and decrease in weight gain of broilers relative to a toxin-free control group ($Y = 9.3 + 5.1X; R^2 = 0.51$). Data were derived from Table 2: (○), Doerr et al. (1983; cultured material); (●), Mani & Sundaresan (1998; cultured material); (◇), Huff (1980; cultured material); (▴), Ram et al. (1988; cultured material); (●), Huff et al. (1986; cultured material); (+), Giambrone et al. (1985; naturally contaminated material); (◇), Randall & Bird (1979; purified aflatoxin B1); (▴), Prabaharan et al. (1999; unknown source); (△), Sodhi et al. (1996; unknown source); (▲), Shukla & Pachauri (1985; unknown source).
Table 1. The response of pig performance to dietary aflatoxins (AF; mg/kg diet) in various published experiments

<table>
<thead>
<tr>
<th>AF range tested (mg/kg)</th>
<th>ADG (g/d)</th>
<th>ADFI (g/d)</th>
<th>Feed:gain</th>
<th>R²</th>
<th>Duration of study (weeks)</th>
<th>No. of toxin-free AF concentrations tested</th>
<th>Initial control BW (kg)</th>
<th>Replicates per treatment replicate</th>
<th>Reference*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–2</td>
<td>0.65</td>
<td>0.12</td>
<td>0.98</td>
<td>0.28</td>
<td>14</td>
<td>5</td>
<td>10</td>
<td>15.5</td>
<td>Harvey et al. (1987), trial 1</td>
</tr>
<tr>
<td>0–1.1</td>
<td>0.73</td>
<td>0.10</td>
<td>0.97</td>
<td>0.26</td>
<td>3</td>
<td>10</td>
<td>10</td>
<td>30.8</td>
<td>Armbrecht et al. (1971), trial 1</td>
</tr>
<tr>
<td>0–4</td>
<td>1.16</td>
<td>0.12</td>
<td>0.97</td>
<td>0.24</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>22.1</td>
<td>Armbrecht et al. (1971), trial 2</td>
</tr>
<tr>
<td>0–0.84</td>
<td>0.61</td>
<td>0.08</td>
<td>0.99</td>
<td>0.3</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>Lindemann et al. (1993), trial 1</td>
</tr>
<tr>
<td>0–0.8</td>
<td>0.57</td>
<td>0.07</td>
<td>0.99</td>
<td>0.3</td>
<td>3</td>
<td>10</td>
<td>10</td>
<td>9.1</td>
<td>Lindemann et al. (1993), trial 2</td>
</tr>
<tr>
<td>0.02–1.48</td>
<td>0.77</td>
<td>0.10</td>
<td>0.96</td>
<td>0.22</td>
<td>4</td>
<td>10</td>
<td>10</td>
<td>13.6</td>
<td>Panangala et al. (1979)</td>
</tr>
<tr>
<td>0.25–1.5</td>
<td>0.76</td>
<td>0.10</td>
<td>0.96</td>
<td>0.22</td>
<td>4</td>
<td>10</td>
<td>10</td>
<td>17.6</td>
<td>Southern & Claxton (1979)</td>
</tr>
<tr>
<td>0.25–2.5</td>
<td>0.78</td>
<td>0.10</td>
<td>0.96</td>
<td>0.22</td>
<td>4</td>
<td>10</td>
<td>10</td>
<td>17.6</td>
<td>Harvey et al. (1987), trial 2</td>
</tr>
</tbody>
</table>

BW, body weight; ADG, average daily gain; ADFI, average daily feed intake.

<table>
<thead>
<tr>
<th>Change per mg/kg increase in AF concentration</th>
<th>ADG (g/d)</th>
<th>ADFI (g/d)</th>
<th>Feed:gain</th>
<th>R²</th>
<th>Duration of study (weeks)</th>
<th>No. of toxin-free AF concentrations tested</th>
<th>Initial control BW (kg)</th>
<th>Replicates per treatment replicate</th>
<th>Reference*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–2</td>
<td>0.65</td>
<td>0.12</td>
<td>0.98</td>
<td>0.28</td>
<td>14</td>
<td>5</td>
<td>10</td>
<td>15.5</td>
<td>Harvey et al. (1987), trial 1</td>
</tr>
<tr>
<td>0–1.1</td>
<td>0.73</td>
<td>0.10</td>
<td>0.97</td>
<td>0.26</td>
<td>3</td>
<td>10</td>
<td>10</td>
<td>30.8</td>
<td>Armbrecht et al. (1971), trial 1</td>
</tr>
<tr>
<td>0–4</td>
<td>1.16</td>
<td>0.12</td>
<td>0.97</td>
<td>0.24</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>22.1</td>
<td>Armbrecht et al. (1971), trial 2</td>
</tr>
<tr>
<td>0–0.84</td>
<td>0.61</td>
<td>0.08</td>
<td>0.99</td>
<td>0.3</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>Lindemann et al. (1993), trial 1</td>
</tr>
<tr>
<td>0–0.8</td>
<td>0.57</td>
<td>0.07</td>
<td>0.99</td>
<td>0.3</td>
<td>3</td>
<td>10</td>
<td>10</td>
<td>9.1</td>
<td>Lindemann et al. (1993), trial 2</td>
</tr>
<tr>
<td>0.02–1.48</td>
<td>0.77</td>
<td>0.10</td>
<td>0.96</td>
<td>0.22</td>
<td>4</td>
<td>10</td>
<td>10</td>
<td>13.6</td>
<td>Panangala et al. (1979)</td>
</tr>
<tr>
<td>0.25–1.5</td>
<td>0.76</td>
<td>0.10</td>
<td>0.96</td>
<td>0.22</td>
<td>4</td>
<td>10</td>
<td>10</td>
<td>17.6</td>
<td>Southern & Claxton (1979)</td>
</tr>
<tr>
<td>0.25–2.5</td>
<td>0.78</td>
<td>0.10</td>
<td>0.96</td>
<td>0.22</td>
<td>4</td>
<td>10</td>
<td>10</td>
<td>17.6</td>
<td>Harvey et al. (1987), trial 2</td>
</tr>
</tbody>
</table>

Absorption and elimination of aflatoxins

*General. According to Hsieh & Wong (1994), AFB1 is rapidly absorbed from the small intestine into the mesenteric venous blood. After absorption, AFB1 is extensively transformed into metabolites (Eaton et al. 1994). Only a few percentage or less of the ingested dose was found to be excreted unchanged in several species (Lüthy et al. 1980). In rats, AFB1 is completely absorbed after an oral dose (Wogan et al. 1967, cited by Hsieh & Wong, 1994). The liver is the principal site of accumulation of AFB1, metabolites and/or bound materials. Excretion of AFB1 and its metabolites occurs primarily with bile, and to a lesser extent with urine. Elimination of AFB1 appears slow in all species and strains studied. Wong & Hsieh (1980, cited by Hsieh & Wong, 1994) reported that the total excretion of 14C-labelled AFB1 was 80, 72 and 73 % of an intravenous (iv) administered dose in male mice, rats and monkeys, respectively, within 100 h after iv dosing. The excretion was most intensive during the first 24 h after dosing. On the other hand, it was reported that approximately 80 % of a single intraperitoneal dose of 14C-labelled AFB1 in rats was excreted within 24 h post-injection (GN Wogan, cited by Mabee & Chipley, 1973).

*Pigs. The absorption and excretion kinetics of aflatoxin in pigs are similar to that in other species. Lüthy et al. (1980) examined the absorption and excretion rates of AFB1 after oral administration of 14C-labelled AFB1 in pigs. They concluded that aflatoxin was almost completely metabolized. They found that faecal excretion accounted for 58 % of the dose after 9 d, a large portion of which is expected to originate from biliary secretion. Recovery in urine was less than 15 % of that ingested. They also observed the clearance rate of aflatoxin metabolites to be low in pigs; more than 20 % of the dose was not recovered within 9 d after oral administration. Among tissues, the radioactivity was mainly recovered in the liver, followed by the kidney.

*Poultry. Similarly to other species, aflatoxin is rapidly absorbed by poultry and slowly excreted. Sawhney et al. (1973) administered a single dose of 14C-labelled aflatoxin (11 mg/bird) via a stomach tube to laying hens. They found that only 28 % of the dose was eliminated within the first 24 h, while 71 % of the dose was recovered within 7 d after administration of aflatoxin. A high concentration of radioactivity was found in bile, indicating aflatoxin is excreted mainly through bile. The accumulation of radioactivity was
Table 2. The response of broiler performance to dietary aflatoxins (AF; mg/kg diet) in various published experiments

<table>
<thead>
<tr>
<th>AF range</th>
<th>No. of toxins tested</th>
<th>Initial age</th>
<th>ADG control treatment (kg/d)</th>
<th>ADG increase per mg/kg in AF concentration</th>
<th>ADFI increase per mg/kg in AF concentration</th>
<th>Feed gain increase per mg/kg in AF concentration</th>
<th>Replicates per treatment</th>
<th>Broilers per replicate</th>
<th>Duration of study (weeks)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–0.675</td>
<td>4</td>
<td>1</td>
<td>45.2†</td>
<td>-3.4</td>
<td>0.18</td>
<td></td>
<td>3</td>
<td>25</td>
<td>7</td>
<td>Doerr et al. (1983); trial 1</td>
</tr>
<tr>
<td>0–2.7</td>
<td>4</td>
<td>1</td>
<td>40.5</td>
<td>-2.5</td>
<td>0.86</td>
<td></td>
<td>3</td>
<td>25</td>
<td>7</td>
<td>Doerr et al. (1983); trial 2</td>
</tr>
<tr>
<td>0–0.5</td>
<td>6</td>
<td>1</td>
<td>28.5‡</td>
<td>-5.4</td>
<td>0.96</td>
<td>-2.3</td>
<td>0.83</td>
<td>0.97</td>
<td>2</td>
<td>Mani & Sundaesan (1998)</td>
</tr>
<tr>
<td>0–2.5</td>
<td>6</td>
<td>1</td>
<td>22.4‡</td>
<td>-1.2</td>
<td>0.97</td>
<td>-1.7§</td>
<td>0.96</td>
<td>0.87</td>
<td>10</td>
<td>Huff (1980)</td>
</tr>
<tr>
<td>0–4</td>
<td>3</td>
<td>1</td>
<td>10.4</td>
<td>-0.7</td>
<td>0.62</td>
<td></td>
<td>6</td>
<td>10</td>
<td>3</td>
<td>Huff et al. (1986)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AF from naturally contaminated material</th>
<th>ADG increase per mg/kg in AF concentration</th>
<th>ADFI increase per mg/kg in AF concentration</th>
<th>Feed gain increase per mg/kg in AF concentration</th>
<th>Replicates per treatment</th>
<th>Broilers per replicate</th>
<th>Duration of study (weeks)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–0.8II</td>
<td>-0.6</td>
<td>0.57</td>
<td>-0.2</td>
<td>0.02</td>
<td>0.14</td>
<td>0.54</td>
<td>40</td>
</tr>
<tr>
<td>Purified AFB1</td>
<td>-1.7</td>
<td>0.07</td>
<td></td>
<td>12</td>
<td>1</td>
<td>3.4</td>
<td>Randall & Bird (1979); trial 1</td>
</tr>
<tr>
<td>0–5</td>
<td>-0.9</td>
<td>0.04</td>
<td></td>
<td>12</td>
<td>1</td>
<td>3.1</td>
<td>Randall & Bird (1979); trial 2</td>
</tr>
<tr>
<td>Unknown origin of AF</td>
<td>-6.8</td>
<td>-6.6</td>
<td>2.78¶</td>
<td>20</td>
<td>1</td>
<td>4.6</td>
<td>Prabaharan et al. (1999)</td>
</tr>
<tr>
<td>0–0.4</td>
<td>-13.7</td>
<td></td>
<td></td>
<td>25</td>
<td>1</td>
<td>7</td>
<td>Sodhi et al. (1996)</td>
</tr>
<tr>
<td>0–10</td>
<td>-1.3</td>
<td>0.70</td>
<td></td>
<td>30</td>
<td>1</td>
<td>4</td>
<td>Shukla & Pachauri (1985)</td>
</tr>
</tbody>
</table>

ADG, average daily gain; ADFI, average daily feed intake.

* Trial number refers to the original trial number within the study.† Calculated assuming an initial body weight of 40 g.
‡ Calculated from feed intake and feed gain.
§ Calculated from feed intake and weight gain.
¶ Contained 2.034 mg AFB1/kg, 0.222 mg AFB2/kg, 0.07 mg cyclopiazonic acid/kg, 0.0014 mg AFG1/kg.
¶¶ Calculated from feed intake and weight gain.
** Calculated from the data of each week.

https://doi.org/10.1079/NRR200368 Downloaded from https://www.cambridge.org/core. IP address: 54.70.40.11, on 10 Feb 2019 at 02:22:11, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
high in the liver and reproductive organs. The total accumulation of radioactivity in the organs was estimated as 1·3, 1·0 and 1·1 % of the administered dose on day 1, 4 and 7, respectively. Mabee & Chipley (1973) intubated laying hens daily with 14C-labelled AFB1 for 14 d. They found that 5 h after the final dosing, the total radioactivity in organs and tissues accounted for nearly 8 % of the cumulative administered dose in 14 d. This amount was approximately equal to that amount in the final dose of AFB1, and so the authors concluded that most of the 14C-labelled AFB1 administered in the previous 13 d was excreted before the final dose was given. This study suggests that continuous administration of aflatoxin may increase the excretion rate of aflatoxin compared with a single dose, although the quantity of aflatoxin intubated in a single dose can also influence the excretion rate.

Deoxynivalenol in pigs

Performance. Table 3 summarizes the literature data on the effect of DON on pig performance. In these studies, naturally contaminated or pure DON sources were used and the DON concentrations ranged between 1 and 20 mg/kg diet.

In Figs. 3 and 4, the pooled data are presented for naturally contaminated and pure DON separately. In the regression analysis, only DON concentrations below 20 mg/kg were used. The analysis showed that, based on these data, the MGR was 8·0 and 8·5 %/mg per kg for pure (Fig. 4) or naturally contaminated (Fig. 3) DON, respectively. The estimated 5GRC was 1·8 and 0·6 mg/kg for pure and naturally contaminated diets, respectively. However, as discussed later (p. 236), the adaptation of pigs to DON, when exposed longer than 1 week, complicates the comparison of experimental data obtained with varying exposure periods (Figs. 3 and 4). The reduced growth rate with increasing DON concentrations in the diet is mainly related to a reduced feed intake. However, an increased feed:gain with increasing DON concentration in the diet also contributes to the reduced growth rate. It should be noted, however, that a reduced feed intake automatically causes an increase in feed:gain, because maintenance energy becomes a greater proportion of intake. According to Pollmann et al. (1985) and He et al. (1993), a reduced growth rate occurs at dietary DON concentrations above 2·8 mg/kg. For naturally contaminated DON, concentrations above 1–2 mg/kg can reduce feed intake and growth (Carlson et al. 1983; Young et al. 1983; Pollmann et al. 1985) in pigs. Young et al. (1983) observed that a DON concentration of 1·3 mg/kg diet caused a significant depression in feed intake and growth rate; 12 mg/kg caused almost complete feed refusal and 20 mg/kg caused vomiting. He et al. (1993) found daily feed consumption, daily gain and feed efficiency to be decreased by 25, 57 and 45 %, respectively, in pigs (12 kg) fed a 4·8 mg DON/kg diet compared with a toxin-free control diet during a 5 d period.

Dietary DON concentrations above 3–5 mg/kg originating from purified DON addition can decrease the performance of pigs. Apparently, pure DON has less severe effects on feed intake and growth of pigs compared with naturally contaminated DON (Foster et al. 1986; Trenholm et al. 1994), suggesting the occurrence of other toxins in naturally contaminated materials. Trenholm et al. (1994) concluded that feed intake and weight gain were respectively 18 and 23 % lower when a diet containing naturally contaminated wheat was fed compared with a diet containing an equivalent concentration of pure DON. The results from our regression analysis presented earlier (p. 228), however, suggest a smaller difference.

Deoxynivalenol in broilers

Table 4 summarizes literature data on the effect of dietary DON on performance of broilers. The DON used in these studies was from naturally contaminated material, ranging between 0·3 to 16 mg/kg diet. Literature data on the effect of DON concentration on performance of broilers are scarce. It was, therefore, not possible to analyse the

Fig. 3. The relationship between dietary deoxynivalenol (DON) from naturally contaminated material and decrease in weight gain of pigs relative to a toxin-free control group (Y = 1·71 + 8·45X; R² 0·66). Data were derived from Table 3: (○), Pollmann et al. (1985); (●), Young et al. (1983); (□), Trenholm et al. (1994); (▲), Carlson et al. (1983); (◇), He et al. (1993); (▲), Friend et al. (1982); (+), Lun et al. (1985); (V), Rotter et al. (1994).

Fig. 4. The relationship between dietary deoxynivalenol (DON) from purified material and decrease in weight gain of pigs relative to a toxin-free control group (Y = 7·99X – 8·95; R² 0·77). Data were derived from Table 3: (○), Trenholm et al. (1994); (●), Forsyth et al. (1977).
Table 3. The response of pig performance to dietary deoxynivalenol (DON; mg/kg diet) in various published experiments

<table>
<thead>
<tr>
<th>DON range tested (mg/kg)</th>
<th>No. of concentrations tested</th>
<th>Initial BW (kg)</th>
<th>ADG toxin-free control treatment (kg/d)</th>
<th>ADG (g/d)</th>
<th>R^2</th>
<th>ADFI (g/d)</th>
<th>R^2</th>
<th>Feed gain (g/g)</th>
<th>R^2</th>
<th>Replicates per treatment</th>
<th>Pigs per replicate</th>
<th>Duration of study (weeks)</th>
<th>Reference*</th>
</tr>
</thead>
<tbody>
<tr>
<td>DON from naturally contaminated material</td>
<td></td>
</tr>
<tr>
<td>0–2·8</td>
<td>4</td>
<td>7·7</td>
<td>0·35</td>
<td>60</td>
<td>0·81</td>
<td>91</td>
<td>0·82</td>
<td>0·13</td>
<td>0·41</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>Pollmann et al. (1985), trial 1</td>
</tr>
<tr>
<td>0·14–11·9†</td>
<td>8</td>
<td>7·1</td>
<td>0·34</td>
<td>27</td>
<td>0·89</td>
<td>33</td>
<td>0·81</td>
<td>0·10</td>
<td>0·50</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>Young et al. (1983), trial 4</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>8·4</td>
<td>0·36</td>
<td>29</td>
<td>0·71</td>
<td>31</td>
<td>0·01</td>
<td>0·10</td>
<td>0·01</td>
<td>4</td>
<td>1</td>
<td>1·6</td>
<td>Young et al. (1983), trial 3</td>
</tr>
<tr>
<td>0–8·7</td>
<td>4</td>
<td>35·5</td>
<td>1·00</td>
<td>61</td>
<td>0·77</td>
<td>116</td>
<td>0·80</td>
<td>0·10</td>
<td>0·65</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>Trenholm et al. (1994), trial 2</td>
</tr>
<tr>
<td>0–7·3</td>
<td>2</td>
<td>43·1</td>
<td>0·74</td>
<td>60</td>
<td>0·77</td>
<td>116</td>
<td>0·80</td>
<td>0·10</td>
<td>0·65</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>Trenholm et al. (1994), trial 1</td>
</tr>
<tr>
<td>0·3–6§</td>
<td>4</td>
<td>10·0</td>
<td>0·60</td>
<td>160</td>
<td>0·99</td>
<td>200</td>
<td>0·99</td>
<td>1·41</td>
<td>0·64</td>
<td>4</td>
<td>1</td>
<td>1·4</td>
<td>Carlson et al. (1983)</td>
</tr>
<tr>
<td>0–4·6§</td>
<td>3</td>
<td>11·6</td>
<td>0·30</td>
<td>35</td>
<td>0·99</td>
<td>33</td>
<td>1·00</td>
<td>0·35</td>
<td>0·99</td>
<td>6</td>
<td>1</td>
<td>0·7</td>
<td>He et al. (1993)</td>
</tr>
<tr>
<td><0·05–1·5</td>
<td>6</td>
<td>42·5</td>
<td>1·02</td>
<td>31</td>
<td>0·68</td>
<td>310</td>
<td>0·74</td>
<td>0·23</td>
<td>0·72</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>Friend et al. (1982), trial 3</td>
</tr>
<tr>
<td>0·13–3·06</td>
<td></td>
<td>6</td>
<td>210</td>
<td>0·90</td>
<td>0·12</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>Friend et al. (1982), trial 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–10·5</td>
<td>2</td>
<td>8·4</td>
<td>0·38</td>
<td>18</td>
<td>0·31</td>
<td>31</td>
<td>0·10</td>
<td>0·22</td>
<td>0·35</td>
<td>10</td>
<td>1</td>
<td>3</td>
<td>Lun et al. (1985)</td>
</tr>
<tr>
<td>0–3</td>
<td>4</td>
<td>13·0</td>
<td>0·64</td>
<td>10</td>
<td>0·44</td>
<td>102</td>
<td>0·97</td>
<td>0·14</td>
<td>1·00</td>
<td>6</td>
<td>1</td>
<td>4</td>
<td>Rotter et al. (1994)</td>
</tr>
<tr>
<td>Purified DON</td>
<td></td>
</tr>
<tr>
<td>0–15·1</td>
<td>5</td>
<td>33·0</td>
<td>0·72</td>
<td>50</td>
<td>0·90</td>
<td>90</td>
<td>0·10</td>
<td>0·38</td>
<td>0·84</td>
<td>1</td>
<td>2</td>
<td>Trenholm et al. (1994), trial 1</td>
<td></td>
</tr>
<tr>
<td>0–19·1</td>
<td>7</td>
<td>32·8</td>
<td>0·74</td>
<td>62</td>
<td>0·88</td>
<td>90</td>
<td>0·10</td>
<td>0·38</td>
<td>0·84</td>
<td>1</td>
<td>2</td>
<td>Trenholm et al. (1994), trial 2</td>
<td></td>
</tr>
<tr>
<td>0–40</td>
<td>4</td>
<td>20·0</td>
<td>0·70</td>
<td>30</td>
<td>0·95</td>
<td>28</td>
<td>0·91</td>
<td>0·38</td>
<td>0·84</td>
<td>4</td>
<td>1</td>
<td>0·6</td>
<td>Forsyth et al. (1977)</td>
</tr>
</tbody>
</table>

* Trial number refers to the original trial number within the study.
† DON concentration in the control diet was 0·14 mg/kg.
‡ Eight replicates in the toxin group, four in the toxin-free control group.
§ Origin of DON not specified.
|| DON concentration in the control diet was 0·13 mg/kg.

BW, body weight; ADG, average daily gain; ADFI, average daily feed intake.
dose–response relationship between depression of growth in relation to dietary DON concentrations for broilers in a similar way as for pigs.

Above 16 mg DON/kg diet, growth rate of broilers was depressed (Huff et al. 1986; Kubena et al. 1988). Unlike in pigs, feed intake was numerically increased in broilers fed a DON concentration of 16 mg/kg diet compared with the toxin-free control groups (Huff et al. 1986; Kubena et al. 1988, 1989). Kubena et al. (1989) observed a significant increase in feed:gain in broilers receiving 16 mg DON/kg diet compared with the toxin-free control group. The available data indicated that concentrations of dietary DON below 15 mg/kg had no adverse effect on body-weight gain, feed consumption or feed:gain of broilers (Hulan & Proudfoot, 1982; Bergsjo & Kaldhusdal, 1994; Kubena et al. 1997).

Absorption and elimination of deoxynivalenol

Pigs. Friend et al. (1986b) estimated that at least 67 % of the ingested DON was absorbed, based on the urinary recovery of DON and DOM-1, the latter being a de-epoxidated metabolite of DON. Absorption of DON from the pig gastrointestinal tract was very rapid. Peak plasma concentrations were reached within 30 min after intragastric administration and remained elevated for approximately 9 h, declining slowly thereafter (Prelusky et al. 1988). Excretion of DON in pigs occurred through urine and bile pathways, with urinary elimination being by far the most important route. Prelusky et al. (1988) observed, in pigs, that 68 (SD 15) % of intragastrically administered radiolabelled DON was recovered in urine, 2 % was recovered in bile and 20 (SD 5·8) % was recovered in faeces, within 24 h. DON accounted for > 95 % of the total measured radioactivity; metabolic conversion to DON conjugates was estimated to be less than 5 %. Following iv administration of 14C-labelled DON, 93·6 and 3·5 % of the radioactivity was recovered in the urine and bile respectively, over a 24 h period. Over 75 % of the dose was recovered within the initial 8 h after injection. These data indicate DON could be eliminated rapidly and completely within 24 h following a single iv or intragastric dose. Moreover, from the difference between the 24 h urinary recovery of intragastric and iv administration it seems that the absorption rate is lower than the urinary excretion rate. DON does not accumulate in tissues to any appreciable extent (Prelusky & Trenholm, 1992).

Broilers. Prelusky et al. (1986) intubated 14C-labelled DON into chickens and found peak plasma concentrations occurring at 2·0–2·5 h after administration of labelled DON. They calculated the quantity of DON present in plasma at peak plasma concentration accounted for less than 1 % of the administered dose. The fraction of the dose estimated to be distributed into tissues at the time of maximum absorption (3 h) was on average only 1·3 %, and by 96 h after administration, the concentration of radioactivity in the tissues (not including gastrointestinal tract and bile) was only marginally detectable. Based on high specific activity measured in the bile samples and the relatively low systemic absorption of DON, these authors suggested

Table 4. The response of poultry performance to dietary deoxynivalenol (DON; mg/kg diet) in various published experiments

<table>
<thead>
<tr>
<th>DON range tested (mg/kg)</th>
<th>No. of concentrations tested</th>
<th>Initial age (d)</th>
<th>DON from naturally contaminated material</th>
<th>ADG (g/d)</th>
<th>ADFI (g/d)</th>
<th>ADG/ADFI R²</th>
<th>R²</th>
<th>Replicates</th>
<th>Duration of study (weeks)</th>
<th>Treatment replicate</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td><0·02–1·87</td>
<td>6</td>
<td>1</td>
<td>0·19</td>
<td>0·23</td>
<td>0·03</td>
<td>0·44</td>
<td></td>
<td>60</td>
<td>3</td>
<td>0·03</td>
<td>Halal & Proudfoot (1982)</td>
</tr>
<tr>
<td>0·1–3·4</td>
<td>4</td>
<td>1</td>
<td>0·07</td>
<td>0·04</td>
<td>0·05</td>
<td>0·19</td>
<td></td>
<td>80</td>
<td>5</td>
<td>0·16</td>
<td>Kubena et al. (1994)</td>
</tr>
<tr>
<td>0·1–1·6</td>
<td>2</td>
<td>1</td>
<td>0·01</td>
<td>0·01</td>
<td>0·01</td>
<td>0·01</td>
<td></td>
<td>10</td>
<td>10</td>
<td>0·04</td>
<td>Bergsjo & Kaldhusdal (1994)</td>
</tr>
<tr>
<td>0·1–1·6</td>
<td>2</td>
<td>1</td>
<td>0·06</td>
<td>0·06</td>
<td>0·06</td>
<td>0·06</td>
<td></td>
<td>10</td>
<td>10</td>
<td>0·06</td>
<td>Bergsjo & Kaldhusdal (1994)</td>
</tr>
<tr>
<td>0·1–1·6</td>
<td>2</td>
<td>1</td>
<td>0·16</td>
<td>0·16</td>
<td>0·16</td>
<td>0·16</td>
<td></td>
<td>10</td>
<td>10</td>
<td>0·06</td>
<td>Bergsjo & Kaldhusdal (1994)</td>
</tr>
<tr>
<td>0·1–1·6</td>
<td>2</td>
<td>1</td>
<td>0·05</td>
<td>0·05</td>
<td>0·05</td>
<td>0·05</td>
<td></td>
<td>6</td>
<td>6</td>
<td>0·05</td>
<td>Bergsjo & Kaldhusdal (1994)</td>
</tr>
<tr>
<td>0·16</td>
<td>1</td>
<td>1</td>
<td>0·31</td>
<td>0·23</td>
<td>0·44</td>
<td>0·44</td>
<td></td>
<td>7</td>
<td>7</td>
<td>0·44</td>
<td>Prelusky et al. (1988)</td>
</tr>
</tbody>
</table>

ADG, average daily gain; ADFI, average daily feed intake.

* Calculated from feed intake and feed:gain.
biliary excretion played an important role in the elimination of DON from the body. They found the clearance rate of DON by chickens to be high; estimated recoveries of intubated DON in excreta were 58, 78, 90 and 99 % at 12, 24, 48 and 96 h after intubation, respectively. In the same study, chickens were fed 2·2 mg unlabelled DON for 6 d followed by 2·2 mg 14C-labelled DON for 6 d. The residues contained in the edible tissues amounted to only 13–16 µg DON/1·5 kg hen. No accumulation of radioactivity in tissues was observed. At 6 d after removal of the radiolabelled toxin, radioactivity concentrations in tissues were negligible.

Fumonisin in pigs

Performance. Table 5 summarizes the literature data on the effect of FB1 on pig performance. Studies were conducted by using naturally contaminated feed, cultured material or pure FB1. Most studies presented fumonisin concentrations as FB1; only the study of Motelin et al. (1994) used FB1 + fumonisin B2. For use in the present paper, the fumonisin concentrations in the study of Motelin et al. (1994) were recalculated as FB1. Dietary fumonisin concentrations varied between 0 and 200 mg/kg. However, only low and high dietary fumonisin concentrations were tested; the data on intermediate concentrations are lacking. The available data do not allow reliable evaluation of the dose–response relationship between dietary fumonisin concentrations and the performance of pigs. When doing so anyway (see Fig. 5), the regression analysis revealed an MGR and 5GRC of 0·4 %/mg per kg and 21 mg/kg, respectively. Literature data on growth responses of pigs to FB1 are, however, not consistent. For example, Guzman et al. (1997) reported that increasing dietary FB1 concentrations from 70 to 140 mg/kg decreased the rate of weight gain by 5 to 11 %. In contrast, Colvin & Harrison (1992) reported that pigs surviving 4 weeks feeding of diets containing 105 and 155 mg FB1/kg diet were unable to maintain body weight. One pig died at day 7 after receiving 155 mg FB1/kg diet due to pulmonary oedema and hydrothorax. The severity of the effect of FB1 in this study might indicate the presence of other toxins in the diet.

It is evident that dietary FB1 concentrations of 175–200 mg/kg can have detrimental effects on pig performance (Colvin et al. 1993; Motelin et al. 1994). The reduced growth rate at high dietary fumonisin concentrations is clearly related to both a decreased feed intake (Colvin et al. 1993; Motelin et al. 1994) and an increased feed:gain (Motelin et al. 1994).

Pigs did not show a clear response in growth rate to dietary FB1 concentrations below 40 mg/kg. Rotter et al. (1997) found that pure FB1 concentrations of 0, 0·11, 0·33 and 1 mg/kg diet did not affect growth, feed intake and feed efficiency of barrows from 25 kg initial weight to 101 kg final weight. However, the variation in feed intake increased when dietary FB1 increased from 0 to 1 mg/kg. Zomborszkyne-Kovacs et al. (2000, not in Table 5) examined dietary FB1 concentrations of 10, 20 and 40 mg/kg on the performance of weaned pigs for 4 weeks. They reported no effects on body-weight gain or on feed consumption. However, mild to severe pulmonary oedema was found in pigs fed FB1 diets. In contrast, Rotter et al. (1996b) showed a linear decrease in weight gain and feed intake of male pigs fed FB1 up to 10 mg/kg. This response, however, was not observed in females (Table 5). The feed:gain was, in general, not affected by dietary FB1 concentrations below 175 mg/kg (Table 5). Remarkably, Prelusky et al. (1996a) and Rotter et al. (1996b) observed an increase in feed intake at low FB1 concentrations at the initial stage compared with a toxin-free control diet.

Fumonisin in broilers

Performance. Table 6 summarizes the literature data on the effect of fumonisin on broiler performance. Studies have been mainly carried out using material from *F. verticillioides* cultures. The tested concentrations of FB1 ranged between 10 and 475 mg/kg. Most studies presented fumonisin concentrations as FB1; only the study of Wu et al. (1995) used total fumonisin. For the study of Wu et al. (1995), total fumonisin concentrations were recalculated as FB1.

The relationship between dietary FB1 concentrations and growth depression in broiler chickens was analysed based on the data from Table 6 (Fig. 6). The data of Espada et al. (1994) were excluded from the calculations of MGR and 5GRC because the birds had diarrhoea throughout the entire experiment. The estimated MGR and 5GRC were 0·02 %/mg per kg and 251 mg/kg, respectively.

Literature studies showed inconsistent responses in growth rate of broilers with increasing dietary FB1 concentrations. Li et al. (1999) reported that increasing dietary FB1 concentrations from 0 to 200 mg/kg had no significant effect on gain, feed intake and feed:gain. Wu et al. (1995) found FB1 concentrations of 50 and 99 mg/kg diet depressed the growth rate of broilers. However, the feed intake was numerically higher in chicks fed FB1.
Table 5. The response of pig performance to dietary fumonisin B1 (FB1; mg/kg diet) in various published experiments

<table>
<thead>
<tr>
<th>FB1 range tested (mg/kg)</th>
<th>No. of concentrations tested</th>
<th>Initial BW (kg)</th>
<th>ADG tox-in-free control treatment (kg/d)</th>
<th>ADG (g/d)</th>
<th>R²</th>
<th>ADFI (g/d)</th>
<th>R²</th>
<th>Feed/ gain (g/g)</th>
<th>R²</th>
<th>Replicates per treatment</th>
<th>Pigs per replicate</th>
<th>Duration of study (weeks)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB1 from naturally contaminated material</td>
<td><1–136*</td>
<td>6</td>
<td>6–13 ± 2 5 % BW</td>
<td>9–3</td>
<td>0.56</td>
<td>7–3</td>
<td>0.20</td>
<td>0.02</td>
<td>0.82</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>Motelin et al. (1994)</td>
</tr>
<tr>
<td>FB1 from cultured material</td>
<td>0–100</td>
<td>2</td>
<td>17.7</td>
<td>0.90</td>
<td>-1.1</td>
<td>0.00</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>Harvey et al. (1995a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0–200</td>
<td>2</td>
<td>13.2</td>
<td>0.32</td>
<td>-1.3</td>
<td>0.04</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>Colvin et al. (1993)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0–2.5†</td>
<td>2</td>
<td>±12</td>
<td>0.52</td>
<td>-48.0</td>
<td>96.0</td>
<td>12</td>
<td>1</td>
<td>3.4</td>
<td>Prelusky et al. (1996a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purified FB1</td>
<td>0–10</td>
<td>4</td>
<td>16.3</td>
<td>0.88</td>
<td>-6.3</td>
<td>0.58</td>
<td>0.00</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>Rotter et al. (1996b), males</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0–10</td>
<td>4</td>
<td>14.4</td>
<td>0.75</td>
<td>-0.2</td>
<td>0.00</td>
<td>0.00</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>Rotter et al. (1996b), females</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0–10</td>
<td>4</td>
<td>25.6</td>
<td>1.02</td>
<td>-25.0</td>
<td>0.82</td>
<td>9.8</td>
<td>8</td>
<td>1</td>
<td>11</td>
<td>Rotter et al. (1997)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BW, body weight; ADG, average daily gain; ADFI, average daily feed intake.
* ADG and ADFI were estimated from fumonisin intake and feed:gain; data presented as FB1.
† Pigs in this group received 3 mg 14C-labelled FB1/kg feed from day 1 to 12, and 2 mg 14C-labelled FB1/kg feed from day 13 to 24.

Table 6. The response of poultry performance to dietary fumonisin B1 (FB1; mg/kg diet) in various published experiments

<table>
<thead>
<tr>
<th>FB1 range tested (mg/kg)</th>
<th>No. of concentrations tested</th>
<th>Initial age (d)</th>
<th>ADG tox-in-free control treatment (kg/d)</th>
<th>ADG (g/d)</th>
<th>R²</th>
<th>ADFI (g/d)</th>
<th>R²</th>
<th>Feed/ gain (g/g)</th>
<th>R²</th>
<th>Replicates per treatment</th>
<th>Broilers per replicate</th>
<th>Duration of study (weeks)</th>
<th>Reference*</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB1 from cultured material</td>
<td>0–525</td>
<td>8</td>
<td>1</td>
<td>31.9</td>
<td>-0.004</td>
<td>0.58</td>
<td>-0.005</td>
<td>0.55</td>
<td>0.000</td>
<td>0.15</td>
<td>4</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0–200</td>
<td>4</td>
<td>1</td>
<td>34.2</td>
<td>-0.006</td>
<td>0.17</td>
<td>-0.001</td>
<td>0.00</td>
<td>0.000</td>
<td>0.66</td>
<td>6</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0–200</td>
<td>4</td>
<td>1</td>
<td>40.9</td>
<td>-0.005</td>
<td>0.20</td>
<td>0.004</td>
<td>0.07</td>
<td>0.000</td>
<td>0.54</td>
<td>6</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0–200</td>
<td>2</td>
<td>1</td>
<td>29.5</td>
<td>-0.005</td>
<td>0.000</td>
<td>0.000</td>
<td>0.00</td>
<td>0.000</td>
<td>0.000</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0–99†</td>
<td>3</td>
<td>1</td>
<td>29.3</td>
<td>-0.030</td>
<td>0.92</td>
<td>0.042</td>
<td>0.95</td>
<td>0.004</td>
<td>0.93</td>
<td>6</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0–300</td>
<td>2</td>
<td>1</td>
<td>26.1§</td>
<td>-0.018</td>
<td>0.000</td>
<td>0.000</td>
<td>0.00</td>
<td>0.000</td>
<td>0.000</td>
<td>30</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0–300</td>
<td>2</td>
<td>1</td>
<td>25.0°</td>
<td>-0.009</td>
<td>0.000</td>
<td>0.000</td>
<td>0.00</td>
<td>0.000</td>
<td>0.000</td>
<td>30</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0–300</td>
<td>2</td>
<td>1</td>
<td>30.9</td>
<td>-0.020</td>
<td>0.011</td>
<td>0.000</td>
<td>0.00</td>
<td>0.000</td>
<td>0.000</td>
<td>6</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0–300</td>
<td>2</td>
<td>2</td>
<td>29.8§</td>
<td>-0.610</td>
<td>0.050</td>
<td>0.000</td>
<td>0.00</td>
<td>0.000</td>
<td>0.000</td>
<td>10</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0–300</td>
<td>2</td>
<td>2</td>
<td>22.1§</td>
<td>-0.016</td>
<td>0.016</td>
<td>0.000</td>
<td>0.00</td>
<td>0.000</td>
<td>0.000</td>
<td>10</td>
<td>1</td>
<td>1.1</td>
</tr>
</tbody>
</table>

ADG, average daily gain; ADFI, average daily feed intake.
* Trial number refers to the original trial number within the study.
† Recalculated and presented as FB1.
‡ Recalculated from initial and final body weights and feed intake.
§ Weight gain was estimated assuming initial weight of 45 g.
|| Weight gain was calculated from ADFI and feed gain.
diets and the feed: gain was significantly increased at 99 mg FB1/kg. This may indicate increased energy expenditure of chickens consuming FB1 diets, probably due to an increased metabolic rate, energy costs involved in elimination of the toxin from the body or repair of damaged tissues (increased protein turnover). Weibking et al. (1993) reported that depression in feed intake and growth rate occurred only when dietary FB1 concentrations were raised above 450 mg/kg in young broilers. On the other hand, however, Espada et al. (1994) found 10 mg pure FB1/kg and 30 mg FB1/kg from cultured material depressed the growth rate of young chicks. However, in contrast to the toxin-free control group, birds receiving toxin diets suffered from diarrhoea, starting 3–6 d after receiving the FB1 diet, which persisted throughout a 5-week recovery period. Weibking et al. (1993) did not observe diarrhoea in broilers fed diets containing FB1 up to 525 mg/kg and suggested diarrhoea would occur only when the concentration of cultured material exceeded 10 % of the diet. They suggested that an unknown toxic metabolite present in all F. verticillioides cultures at a low concentration may be the cause of the diarrhoea. The occurrence of diarrhoea and the possibility of presence of other toxins or metabolites may explain the different response of growth performance of broilers to dietary FB1 among studies. Norred et al. (1991, cited by Weibking et al. 1993) indicated the presence of other cytotoxic water-soluble metabolites in F. verticillioides cultures. Consequently, the amount of cultured material or naturally contaminated material one has to include in the diet to realize a particular FB1 content in the diet can interact with the effects of dietary FB1 on performance of poultry.

Absorption and elimination of fumonisins

Broilers. Prelusky et al. (1996b) reported that estimated FB1 absorption by laying hens following oral dosing of 14C-labelled FB1 (2 mg/kg body weight) accounted for about 1 % of the administered dose. The FB1 was quickly eliminated after oral (97 % after 24 h) and iv (99 % after 24 h) administration. The accumulation of fumonisins in tissues is low. Vudathala et al. (1994) and Prelusky et al. (1996b) reported that 24 h after iv dosing, only traces of radioactivity were found in liver and kidney, and no radioactivity was detected in other tissues such as muscle, fat, heart, spleen and brains.

Discussion

In the present review, an attempt was made to quantify the response of swine and poultry, in terms of performance, to increasing toxin concentration in the diets. In reviewing the results reported in literature, various aspects were considered. Inevitably, however, by considering pooled results across experiments, valuable information on the biological effects of these toxins may be lost. In this discussion, attention focuses on methodological aspects of the data analyses, followed by a short summary of the effects of aflatoxin, DON and fumonisins in pigs and poultry. Finally, comparative aspects of the three toxins in pigs and poultry are discussed, with particular attention on the low-level toxicity in relation to natural occurrence of toxins, adaptive responses of animals to prolonged intakes, and toxin tolerance in relation to absorption and elimination kinetics.

Methodological aspects

Theoretically, the intercept of the regression line, meaning the response to zero intake, should be zero. In some cases...
(for DON in pigs and aflatoxin in both pigs and broilers), however, the analysed intercept of the linear regression is above zero. This may indicate the presence of other toxins or metabolites in naturally contaminated or cultured materials. Alternatively, it may imply a lower intake and/or digestibility of the contaminated feed ingredient, compared with the toxin-free feed ingredient used in the control diet. In addition, it may indicate the non-linearity of the response to increased toxin intakes. It should be noted that the data used in the present study allowed a separate analysis of the effect of different toxin sources (natural contamination, cultured material, purified toxins) on MGR and 5GRC only for DON in pigs. For aflatoxin and fumonisin in pigs and poultry and DON in poultry, data were pooled over toxin sources, but the sources are specified in the legends of Figs. 1 to 6.

Given the variation in negative effects, it is clear that animal response to toxin intake can be influenced by many factors, including species, sex, age, health status, the nutritional balance and the hormonal status (for a review, see Hsieh, 1979). With regard to the depression of weight gain with increasing dietary toxin concentrations, in some cases (such as for fumonisin in broilers) inconsistent responses were observed across studies. These differences may be related to the following aspects: (1) the low number of replications used in some of the studies and the existence of large within-group variation (different responses between animals); (2) different exposure periods to the toxin applied in different studies. This is especially true in the case of DON in pigs. As discussed later in the present paper (p. 236), the period of exposure will affect growth depression, due to an adaptive response of pigs to DON (Table 3); (3) different amounts of contaminated materials added in the diets to formulate a tested toxin concentration in different studies, as mentioned earlier. The contaminated material may, independent from its toxin content, affect the growth rate by either reducing intake or increasing the feed:gain; (4) the physical condition and health status of animals may influence the response of animals to the toxin. For aflatoxin (Panangala et al. 1986), DON (Rotter et al. 1996a; Overnes et al. 1997) as well as for fumonisin (Li et al. 1999), interactions between intake and immune function have been reported. It can therefore be expected that under suboptimal conditions, for example, exposure to pathogens, suboptimal housing conditions or ambient temperatures, the animal response to toxin intake may be affected.

Aflatoxin

The 5GRC caused by dietary aflatoxin was estimated at 0.3 and 1 mg/kg for pigs and broilers, respectively. The estimated 5GRC for aflatoxin in pigs was high when compared with literature sources in which comparable aflatoxin concentrations were tested. This is probably related to the high intercept and illustrates the need for more data at low concentrations. The responses of broilers to aflatoxin in different literature sources are inconsistent. Consequently, it is difficult to determine the minimum effect level from literature data. From the available information, the estimated MGR was 16 and 5 %/mg per kg for pigs and broilers, respectively, indicating the high toxicity of aflatoxin in these species. The reduced growth rate with increasing aflatoxin concentrations in the diet is related to both reduced feed intake and increased feed:gain. Concentrations of aflatoxin above 0·4 mg/kg can cause organ damage in pigs. More data are needed to quantify the response of pigs at low dietary aflatoxin concentrations (below 1 mg/kg).

Deoxynivalenol

In pigs, the 5GRC for DON, based on pooled literature data, was 1·8 and 0·6 mg/kg for pure and naturally contaminated DON, respectively. This is in agreement with most studies performed at low DON intakes (Table 3), which indicates a concentration of DON of 1 mg/kg from naturally contaminated toxin can reduce the rate of weight gain and feed intake. In pigs, the MGR was estimated at about 8 %/mg per kg. Diets with naturally contaminated DON more severely affected performance of pigs than pure DON. The reduced weight gain was mainly related to reduced feed intake. However, at dietary DON concentrations above 3 mg/kg, feed efficiency was also decreased, which also contributed to the depression in weight gain of pigs fed DON-contaminated diet. The high R^2 for the average daily gain and the average daily feed intake in Table 3 illustrate the linearity in depression of average daily gain and average daily feed intake with increasing DON concentrations in pig diets. The depression of feed intake and growth rate was more severe in the first week, after which pigs showed some degree of adaptation. For broilers, lack of data prevented estimation of a relationship between growth rate and increasing dietary DON concentrations. Literature data indicated that only DON concentrations above 16 mg/kg can reduce weight gain (Huff et al. 1986; Kubena et al. 1988). This concentration, however, resulted in an increase in feed intake. The reduced weight gain, therefore, is associated with an increased feed:gain.

Fumonisin

From regression analysis, the estimated 5GRC for dietary fumonisin was 21 and 251 mg/kg for pigs and broilers, respectively. The MGR was estimated at 0·4 and 0·0 %/mg per kg for pigs and broilers, respectively. These data indicate the low acute toxicity of fumonisin when compared with the other toxins studied. Literature data are not sufficient to determine the minimum-effect levels in pigs. For broilers, it is difficult to determine the minimum-effect levels because of the large variation in responses between studies. In general, consistent performance depression in pigs and poultry was reported with fumonisin concentrations above 100 mg/kg in the diet. In young piglets, however, growth depression was also observed at concentrations between 0 and 10 mg/kg (Rotter et al. 1996b, Table 5). Remarkably, this effect was observed for male piglets, but not for females. The biological mechanism behind this sex difference was not clarified. Organ damage may occur at fumonisin concentrations above 23 mg/kg for pigs (Motelin et al. 1994) and 75 mg/kg for broilers (Weibking et al. 1993).
Comparative aspects of aflatoxin, deoxynivalenol and fumonisins in pigs and broilers

Table 7 summarizes the main characteristics of the impact of aflatoxin, fumonisins and DON on pigs and broilers. This table is compiled from the data of Tables 1–6.

Minimal-effect levels in relation to natural occurrence and tolerated maximum concentrations

Natural occurrence of AFB1, DON and fumonisins vary with growing and storage conditions. Also, insect damage to kernels may increase toxin content. The annual quantity of contaminated material to be used in animal diets is quite variable. Therefore, knowledge on the variability and predictability (for example, see Hooker et al. 2002 for DON) of contamination levels is important. It should be noted, however, that many of the data on contamination levels are derived from non-random samples, usually biased upwards because monitoring programmes tend to focus on lots that are suspected to be contaminated.

The natural occurrence of AFB1 in the most important feed ingredients (maize, soybeans, peanut meal and cottonseed meal) generally ranges between 0 and 1 mg/kg, although higher contamination levels have been reported occasionally. Surveys of cottonseed and cottonseed meal showed an 8 and 19 % incidence, respectively, with average AFB1 concentrations of 0·143 and 0·099 mg/kg, respectively (Lillehoj, 1979). A survey of field maize showed that 32 % of the samples contained more than 0·020 mg AFB1/kg. Regional variation between 0 and 0·6 mg AFB1/kg was observed (Lillehoj, 1979). According to the World Health Organization (1998), 4 % of the total maize in the USA contains more than 0·02 mg AFB1/kg. A recent survey of Brazilian maize showed AFB1 contamination in 54 % of the samples, with concentrations varying between 0·006 to 1·6 mg/kg, averaging 0·168 mg/kg (Machinski et al. 2001). In the Netherlands a maximum of 0·02 mg AFB1/kg is tolerated in diets for pigs and poultry (Productschap voor Veevoeder, 2001). In Texas, USA (Latimer, 2002), a maximum of 0·2 mg/kg is tolerated in feedstuffs to be used in pig diets. For AFB1, the estimated 5GRC (0·3 and 1 mg/kg for pigs and poultry, respectively) is well within the range of natural occurrence of AFB1 in feed ingredients. Aflatoxins may reduce pig performance even at concentrations below 0·3 mg/kg to a significant extent. Unfortunately, the estimated 5GRC was outside the measured range in the experiments used for the regression analysis (Table 1), urging the need for more reliable data within this range. For broilers, contamination with AFB1 is probably not limiting growth performance.

For DON, natural occurrence generally ranges between 0 and 5 mg/kg, although contamination levels above 40 mg/kg have been reported (see Rotter et al. 1996a; Hooker et al. 2002). In 1996, an epidemic year in the USA, ten out of fourteen investigated truckloads of wheat had concentrations above 1 mg/kg, averaging 7·8 mg/kg (Hart & Schabenberger, 1998). In 1996, analysis of maize samples, obtained over 750 maize fields in Nebraska, Illinois and Iowa, representing 50 % of the US maize crop, revealed 6·8 % of the samples contained concentrations above 1 mg/kg (United States Department of Agriculture, 1996). Hooker et al. (2002), monitoring DON concentrations in winter wheat on 399 farm fields in Ontario, Canada from 1996 to 2000, demonstrated average DON concentrations of 8·0, 0·8, 0·3, 0·9 and 1·6 mg/kg from 1996 to 2000, respectively. The percentage of fields with concentrations above 1 mg/kg was 94, 40, 11, 24 and 55 % from 1996 to 2000, respectively. In the USA, the Food and Drug Administration has issued advisory guidelines of maximum

Table 7. Summary of the effect of deoxynivalenol, fumonisins and aflatoxin on pigs and broilers*

<table>
<thead>
<tr>
<th></th>
<th>Pigs</th>
<th>Broilers</th>
<th>Pigs</th>
<th>Broilers</th>
<th>Pigs</th>
<th>Broilers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of natural contamination in feed ingredients (mg/kg)</td>
<td>0–4</td>
<td>0–10</td>
<td>0–43</td>
<td>0–16</td>
<td>0–200</td>
<td>0–525</td>
</tr>
<tr>
<td>Estimated concentration causing 5% reduction in growth rate, (mg/kg)</td>
<td>0·3</td>
<td>1·0</td>
<td>NE</td>
<td>21</td>
<td>251</td>
<td></td>
</tr>
<tr>
<td>All Pure Natural</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated reduction in growth rate per mg/kg increase in toxin concentration, (%/mg per kg relative to a toxin-free control diet)</td>
<td>16</td>
<td>5</td>
<td>8·5</td>
<td>8·0</td>
<td>0·4</td>
<td>0·0</td>
</tr>
<tr>
<td>All Natural Pure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main target organs</td>
<td>Liver and kidneys</td>
<td>Liver and kidneys</td>
<td>Pancreas</td>
<td>None</td>
<td>Lung, liver, pancreas</td>
<td>Liver, kidneys and pancreas</td>
</tr>
<tr>
<td>Absorption (% of single oral dose)</td>
<td>High, completely metabolized</td>
<td>High, completely metabolized</td>
<td>Low, < 1 %</td>
<td>Low, ± 4 %</td>
<td>Low, ± 1 %</td>
<td></td>
</tr>
<tr>
<td>Elimination (% of single intravenous dose)</td>
<td>73 % by 9 d</td>
<td>71 % by 7 d</td>
<td>75 % in 3 h</td>
<td>75 % in 3 h</td>
<td>70 % by 10 d</td>
<td>97 % by 24 h</td>
</tr>
</tbody>
</table>

NE, not estimable.

* Data analysed as presented on p. 224.
DON concentrations of 1 and 5 mg/kg for pig and poultry diets. In the Netherlands, a maximum of 1 and 3 mg DON/kg is tolerated in pig and poultry diets, respectively (Productschap voor Veevoeder, 2001). The estimated 5GRC for pigs (0·6 and 1·8 mg/kg for natural and pure contaminated diets), but not for poultry, are well within the range of natural occurrence of DON. Together with the large impact DON has on pig performance (MGR of 8 %/mg per kg), this illustrates the importance of reliable data on the effects of DON concentrations below 3 mg/kg.

Natural occurrence of FB1 usually ranges between 0 and 10 mg/kg, but is highly variable between regions, and concentrations above 100 mg/kg have been observed occasionally (see Dutton, 1996). In the United States Department of Agriculture (1996) report, analysis of the maize samples referred to earlier, representing 50 % of the US maize crop, revealed 3·9 % of the samples contained concentrations above 5 mg/kg. The overall average was around 1 mg/kg (United States Department of Agriculture, 1996). Diaz & Boermans (1994) reviewed data of maize-based animal feeds from different countries and reported FB1 concentrations ranging from 0 to 5 mg/kg. About one-third of the samples tested contained detectable FB1 concentrations. The Food and Drug Administration has recently recommended 10 and 50 mg/kg as the maximum levels for total fumonisins in diets for pigs and poultry, respectively. The naturally occurring concentrations of FB1 in feed ingredients are far below the estimated 5GRC for broilers (251 mg/kg). For pigs, the estimated 5GRC (21 mg/kg) is also below, but much closer to, the range of natural contamination. Based on this analysis, it may be concluded that FB1 contamination is probably not a problem for broiler production, but in some cases can be a problem for pig production. In addition, it should be noted that the available information for pigs at contamination levels below 50 mg/kg is not sufficient.

Comparative toxicity in relation to absorption and elimination kinetics. As described earlier, in both pigs and poultry, aflatoxins are rapidly absorbed and slowly excreted. Data of Lüthy et al. (1980) for pigs and Sawhney et al. (1973) for laying hens show quite comparable absorption and elimination kinetics of radioactivity for AFB1. It is uncertain whether the data from Sawhney et al. (1973) are representative for broilers. Nevertheless, it is improbable that the large difference in sensitivity between pigs and broilers (MGR of 16 and 5 %/mg per kg, respectively) can be entirely attributed to differences in absorption and elimination kinetics.

Pigs appeared to be far more sensitive to DON exposure than poultry. This difference in sensitivity corresponds to a difference in absorption kinetics. As described earlier (see also Rotter et al. 1996a), systemic absorption of DON by poultry is probably close to 1 % of the ingested dose, while in pigs, 68 % of an intragastric dose was recovered in urine within 24 h.

The low sensitivity of poultry to dietary FB1 exposure when compared with pigs corresponds to a difference in absorption and elimination kinetics. As described earlier, absorption is low in both pigs and layer hens; absorption accounted for 4 and 1 % of the administered dose in pigs and layer hens, respectively (Prelusky et al. 1996b). This may, however, be slightly underestimated, because of a possible clearance at first-pass by the liver (Prelusky et al. 1996b). Elimination of a single iv dose of FB1, strongly depending on biliary secretion, takes more time for pigs compared with layer hens; 80 % within 72 h and 99 % within 24 h, respectively. In pigs, Prelusky et al. (1996a,b) also found accumulating tissue residues after prolonged exposure to a constant level of dietary FB1, and attributed this to enterohepatic circulation. It therefore seems that the low sensitivity of pigs and poultry to dietary FB1 in general is related to low systemic absorption (< 5 % of oral supply). The higher sensitivity of pigs when compared with poultry is probably related to slower elimination kinetics in pigs.

Adaptive responses to prolonged intakes. When considering their growth performance, neither pigs nor broilers seem to adapt when exposed to prolonged intakes of a diet with a constant dietary concentration of AFB1. Harvey et al. (1989) and Armbrrecht et al. (1971) reported a consistent depression in growth performance of pigs throughout 4 and 16 weeks exposure periods, respectively. Randall & Bird (1979) as well as Mani & Sundaresan (1998) showed a consistent effect on growth depression during AFB1 exposure in broilers. This lack of adaptation is probably related to the rate of absorption exceeding the rate of elimination from the body, as described previously. This implies that at prolonged exposure, AFB1 and its metabolites accumulate in tissues. The animals will decrease their intake to minimize the toxic effects of AFB1.

Pigs do adapt to prolonged intakes of DON. The depression in feed intake and growth by DON is the most severe in the first week after exposure (Pollmann et al. 1985; Foster et al. 1986; Friend et al. 1986a). Rotter et al. (1994) observed that pigs fed DON in concentrations up to 3·0 mg/kg diet had significantly decreased weight gain over the initial 7 d of exposure. However, pigs adapted to dietary DON and at the end of the 4-week experimental period, the rates of gain did not differ between toxin-free control and contaminated diets. Pollmann et al. (1985) observed that the decrease in gain compared with the toxin-free control treatment was 81, 48 and 24 % in week 1, 2 and 3 respectively, for pigs receiving 2·8 mg DON/kg diet, indicating a clear adaptation of pigs to DON. Pigs showed a similar adaptive response to pure DON as compared with naturally contaminated DON (Foster et al. 1986). Trenholm et al. (1994) reported that the severe growth depression of pigs fed pure DON diets occurred mainly during the first 3 d. The rapid clearance of DON from the body, described previously, is probably a permissive factor for this adaptation process.

The data of Weibking et al. (1993) and Wu et al. (1995) suggest that the response in growth rate of broilers to prolonged intakes of FB1 does not decrease. Data on pig performance in response to prolonged intakes of FB1 are scarce. The work of Colvin et al. (1993), although based on only five pigs, suggests an increased reduction in growth rate with increasing exposure to a diet containing...
200 mg FB1/kg. Also, the growth rates obtained by Rotter et al. (1996b), exposing male piglets for 8 weeks to FB1 concentrations varying from 0 to 10 mg FB1/kg, did not show any sign of adaptation to prolonged intakes. The lack of adaptation of growth rates to prolonged FB1 intakes corresponds with the observation of Prelusky et al. (1996a,b) that FB1 accumulates in tissues after prolonged exposure.

Effect of toxin intake on protein and energy metabolism. As shown throughout the present paper, the effects of the three toxins studied on feed efficiency are not always consistent. Diet composition is one of the variables between studies. As illustrated by Coffey et al. (1989), adverse effects of aflatoxin on live-weight gain could be compensated for by increased protein or lysine intakes. Body-weight gain is the net result of protein, water and fat retention. The effects of some toxins such as DON (Rotter et al. 1996a) may specifically interfere with protein synthesis. Others may, by various mechanisms, alter the energy metabolism, or do both. Following the classical theory of protein- and energy-dependent phases in protein gain in pigs (for example, see Whitemore & Fawcett, 1976; Bikker et al. 1994), energy intake may limit protein retention in some types of animals, while, in others, protein intake may be limiting. In a particular situation, effective nutritional strategies would include adaptation of the protein:energy in the diet. The hypothesis that toxins may suppress protein retention (probably by reducing protein synthesis) is strengthened by the observations that effects of toxin intake are generally larger in animals with a relatively high rate of protein retention. For example, effects are larger in: (1) males v. females (see Rotter et al. 1996b for FB1; Cote et al. 1985 and Friend et al. 1986a for DON); (2) young animals v. older animals. Measurement of protein and energy metabolism in response to toxin intake will give valuable information on the mode of action and on the quantitative importance of the effects of toxins at low levels of intake, which are difficult to establish in conventional growth trials.

Conclusions

It was estimated that with each mg/kg increase of AFB1 in the diet the growth rate would be depressed by 16 % for pigs and 5 % for broilers. For DON, with each mg/kg increase in the diet, the growth depression (MGR) was estimated at about 8 % for pigs, while broilers showed no response to DON concentrations below 16 mg/kg. FB1 showed the lowest impact on growth performance; with each mg/kg increase, the depression in growth rate was estimated at 0-4 and 0-0 %/mg per kg for pigs and broilers, respectively. Dietary concentrations that cause a 5 % reduction in growth rate were estimated at: 0-3 and 1-0 mg/kg for AFB1 for pigs and broilers, respectively; 1-8 and 0-6 mg/kg for pure and naturally contaminated DON for pigs, respectively; 21 and 251 mg/kg for FB1 for pigs and broilers, respectively. Pigs clearly adapt to prolonged exposure to DON. Existing data suggest no adaptive responses of pigs or broilers to prolonged intake of FB1 or AFB1.

The magnitude of the adverse effects decreases in the order AFB1, DON, FB1. Differences in the MGR, however, are only partly related due to differences in absorption and elimination kinetics. Most importantly, they depend on the toxicity of the toxin molecule post-absorption. Natural toxin occurrence varies with growing and storage conditions. Generally, this varies between 0 and 1 mg/kg for AFB1 and between 0 and 10 mg/kg for DON and FB1. Considering the natural occurrence of the toxins, effects on broiler performance are relatively unimportant when compared with pigs. More knowledge on the effects of AFB1 concentrations below 0·3 mg/kg and of DON concentrations below 3 mg/kg on pig performance is important. For FB1, more information on concentrations between 10 and 50 mg/kg could greatly improve the accuracy of estimations of MGR and 5GRC. Furthermore, effects of toxin intake on immune parameters, reported in the literature, necessitates research on toxin–environment interactions.

Acknowledgement

The financial support of RENESSEN LLC for conducting this study is gratefully acknowledged.

References

Bergsjo B & Kaldhusdal M (1994) No association found between the ascites syndrome in broilers and feeding of oats contaminated with deoxynivalenol up to thirty-five days of age. Poultry Science 73, 1758–1762.

Oerves N, Matre T, Sivertsen T, Larsen HJS, Langseth W, Reitan LJ & Jansen JH (1997) Effects of diets with graded levels of...

