Pros and cons of L-arginine supplementation in disease

Yvonne L. J. Vissers1, Iris B. J. G. Debats2, Yvette C. Luiking1, Rajiv Jalan3, René R. W. J. van der Hulst2, Cornelis H. C. Dejong1 and Nicolaas E. P. Deutz1*

1Department of Surgery, Maastricht University, PO Box 616, NL-6200 MD Maastricht, The Netherlands
2Department of Plastic Surgery, Maastricht University, Maastricht, The Netherlands
3Department of Hepatology, Royal Free and University College Medical School, London, UK

The amino acid arginine and one of its metabolites NO have gathered broad attention in the last decade. Although arginine is regarded as a conditionally essential amino acid in disease, L-arginine supplementation in severe illness has not found its way into clinical practice. This might be due to the invalid interpretation of results from studies with immune-enhancing diets containing L-arginine amongst other pharmaconutrients. However, not much attention is given to research using L-arginine as a monotherapy and the possibility of the alternative hypothesis: that L-arginine supplementation is beneficial in disease. The present review will discuss data from studies in healthy and diseased animals and patients with monotherapy of L-arginine to come to an objective overview of positive and negative aspects of L-arginine supplementation in disease with special emphasis on sepsis, cancer, liver failure and wound healing.

L-Arginine supplementation: Nitric oxide: Sepsis: Cancer: Wound healing: Liver failure

Introduction

The amino acid arginine and one of its metabolites, NO, have gathered broad attention in the last decade. This is related to the fact that arginine is not merely a component of proteins, but also participates in various metabolic processes, and is the direct precursor of NO. As such, arginine has been suggested to have important functions in pathophysiology, such as sepsis, trauma and wound repair (for reviews, see Barbul, 1990; Kirk & Barbul, 1990; Kelly et al. 1995; Tzeng & Billiar, 1997; Witte & Barbul, 2002). Although arginine is regarded as a conditionally essential amino acid in disease, L-arginine supplementation in severe illness has not found its way into clinical practice.

This is probably due to the fact that conclusions regarding L-arginine supplementation derive mainly from studies using commercially available nutritional supplements containing, besides L-arginine, other nutrients such as nucleotides and n-3 fatty acids (for example, Impact®; Novartis, Minneapolis, MN, USA or Immune-Aid®; McGaw, Irvine, CA, USA). From such studies, it has recently been concluded that L-arginine-containing enteral nutrition products should not be used in critically ill patients (Heyland et al. 2001; Heyland & Samis, 2003). In general, two major problems exist with this kind of studies. The first problem is that a mixture of nutrients is used; from a scientific point of view, this complicates interpretation of the results, since it is impossible to determine which nutrient is responsible for the effects. Besides, these ingredients could interact antagonistically. The second problem is that control groups are often not present or are not supplied with isonitrogenous and/or isoenergetic amounts; this makes it difficult to conclude whether treatments should be attributed to the specific pharmaconutrients or simply to the addition of amino acids and/or energy in general.

Therefore, the present review will only discuss studies using L-arginine as a monotherapy. It will focus on L-arginine supplementation in sepsis, cancer, liver failure and wound healing. It will not discuss effects on atherosclerosis. The pathophysiology of arginine and NO in atherosclerosis (Arnal et al. 1999; Napoli & Ignarro, 2001; Gewaltig & Kojda, 2002; Napoli, 2002; Rekka & Chrysselis, 2002; Harrison & Cai, 2003; John & Schmieder; 2003; Mungrue et al. 2003; Prior et al. 2003) and the effects of L-arginine supplementation in animal models and human patients with atherosclerosis (Tentolouris et al. 2000; Boger & Bode-Boger, 2001; Preli et al. 2002; Tousoulis et al. 2002) have been reviewed several times in the last years.

Abbreviations: ADMA, asymmetric dimethylarginine; NOS, NO synthase; NOx, nitrate and nitrite.
*Corresponding author: Dr Nicolaas E. P. Deutz, fax +31 43 3882126, email nep.deutz@ah.unimaas.nl
Arginine metabolism

In most mammals, arginine is traditionally considered a conditionally essential amino acid (Rose, 1976; Cynober et al. 1995; Wakabayashi et al. 1995; Young & Yü, 1996), because during growth and metabolic stress the endogenous production of arginine can become insufficient (Windmueller & Spaeth, 1981; Newsholme & Leech, 1983). The normal daily intake of arginine is about 5–6 g (Visek, 1986; Heys & Gardner, 1999), whilst whole-body arginine flux ranges between 15 and 20 g/d (Castillo et al. 1995, 1996; Cynober et al. 1995).

Metabolic pathways of arginine

Apart from being an essential component of proteins, arginine plays a key role in several other metabolic pathways (Wu & Morris, 1998; Heys & Gardner, 1999) (Fig. 1). It is a precursor in the synthesis of polyamines; putrescine, spermine and spermidine (Barbul, 1990; Cynober, 1994). These compounds are important in the growth and differentiation, for example, of intestinal mucosal cells (Cynober, 1994). Arginine is also a precursor for urea synthesis in the liver (Cynober et al. 1995) as well as in the kidney (Bankir, 1996; Morel et al. 1996), and as such plays an important role as a waste N carrier in the urea cycle. Besides this, arginine is a precursor in the hepatic and renal synthesis of creatine (Perez et al. 1978; Visek, 1986; Heys & Gardner, 1999), an important constituent of skeletal muscle (Wu & Morris, 1998). Arginine, also, appears to be converted by the enzyme arginine decarboxylase (EC 4.1.1.19) to agmatine, a metabolite that has been suggested to play a role in cell signalling and proliferation (Wu & Morris, 1998).

Finally, via arginase, arginine is an indirect precursor for collagen formation through ornithine and proline, and as such is involved in the production of extracellular matrix molecules by fibroblasts (Schaffer et al. 1999), both important in wound healing. In this context, arginine has also been suggested to have immunotrophic effects. It stimulates the release of growth hormone and its peripheral mediator insulin-like growth factor-1, it stimulates the release of prolactin (Cynober, 1994; Heys & Gardner, 1999) and glucagon (Visek, 1986) and has the strongest insulinogenic effect of all amino acids (Barbul, 1990). Furthermore, both arginine and NO are important mediators in T-cell mediated immunity (Daly et al. 1988), cytokine induction (Reynolds et al. 1990) and macrophage-mediated bacterial toxicity (Hibbs et al. 1987). Recently, it has become clear that NO synthase (NOS2) and arginase act together in vivo to control specific types of T-cell responses (Bronte et al. 2003).

Nitric oxide

Arginine is the sole precursor of NO synthesis through the NOS (EC 1.14.13.39) pathway (Castillo et al. 1995; Roth, 1998). Three isoforms of NOS exist; NOS1, NOS2 and NOS3, formally named neuronal, inducible and endothelial NOS. All isoforms appear to be present in non-stimulated conditions, including NOS2 (Miller et al. 1995; Hoffman et al. 1997). Microbacterial products and inflammatory cytokines can up regulate NOS2 (Morris & Billiar, 1994). It has been reported that NOS3 is down regulated at the same time (Chen et al. 1997). This suggests interaction between NOS isoforms, each regulating the expression of the other.

NO currently receives considerable attention in view of its widespread effects, especially in the cardiovascular system (Guarner et al. 1993), where it functions as a signal molecule in vasodilatation and angiogenesis (Lee et al. 1999). Through these same mechanisms, NO is involved in wound healing as it indirectly provides the wound area with sufficient O₂ and nutrition. This stimulates fibroblasts to synthesise collagen and keratinocytes to proliferate and thus NO takes part in building up repair tissue in the wound.

NO is a scavenger of superoxide radicals to form peroxynitrite (Szabo, 1996; Titheradge, 1999), which can be considered to be a beneficial mechanism. However, in conditions of reduced arginine availability NOS enzymes produce both superoxide and peroxynitrite (Xia et al. 1996), which probably should be regarded as a negative effect. Large amounts of NO, its by-products, or both can exert toxic effects, including mitochondrial dysfunction leading to further impairment in O₂ delivery and extraction (Preiser et al. 2003). As an example, the overproduction of NO has been suggested to result in enterocyte apoptosis or necrosis at the villus tips (suggested to be due to peroxynitrite formation in intestinal villi). Overproduction has also been suggested to result in the inhibition of mitochondrial respiration in enterocytes, and intestinal mucosal barrier dysfunction as evidenced by increases in bacterial translocation (Oudenhoven et al. 1994a; Unno et al. 1997; Mishima et al. 1998; Dickinson et al. 1999). Therefore, whilst limited NO production may be beneficial to the organism, excess NO production should probably be regarded as an adverse effect. This points to a ‘therapeutic window’ when arginine and NO metabolism is being modulated.

Endogenous nitric oxide inhibition

In the NOS enzyme system, there are several constitutive inhibitors including caveolin-1 (Ju et al. 1997; Shah et al.
mechanism to sustain systemic NO production from citrulline in the kidney was suggested as an adaptive NO production rates, enhanced intraperitoneal injection of endotoxin in mice with elevated could therefore reduce NO synthesis. Following an (Morris & Billiar, 1994). Reduced arginine availability could therefore reduce NO synthesis. Following an intraperitoneal injection of endotoxin in mice with elevated NO production rates, enhanced de novo arginine synthesis in the kidney was suggested as an adaptive mechanism to sustain systemic NO production (Hallemeesch et al. 2002a,c). Moreover, following an intraperitoneal injection of endotoxin in NOS-knockout mice, the increase in circulating arginine correlated well with the rate of NOS2-mediated NO production, but not with NOS1- and NOS3-mediated NO production (Hallemeesch et al. 2003). The importance of (extracellu- lar) arginine availability for NO synthesis is also illustrated by the finding that arginine depletion by arginase reduces NO production in rats with endotoxic shock (Bune et al. 1995). When L-arginine was supplied either enterally or parenterally in a porcine model of sepsis, L-arginine appeared to determine a factor in the endogenous synthesis of NO (Bruins et al. 2002c). However, the observed correlation between plasma levels of citrulline and arginine and NO production (assessed as plasma levels of nitrate) was not found in septic and trauma patients (Ochoa et al. 1991).

Effects of arginine availability on nitric oxide production

Arginine availability for NO synthesis is regulated by de novo arginine synthesis, cellular arginine transport and arginase activity (Hallemeesch et al. 2002b). Increases in arginine uptake and in endogenous arginine synthesis collaborate to maximise cellular capacity for NO synthesis (Morris & Billiar, 1994). Reduced arginine availability could therefore reduce NO synthesis. Following an intraperitoneal injection of endotoxin in mice with elevated NO production rates, enhanced de novo arginine synthesis from citrulline in the kidney was suggested as an adaptive mechanism to sustain systemic NO production (Hallemeesch et al. 2002a,c). Moreover, following an intraperitoneal injection of endotoxin in NOS-knockout mice, the increase in circulating arginine correlated well with the rate of NOS2-mediated NO production, but not with NOS1- and NOS3-mediated NO production (Hallemeesch et al. 2003). The importance of (extracellular) arginine availability for NO synthesis is also illustrated by the finding that arginine depletion by arginase reduces NO production in rats with endotoxic shock (Bune et al. 1995). When L-arginine was supplied either enterally or parenterally in a porcine model of sepsis, L-arginine appeared to determine a factor in the endogenous synthesis of NO (Bruins et al. 2002c). However, the observed correlation between plasma levels of citrulline and arginine and NO production (assessed as plasma levels of nitrate) was not found in septic and trauma patients (Ochoa et al. 1991).

Measuring nitric oxide production

NO indices vary in the literature; both conversion products of NO in the body (nitrate and nitrite), direct gas analysis and isotopic techniques have been used to detect changes in NO metabolism (for a review of techniques, see Luiking & Deutz, 2003). Plasma nitrate is often used as a measure of NO production (Guarner et al. 1993; Oudenhoven et al. 1994b). However, discrepancies between the degree of plasma nitrate or nitrite increases and actual NO production have been described in animal models (Bruins et al. 2002a,c; Hallemeesch et al. 2002c), although recently a good correlation between NO production rate and plasma nitrite was shown in mice after an intraperitoneal injection of endotoxin (Hallemeesch et al. 2003). As plasma nitrate levels depend on the rate of synthesis and elimination by urinary excretion, diminished renal function in sepsis may be a confounding factor, making the interpretation of these studies difficult (Kirkeboen & Strand, 1999).

Inter-organ arginine metabolism

The synthesis of arginine is probably regulated in a more complex way than has been assumed until recently. Various organs such as the kidney, intestine and liver act together in an inter-organ axis.

Kidney

In the kidney, arginine is released into the renal vein after being synthesised from citrulline that is taken up from the renal artery (Perez et al. 1978; Brosnan, 1987; Dhanakoti et al. 1990) (Fig. 1). Quantitatively speaking, the human kidneys take up about 1.5 g citrulline/d from the blood (Tizianello et al. 1985). Arginine release back into the bloodstream has been reported to be between 2 g/d (Tizianello et al. 1980, 1985) and 4 g/d (Cynober et al. 1995) in man. Although it is generally believed that the kidney is the major site for de novo arginine synthesis in adult animals (Brosnan, 1987), the amount of arginine synthesised accounts for only 10–20 % of total plasma arginine flux, the remainder being derived from protein catabolism (Dejong et al. 1998; Wu & Morris, 1998). However, the 2–4 g of arginine synthesised by the kidney equals 35–75 % of normal daily arginine intake (5–8 g) (Visek, 1986; Heys & Gardner, 1999). Thus, in the physiological state, the body can provide most of the arginine required for normal functions. Whether this is also true during disease is not yet clear.

Intestine

Renal uptake of citrulline appears to be regulated by circulating citrulline levels (Dhanakoti et al. 1990). Citrulline is a non-essential (Rose et al. 1948), non-protein amino acid and a nitrogenous product of glutamine metabolism in the proximal part of the small intestine (Windmueller & Spaeth, 1975, 1976, 1978; Hoogenraad et al. 1985; van der Hulst et al. 1997). Since the liver does not take up citrulline in significant quantities (Bankir, 1996), most citrulline synthesis by the bowel reaches the systemic circulation (Windmueller & Spaeth, 1981) and is subsequently taken up by the kidney (Windmueller & Spaeth, 1981; Deutz et al. 1992; Dejong et al. 1993a,b). The importance of this pathway is illustrated by the fact that arginine becomes a dietary essential amino acid when intestinal citrulline synthesis is inhibited (Hoogenraad et al. 1985), for example after intestinal resection (Wakabayashi et al. 1995) and in animals with low rates of intestinal citrulline synthesis, such as cats (Dhanakoti et al. 1990).

The metabolic link between glutamine, glutamate and arginine via citrulline is interesting, especially in the context of the assumed beneficial effects of glutamine supplementation (Heys & Ashkanani, 1999). In man, decreased plasma citrulline levels are related to decreased glutamine concentrations as observed in nutritional depletion (van der
Hulst et al. 1994). Studies in rats subjected to massive small-bowel resection have shown that glutamine uptake by the residual bowel was decreased (Klimberg et al. 1990b; Deutz et al. 1992) concomitant with decreased intestinal citrulline release (Deutz et al. 1992) and decreased arterial citrulline concentrations (Deutz et al. 1992; Wakabayashi et al. 1995); decreased arterial citrulline concentrations have also been found in human small-bowel resection patients (Crenn et al. 1998). Actually, the arterial concentration of citrulline has been suggested to be an indicator of the likelihood of becoming independent of total parenteral nutrition for patients with short-bowel syndrome (Crenn et al. 1998). Although this correlation between small-intestinal length and net citrulline release is well established (Deutz et al. 1992; Crenn et al. 1998, 2000, 2003), the consequences of loss of intestinal length for arginine metabolism are less well known and may differ between animals and man. We demonstrated a decreased renal citrulline uptake and renal arginine release in rats with a short bowel (Dejong et al. 1998). However, this did not affect arterial arginine concentrations (Wakabayashi et al. 1995) or whole-body arginine flux (Dejong et al. 1998). Crenn et al. (1998), however, did find decreased arterial arginine concentrations after small-bowel resection in human patients.

An interesting aspect of the inter-organ metabolic relationship between glutamine, glutamate, citrulline and arginine has been demonstrated by Houdijk et al. (1994) after enterally administered glutamine in rats. They observed a 30 % increase in arterial citrulline and arginine, as well as a 40 % increase in renal citrulline uptake and arginine release (Houdijk et al. 1994). This might suggest that part of the postulated beneficial effects of glutamine supplementation (Jacobs et al. 1988; Hammarqvist et al. 1989; O’Dwyer et al. 1989; Klimberg et al. 1990a; van der Hulst et al. 1993, Scheppach et al. 1994; Roth, 1998; Wernerman, 1998) are mediated by the intestinal conversion of glutamine to citrulline followed by renal conversion to arginine (Houdijk et al. 1998a). In subsequent experiments they confirmed these results (Houdijk et al. 1998b) but did not find an increase in plasma nitrate (Houdijk et al. 1998b), suggesting that NO might not be involved and also illustrating the complexity of the mechanisms involved (Houdijk et al. 1998a; Roth, 1998).

Liver

The liver is a major arginine producer, but a low expression of CAT-2A arginine transporters accounts for a low hepatic transport rate of arginine back into the circulation (White, 1985). In addition, the liver contains high levels of the cytosolic enzyme arginase-I, which breaks down arginine into urea and ornithine. Thus, although flux through the urea cycle (and hence arginine synthesis and breakdown) (350 µmol/kg per h) is several-fold greater than total plasma arginine flux (approximately 75 µmol/kg per h), this will not be detected by an assessment of whole-body kinetics (Young & Yu, 1996; Dejong et al. 1998; Wu & Morris, 1998). As a consequence, the liver does not release significant amounts of arginine and in the basal state only 5–15 % of urea is derived from plasma arginine (Castillo et al. 1996; Wu & Morris, 1998).

Dietary intake

Regulation of arginine synthesis is even more complex when the effects of dietary intake are taken into account (Cynober, 1994). Normally about 60 % of arginine administered through the enteral route is absorbed intact and delivered to the portal blood (Windmueller & Spateh, 1976; Wu & Morris, 1998). The remainder is metabolised to ornithine (38 %), citrulline, proline, CO2 or urea and released into the portal vein (Cynober et al. 1995). Since arginine is taken up by the liver and metabolised to urea, the effect would be that on a high-protein diet enterally administered arginine tends to be scavenged by the liver (Cynober, 1994; Deutz et al. 1998). Cynober et al. (1995) have suggested that the prolonged administration of high-protein diets (rich in arginine) leads to an adaptation of the intestinal enzymic machinery leading to less arginine being converted to citrulline in the intestine during the process of absorption. As a result, more arginine administered through the enteral route would be taken up as such and would gain access to the portal vein. On the other hand, the prolonged administration of low-protein diets (low in arginine content) leads to up regulation of the intestinal enzymes ornithine carbamoylase and N-acetylglutamate synthetase, resulting in more dietary arginine being converted to citrulline (Cynober et al. 1995). Since citrulline, as pointed out previously, is not quantitatively taken up by the liver, it will subsequently be converted to arginine by the kidney (arginine-sparing effect). Thus, the intestinal conversion of arginine to citrulline is an adaptive mechanism to keep hepatic urea synthesis low in conditions of reduced protein intake (Cynober, 1994).

Despite these inter-organ adaptive responses, it is possible to raise plasma arginine levels following the oral intake of L-arginine (Preli et al. 2002). Thus, at least theoretically, the oral route can be used to supplement L-arginine in attempts to influence pathophysiology.

Arginine metabolism in disease

Sepsis

Sepsis is a major health problem, as it is a common, frequently fatal, and expensive condition that generally requires intensive-care treatment. The incidence of severe sepsis in the USA is high (three cases/1000 population per annum), with an overall mortality rate of 29 % increasing with age (Angus et al. 2001). Considerable effort has been undertaken to understand the pathogenesis of the disease and to improve therapy.

Although systemic vasodilatation occurs during sepsis, the regulation of microcirculatory flow seems to be lost (Poeze et al. 1999; Hiltebrand et al. 2000). A selective deficiency of arginine for NOS1- and NOS3-dependent synthesis may be present, based on the observations that NOS1 and NOS3 activity as well as the transporter protein CAT1 are down regulated (Reade et al. 2002; Scott et al. 2002; Schwartz et al. 2003). Such a deficiency could have crucial effects since NOS1 and NOS3 may have important protective effects during sepsis (Helmer et al. 2002). Exogenous arginine could therefore be needed to maintain homeostasis.
Arginine metabolism. Plasma and intracellular muscle arginine levels are markedly reduced in sepsis (Freund et al. 1979; Milewski et al. 1982; Garcia-Martinez et al. 1993), which suggests compromised endogenous synthesis and/or increased utilisation of arginine. Muscle-protein breakdown was increased in a pig model of sepsis with lowered arginine levels (Bruins et al. 2002a), while in septic paediatric patients increased arginine oxidation was observed (Argaman et al. 2003). The potential need for arginine supplementation is further strengthened by the observation that a marked reduction in serum arginine is a predictor of mortality in patients with sepsis (Freund et al. 1979).

Nitric oxide production. Excessive NO production following the induction of NOS2 by cytokines (mainly TNF-α, and IL-1, IL-6, and IL-8) (Groeneveld et al. 1997, 1999; Annane et al. 2000; Nakae et al. 2000) plays a major role in the development of the characteristic symptoms of septic or endotoxamic shock (Morris & Billiar, 1994; Kelly et al. 1995; Symeonides & Balk, 1999). The latter is generally characterised by an elevated cardiac output, systemic hypotension and pulmonary hypertension. Concomitant changes in blood flow, including microvascular flow (De Backer et al. 2002) may contribute to inadequate tissue O2 extraction and a rise in blood lactate during sepsis (Parrillo, 1993). Interestingly, although NOS2 activity is up regulated, NO production by NOS1 and/or NOS3 is down regulated in sepsis (Kirkeboen & Strand, 1999; Beach et al. 2001; Hallemeesch et al. 2003).

Different stages of sepsis may be characterised by different degrees of NO levels (Vincent et al. 2000), as was observed from variable plasma nitrate and nitrite (NOx) levels measured for a prolonged period during and after sepsis in patients (Strand et al. 2000). Increased plasma NOx levels in sepsis have often been reported (Ochoa et al. 1991; Evans et al. 1993; Gomez-Jimenez et al. 1995; Endo et al. 1996; Groeneveld et al. 1996; de Werra et al. 1997; Adamik et al. 2000; Strand et al. 2000; MacKenzie et al. 2001), even in the absence of renal failure (Ochoa et al. 1991). Using stable isotopes, an increased whole-body production of nitrate was observed in endotoxin-induced shock in pigs (Santak et al. 1997), and an increased NO production by splanchnic organs and liver was observed in pigs during 24 h hyperdynamic endotoxaemia, using stable isotopes (Bruins et al. 2002a). This increased NO production was quantitatively matched by an increased arginine utilisation (Bruins et al. 2002a). One study reports an increased NO synthesis rate in critically ill septic paediatric patients (Argaman et al. 2003).

It has also been reported that patients surviving from septic shock had higher plasma NOx levels than non-survivors (Manders et al. 1999), which others attributed to diminished renal function (Adamik et al. 2000). However, the opposite has also been reported, with falling NOx levels in survivors and increased levels in non-survivors (Groeneveld et al. 1999; MacKenzie et al. 2001; Brealey et al. 2002), which illustrates the caveats in our knowledge concerning the role of NO in sepsis.

In this context, it is of interest to mention that although NOS inhibition in human patients provided promising results with respect to the restoration of haemodynamics in sepsis, a recent multicentre trial was terminated because of detrimental effects in the treatment group (Kilbourn, 1999; Kirkeboen & Strand, 1999).

Why arginine or nitric oxide may be depleted. Sepsis is characterised by diminished plasma arginine levels and an increased arginine demand for NO production by NOS2. Although systemic vasodilatation occurs during sepsis, the regulation of microcirculatory flow seems to be lost (Poeze et al. 1999; Hiltebrand et al. 2000). A selective deficiency of arginine for constitutive NO synthesis may be present, based on the observations that NOS1 and NOS3 activity as well as the transporter protein CAT-1 is down regulated (Reade et al. 2002; Schwartz et al. 2003), while NOS1 and NOS3 may have important protective effects (Helmer et al. 2002). Moreover, patients are often not fed, protein breakdown is increased and de novo arginine synthesis is not elevated (YC Luiking, M Poeze, CH Dejong, G Ramsay and NE Deutz, unpublished results). Exogenous arginine could therefore be needed to maintain homeostasis.

Cancer

The presence of cancer leads to disturbances in metabolism that result in weight loss and malnutrition. The incidence of cancer cachexia, a clinical syndrome consisting of anorexia, muscle wasting and an increased use of fat tissue, varies from 3 to 80 % on first patient contact (Nixon et al. 1980). When cancer patients undergo surgery, cachexia negatively affects treatment outcome and contributes to early death if left untreated.

Arginine metabolism. Plasma arginine concentrations in various types of cancer have been investigated. These have been reported to be decreased in lung cancer (Naini et al. 1988), higher in breast cancer (Park et al. 1991; Kubota et al. 1992), unchanged (Kubota et al. 1992) or higher (Glass et al. 1986) in gastrointestinal cancer, unchanged in head and neck cancer (Kubota et al. 1992) and unchanged in oesophageal cancer (Naini et al. 1988). Interpretation of the results may be complicated by difficulties in defining ideal control groups, since anorexia, cachexia and weight loss often accompany the presence of a tumour.

Arginase. Various malignant tissues such as lung (Suer Gokmen et al. 1999), skin (Gokmen et al. 2001), prostate (Keskinege et al. 2001), colon (Park et al. 1991) and breast (Park et al. 1991; Porembksa et al. 2003) contain high amounts of arginase. Because of this high content of arginase, tumours might have the potential to metabolise arginine and thereby to consume arginine at the expense of other organs. Besides this, plasma arginase has been demonstrated to be higher in patients with gastrointestinal cancer with and without weight loss (Glass et al. 1986) and breast cancer (Porembksa et al. 2003). These high plasma arginase levels can lower arginine availability even more.

Nitric oxide production. In the late 1980s, Hibbs showed that NOx formation from arginine was needed for the defence against tumours (Hibbs et al. 1987). Later, NO was
proven to be the effector molecule (Lancaster & Hibbs, 1990) by which macrophages killed tumour cells (Stuehr & Nathan, 1989). However, regarding NO and cancer cells, there are still conflicting hypotheses. Location, timing and concentration appear to be determining factors in the effect NO exerts on tumour cells. Some studies show that NO protects against cytotoxicity (Wink et al. 1996; Yoshide & Ohshima, 1997). Conversely, NO donors inhibited proliferation at high concentrations of 50 µM, but stimulated proliferation at concentrations ranging from 1 to 10 µM (Ulibarri et al. 1999). On a further note, NO has been correlated both with increased (Liu et al. 2003) and decreased (Wenzel et al. 2003) apoptosis of tumours (Wink et al. 1998).

Compared with benign tissues, high levels of all three NOS isoforms have been observed in various human tumours. Increased NOS2 levels or expression have been found in tumours of the head and neck (Gallo et al. 2003; Jayasurrya et al. 2003), lung (Lee et al. 2003), and brain (Kato et al. 2003). Increased levels or expression have also been found in tumours of the colon (Cianchi et al. 2003), prostate (Baltaci et al. 2001; Wang et al. 2003), bladder (Wolf et al. 2000), thyroid (Choe et al. 2003), breast (Thomsen et al. 1995; Tschugguel et al. 1999; Vakkala et al. 2000) and B-cells (Mendes et al. 2001). High NOS1 and NOS3 levels or enzyme expression were demonstrated in thyroid (Patel et al. 2002) and brain tumours (Cobb et al. 1995). More specifically, expression of NOS2 in tumours has been correlated to apoptotic index (Vakkala et al. 2000; Kong et al. 2002; Jayasurrya et al. 2003). In addition, in apoptosis, NO derived from tumour tissue has been hypothesised to play a role in tumour vascularisation. However, in vivo studies investigating these correlations for tumour and host metabolism, both in animals and patients, are lacking.

Why arginine or nitric oxide may be depleted. The presence of cancer can lead to a high use of arginine, since arginine is involved in cytokine induction in relation to an increased acute-phase response in cancer (Reynolds et al. 1988a) and tumour cytotoxicity (Hibbs et al. 1987), probably via NO (Lancaster & Hibbs, 1990). Since tumours contain high levels of arginase (Park et al. 1991; Suer Gokmen et al. 1999), they have the potential to consume high amounts of arginine. The tumour will probably maintain its arginine consumption at the expense of other organs, leading to a high arginine waste in cancer. Indeed, changes in plasma arginine levels (Naini et al. 1988; Kubota et al. 1992) indicate that arginine-NO metabolism is altered in cancer.

Liver failure

Patients with cirrhosis present with a hyperdynamic circulation manifest as high cardiac output, low systemic vascular resistance and elevated portal pressure (Groszmann, 1993), and these haemodynamic parameters deteriorate with increasing disease severity (Braillon et al. 1986). The paradox of increased intrahepatic resistance despite low peripheral and mesenteric vascular tone and the role of vasoconstrictors and vasodilators in liver disease have still not been explained. Liver failure may be complicated by hepatic encephalopathy, characterised by elevated ammonia levels due to the failure of hepatic urea cycling. However, the precise pathophysiological mechanisms responsible for hepatic encephalopathy remain poorly defined.

Following liver transplantation, ischaemia-reperfusion injury results in parenchymal and endothelial injury due to free radical production (Goode et al. 1994), the depletion of NO (Langle et al. 1995), and the release of cytokines and chemokines (Colletti et al. 1995; Clavien et al. 1996; Gerlach et al. 1997; Lentsch et al. 1998; Boros et al. 2001). Moreover, the systemic inflammatory response causes local injury to the liver and a transient, profound cardiovascular collapse due to a combination of reduced systemic vascular resistance and myocardial depression (Aggarwal et al. 1987, 1993).

Arginine metabolism. In general the circulating levels of arginine in patients with liver disease have been suggested to be maintained (Tietge et al. 2002). But in acute hepatic encephalopathy, arginine, pathophysiologically important as an intermediate in the urea cycle, is believed to be depleted (Lavoie et al. 1987), thus further compounding increases in brain ammonia.

We and others have observed that the haemodynamic consequences of ischaemia-reperfusion injury after liver transplantation may be related to the relative deficiency of arginine in the reperfusion period (Chamuleau et al. 1987; Bzeizit et al. 1997; Yagnik et al. 2002). Immediately after hepatic reperfusion, high amounts of arginase-I are released from the graft, thereby influencing NO metabolism (Ikemoto et al. 1998). In pigs undergoing liver transplantation, plasma arginase concentrations were shown to increase 50-fold following hepatic revascularisation, which resulted in a drop in plasma levels of arginine (−87 %) and in a drop in nitrate (−82 %) and nitrate (−53 %) concentrations. The mean pulmonary arterial pressure increased 2-fold, whereas the flow–pressure index of the portal vein decreased by about 60 % (Langle et al. 1997).

Nitric oxide production. Whole-body NO synthesis was increased in patients with cirrhosis and this is believed to be important in modulating the hyperdynamic circulation in these patients (Vallance & Moncada, 1991). Hepatic NO synthesis was, paradoxically, reported to be reduced in the diseased liver (Sarela et al. 1999). Furthermore, it has been demonstrated that vascular responses to vasopressor agents were also impaired in these patients, and that this may be mediated through NO (Helmy et al. 2003).

In a rat model of portacaval anastomosis, increased NOS1 protein and mRNA, as well as enzyme activity (Rao et al. 1995, 1997), have been demonstrated, with the implications of increased oxidative stress and altered cerebral perfusion through NO generation. Moreover, NO caused an increase in glutamate release from the synaptic cleft (Katchman & Hershkowitz, 1997), which may be important following the observation of increased extracellular levels of brain glutamate in experimental liver failure (de Knecht et al. 1994). Furthermore, astrocytes, important cells in brain swelling, cultured in the presence of ammonia, showed increased arginine uptake and NOS expression (Hazell & Norenberg, 1998).
Endogenous nitric oxide inhibition. Impaired liver function has been found to give rise to an increased concentration of ADMA (Nijveldt et al. 2003a). Since endogenous competitive inhibitors of NO such as ADMA are compartmentalised in the liver, the paradox of high intrahepatic resistance and peripheral vasodilatation in cirrhosis may result from the disparate impact of inflammation on these NOS regulatory proteins on one hand and the ongoing systemic inflammatory drive that maintains the hyperdynamic state on the other. Arginine supplementation in patients with liver failure represents a potentially beneficial method of reducing intrahepatic resistance by overriding the effects of the inhibitors of NOS, such as ADMA.

Why arginine or nitric oxide may be depleted. In spite of a complex system of regulation (Rockey, 2003) and increased whole-body NO production in patients with cirrhosis (Vallance & Moncada, 1991), hepatic NO synthesis is, paradoxically, thought to be reduced in the diseased liver (Sarela et al. 1999). Moreover, since impaired liver function decreases the hepatic breakdown of ADMA, liver failure results in increased concentrations of ADMA (Nijveldt et al. 2003a,b), thereby potentially limiting hepatic NO production further.

Furthermore, NO may be important following the observation of increased extracellular levels of brain glutamate in experimental liver failure (de Knecht et al. 1994), since NO can increase glutamate release from the synaptic cleft (Katchman & Hershkowitz, 1997). Astrocytes may use increased amounts of arginine in liver failure, as astrocytes show increased arginine uptake and NOS expression when cultured in the presence of ammonia (Hazzel & Norenberg, 1998). It is possible that an increased arginine uptake is a compensatory mechanism by which glutamate stores can be replenished through an arginine–glutamate shunt, following ammonia-induced increases in glutamine production. Moreover, as arginine is an important intermediate in the urea cycle, arginine depletion can further compound increases in brain ammonia.

During liver transplantation, high amounts of arginase are released from the graft after hepatic reperfusion, thereby decreasing the availability of arginine (Bzeizi et al. 1997; Yagnik et al. 2002) and its product NO (Ikemoto et al. 1998). The pulmonary hypertension and the reduced hepatic blood flow found during the immediate reperfusion period after orthotopic liver transplantation are possibly related to the decreased arginine availability.

Wound healing

Wound healing is a complex process involving three subsequent phases: inflammation, proliferation and remodulation. During the inflammatory phase neutrophils, macrophages and lymphocytes clean the wound area from foreign material and prevent further bacterial colonisation. Proliferation is characterised by multiple reparative cells, mainly fibroblasts. They form the structural proteins for a new matrix. In this phase endothelial and epithelial cell proliferation occur, leading to angiogenesis and epithelialisation. During remodulation, the wound contracts to form a mature scar. The newly formed collagen is reorganised, resulting in increasing wound strength.

In mice and rats with acute wounds, arginine was shown to be involved in wound healing via two metabolic pathways (Albina et al. 1990; Schaffer et al. 1997; Efraim & Barbul, 2000; Lee et al. 2001). The first pathway was mainly active in the first 3 d and was catalysed by arginase, which converted arginine into ornithine and urea. Ornithine is a precursor for collagen synthesis and cell growth. This sequence of events suggests that during the initial phase of wound healing, angiogenesis is stimulated through NO synthesis, whereas at a later stage arginase-mediated ornithine production facilitates collagen synthesis.

Arginine metabolism. Schaffer et al. (1997) and Lee et al. (2001) demonstrated the consumption of arginine during acute wound healing. In their studies, arginine levels in the wound fluid of mice were not detectable, whereas endproducts of arginine metabolism were increased, thus suggesting the local use of arginine in wounds.

One of the products of arginine is ornithine, in itself a precursor for collagen synthesis. Studies with NOS2-knockout mice supplied with dietary ornithine show increased wound breaking strength and collagen deposition (Shi et al. 2000, 2001).

Nitric oxide production. In experimental studies with mice, Witte, Barbul and Schaffer demonstrated the essential role of NO in wound healing by showing that NOS2-knockout mice had delayed wound healing (Witte & Barbul, 2002) and NO inhibitors diminished wound collagen formation (Schaffer et al. 1999). In tendon healing, Murrell et al. (1997) showed an increase in NO activity during healing. Furthermore, when NOS2 was inhibited, tendon healing was inhibited. Similar results were found concerning NO and fracture healing (Diwan et al. 2000). In experiments with NOS3-deficient mice, wound closure was delayed, tensile strength decreased and endothelial cell sprouting reduced (Lee et al. 1999). This up regulation of the enzymes involved in the NO pathway suggests an increased need for arginine in wound healing, as arginine is the sole precursor for NO.

Why arginine or nitric oxide may be depleted. The availability of arginine is one of the rate-limiting factors of cellular NO production (Hallemeesch et al. 2002b). Wound-repair cells, such as macrophages, fibroblasts, endothelial cells and keratinocytes, also depend on extracellular arginine concentration for their NO synthesis (Jalkanen et al. 1982; Norris et al. 1995). Therefore, it is important that the wound is supplied with sufficient arginine. Reasons for arginine depletion can be (1) an insufficient supply of arginine or (2) an increased use of arginine.

Concerning the first point, diets deficient in arginine are associated with poor wound healing and poor growth in rats (Seifter et al. 1978; Nirgiotis et al. 1991). In human patients it is common knowledge that protein deficiency or malnutrition impairs wound healing, and although arginine supplementation increases wound collagen deposition in
human patients, little is known about the role of arginine depletion in human wound healing. Our own recent data suggest that chronic wound healing is associated with decreased plasma arginine levels (IBJG Debats, D Booi, NEP Deutz, WA Burman, WD Boeckx and RRWJ Van der Hulst, unpublished results).

Regarding the second reason, NO synthesis is increased during wound healing as shown by Albina et al. (1990). The activity might become so high that the supply of arginine may become limiting. Furthermore, arginine can be competitively metabolised by arginase. An enhanced expression of arginase is seen in wound-derived fibroblasts, diabetes-impaired healing and psoriatic skin lesions (Witte et al. 2002a; Kampfer et al. 2003; Weller, 2003). It is hypothesised that arginine in wounds is depleted by extra-cellular arginase which is released during macrophage cell death (Albina et al. 1988).

L-Arginine supplementation in disease

Since a large part (40 %) of enteral arginine is degraded during absorption and at least 85 % of the arginine that enters the portal vein is delivered to the liver, intravenous arginine administration may be more effective in providing arginine to extra-gastrointestinal tissue (Flynn et al. 2002).

Both intravenous and oral L-arginine administration in healthy human subjects increased plasma arginine levels and significantly reduced blood pressure and total peripheral resistance, with decreases in urinary nitrate and cyclic GMP excretion (Bode-Boger et al. 1998). This indicates that the vascular effects of L-arginine are closely correlated to its plasma concentrations (Bode-Boger et al. 1998), even in subjects without an inflammatory response where increases in NOS2 are not expected.

Sepsis

Only one human study in septic patients provides data on the supplementation of L-arginine as a monotherapy and demonstrated transient systemic and pulmonary vasodilatory actions of L-arginine-HCl (200 mg intravenous bolus/kg) at 1 min after administration, without adverse effects (Lorente et al. 1993a).

In animal studies, beneficial effects of L-arginine administration have been shown on the immune response (Moffat et al. 1996; Calkins et al. 2001; Yeh et al. 2002). Besides this, L-arginine administration further stimulated alveolar and intravascular NO release in the lung, with a slight limitation of the increase in pulmonary arterial pressure and concomitant oedema formation (Schutte et al. 1998). L-Arginine treatment produced systemic vasodilatation in normal sheep, whereas both systemic and pulmonary vasodilatation was observed in septic animals in the later phase of sepsis (Lorente et al. 1993b, 1999). However, data on survival are not uniform (Gonce et al. 1990; Gianotti et al. 1993; Yeh et al. 2002).

In a hyperdynamic pig model of sepsis it was suggested that L-arginine administration reduces the hepatic response to tissue injury and inflammation (Bruins et al. 2002b). NO production on the whole-body level and in the portal-drained viscera, liver and kidneys was up regulated (Bruins et al. 2002c), and net uptake of arginine in hindquarters, the portal-drained viscera, liver and kidneys was observed (Bruins et al. 2002c). Suggested adverse effects of L-arginine supplementation are hypotension, electrolyte imbalance (Cl and K), hypoglycaemia (due to stimulated insulin release), and increased urea levels (Boger & Bode-Boger, 2001). However, these symptoms are mainly based on intravenous bolus infusions of L-arginine-HCl (30 g L-arginine-HCl in 30 min). In the pigs with hyperdynamic sepsis no deleterious systemic side effects of prolonged intravenous L-arginine infusion were observed with only minor haemodynamic changes (tendency for decreased mean arterial pressure, and increased cardiac index; Bruins et al. 2002c), while the deleterious increase in pulmonary arterial pressure that normally occurs in sepsis was prohibited (M Poeze, M Bruins, G Ramsay, WH Lamers and NEP Deutz, unpublished results). Preliminary data on continuous L-arginine infusion in septic-shock patients confirm these results, as hypotension and changes in CI and K levels did not occur (YC Luiking, M Hendrikx, M Poeze, P Breedveld, PW de Feiter, F Rubulotta, CHC Dejong, G Ramsay and NEP Deutz, unpublished results). This suggests that the protocol of L-arginine administration is important, and continuous infusion seems to be preferred.

Cancer

Tumour growth. Many studies on L-arginine supplementation and tumour growth have been conducted, leading to two opposite hypotheses; that L-arginine either stimulates or inhibits tumour growth. For example, L-arginine supplementation, either intravenously or enterally, retarded (Takeda et al. 1975; Milner & Stepanovich, 1979; Tachibana et al. 1985; Reynolds et al. 1990; Lubec et al. 1996; Edwards et al. 1997; Millis et al. 1998; Szende et al. 2001), enhanced (Yeatman et al. 1991; Szende et al. 2001) or did not change (Oka et al. 1993, 1994) in vivo tumour growth in rodents compared with isonitrogenous control supplements. The limitation of these animal tumour models lies in the fact that most of these models are highly immunogenic, while most human cancers are not. The impact of protein depletion on tumour biology appears to relate to how well the tumour is recognised by the host. This is determined by the expression of tumour-associated antigens, which can be recognised as foreign by an intact host immune system. Protein malnutrition theoretically favours the growth of antigenic tumours by depressing immune responses. This is illustrated by a study of Reynolds et al. (1988b), in which mice bearing an immunogenic tumour showed decreased tumour growth and prolonged survival after arginine supplementation, while in mice with non-immunogenic tumours, growth was increased.

Mortality. Regarding survival, few controlled in vivo animal studies have been conducted. Compared with glycine as an isonitrogenous control, 1 % enteral L-arginine supplementation in tumour-bearing mice prolonged host survival (Reynolds et al. 1990). Furthermore, Novaes et al. (2000) showed that tumour-bearing rats receiving L-arginine enterally had less metastases than rats receiving glycine as the isonitrogenous control. Moreover, it has been demonstrated
that an L-arginine-enriched parenteral solution increased muscle protein synthesis (Oka et al. 1994) and decreased total N release (Oka et al. 1993) in rats with Yoshida sarcoma. Whether these improvements in protein turnover are related to higher survival remains to be established.

Immunostimulation. In tumour-bearing mice, L-arginine was one of the first nutritional supplements to be tested for potential immune-stimulating effects (Rettura et al. 1979). An increased thymic weight and cellularity was observed, although no isonitrogenous control supplement was used. Repeated experiments with proper control groups confirmed that L-arginine indeed has immune-stimulating properties in tumour-bearing animals, such as an enhanced lymphocyte cytotoxicity (Reynolds et al. 1988a; Lieberman et al. 1992) and natural killer cell activity (Reynolds et al. 1988a).

Patient studies. Enteral L-arginine supplementation for 3 d to breast cancer patients enhanced the cytotoxicity of natural killer and lymphokine-activated killer cells (Brittenden et al. 1994b), which are thought to be involved in tumour cytotoxicity. Similarly, 3 d of L-arginine supplementation to patients with colorectal cancer altered the spectrum of tumour-infiltrating lymphocytes (Heys et al. 1997), which have anti-tumour properties. It should be noticed that in both studies, no control supplement was administered. Patients with breast cancer receiving an enteral diet supplemented with arginine for 3 d had higher protein synthesis in tumours compared with patients receiving the enteral diet without supplementation (Park et al. 1992). Again, no control amino acid was administered, so conclusions drawn from these studies must be interpreted with caution.

Effects during chemotherapy. L-Arginine supplementation has also been used in trials with breast cancer patients receiving chemotherapy. Human breast cancer is considered to be a non-immunogenic tumour. Because in an animal study with non-immunogenic tumours L-arginine stimulated tumour growth (Reynolds et al. 1988b), the use of immunotherapy in breast cancer is controversial. Still, 3 d of L-arginine supplementation before each course of chemotherapy was reported to diminish and delay the onset of immunosuppression and to stimulate natural killer and lymphokine-activated killer cells (Brittenden et al. 1994a). However, no control amino acid supplement was used and no information on tumour growth was reported.

Post-operative effects. Several authors have studied the effect of L-arginine on post-operative immune response in cancer patients. Daly et al. (1988) compared post-operative enteral supplementation of L-arginine with that of isonitrogenous glyline, and concluded that L-arginine enhanced the peripheral lymphocyte response and increased the number of CD4+ T-cells in gastrointestinal cancer patients. In post-operative head and neck cancer patients fed an enteral diet supplemented with L-arginine, lymphocyte count was increased compared with an isonitrogenous control (Riso et al. 2000). Also, patients with gastrointestinal malignancies on a diet supplemented with L-arginine had higher numbers of circulating T-cells on post-operative day 7 compared with an isonitrogenous control diet (Sigal et al. 1992). In contrast, on the first post-operative day, no effect of pre-operative isonitrogenous and isonitrogenous enteral arginine supplementation was seen on lymphocyte proliferation or monocyte function in gastrointestinal cancer patients (McCarter et al. 1998).

Until now, only two clinical studies with L-arginine as monotherapy and with isonitrogenous and isonitrogenous controls have been conducted in cancer patients, both in malnourished head and neck cancer patients undergoing surgery. Riso et al. (2000) concluded that a post-operative enteral diet supplemented with L-arginine for 4 d significantly reduced post-operative infections and length of stay. In the study from van Bokhorst-de van der Schueren et al. (2001) a trend (P=0.15) toward better survival was seen after pre-operative enteral L-arginine supplementation for 9 d. However, the required sample size was calculated to be thirty-nine patients, while only fifteen to seventeen patients per group could be included. Therefore, the observed results could have important significance and deserve further study.

Liver failure

Cirrhosis. The clinical application of L-arginine supplementation in liver disease is limited by the lack of systematic investigations to characterise the circulatory effects following L-arginine administration. However, it has been shown that arginine infusions induce diuresis and natriuresis in cirrhotic patients with ascites, accompanied by increased urinary NOx, suggesting a possible effect on regional microcirculatory beds (Tajiri et al. 1995).

Ischaemia-reperfusion injury. There are no fully published human studies describing the role of L-arginine supplementation in preventing ischaemia-reperfusion injury. A study in pigs demonstrated the protective effect of L-arginine on hepatic lipoperoxidation and liver morphology in a model of warm ischaemia-reperfusion injury (Burra et al. 2001). It was observed that 30 min after reperfusion, liver malondialdehyde, sinusoidal congestion, necrosis, and apoptosis were significantly lower in the arginine group. On post-operative day 7, tissue malondialdehyde decreased, while plasma NOx and hepatocyte glycogen content were increased in the L-arginine group.

Furthermore, oral L-arginine supplementation in an animal model of liver failure demonstrated a benefit in terms of hepatic inflammatory changes and bacterial translocation (Adawi et al. 1996).

The benefits of systemic supplementation, however, must be weighed against potential deleterious effects such as compounding low peripheral vascular resistance through the promotion of systemic NO generation, and thereby further decreasing organ blood flow.

Wound healing

In rats, 300 mg L-arginine/kg intraperitoneally per d enhanced wound tensile strength, hydroxyproline concentra-
tions and collagen accumulation. In addition, it decreased neutrophil counts and adhesivity (Canturk et al. 2001). In NOS2-knockout mice, NOS2 was shown to be an important mediator of the positive effects of L-arginine supplementation on wound breaking strength and hydroxyproline content (Shi et al. 2000). Arbss et al. (2000) studied the effects of high arginine plasma levels on early integration of biocompatible mesh grafts in the rat abdominal wall. They found enhanced cell accumulation, formation of new vessels, fibroblast proliferation and type III collagen deposition in the L-arginine-supplemented group. In an experimental model for ileitis, ulcer healing was enhanced in rats supplied with diets containing 5 % L-arginine (Sukumar et al. 1997). Healing of colonic anastomosis in rats on post-operative day 6 was enhanced when rats were fed a peri-operatively L-arginine-enriched diet (Shashidharan et al. 1999).

L-Arginine supplementation improved wound immune-cell function in mice, demonstrated by decreased pro-inflammatory IL-1β, IL-6 and increased anti-inflammatory IL-10 (Angele et al. 2002).

Angiogenesis. Angele et al. (2002) demonstrated increased microcirculation after L-arginine supplementation in mice with depressed skin and muscle blood flow after haemorrhage. Enteral L-arginine supplementation in a rabbit ischaemic hind-limb model stimulated angiogenesis, as shown by a marked increase in capillary density and enhanced collateral vessel development (Murohara et al. 1998). NOS3 was essential for angiogenesis in ischaemic tissues in this model.

Pathological wound healing. Diabetes is characterised by an NO-deficient state at the wound site. In diabetic rats, enteral L-arginine supplementation increased wound breaking strength. At the same time, plasma arginine and NO levels were increased, while wound fluid levels of arginine and ornithine remained unaffected (Witte et al. 2002c). This suggests that the exogenously provided L-arginine is metabolised to NO by NOS2. In accordance, supplementing the NO donor molsidomine to these rats increased wound breaking strength and wound-healing parameters such as the hydroxyproline content and matrix metalloproteinase-a (MMP-2) activity and the urinary NO3 excretion. It also decreased collagen I and III gene expression and arginase activity (Witte et al. 2002b).

Human studies. Only a few human studies have investigated the effect of L-arginine as the single parenteral nutrient on wound healing. Kirk et al. (1993) supplied thirty healthy elderly human volunteers with 17 g oral L-arginine/d and found improved serum insulin-like growth factor-1, enhanced hydroxyproline and total protein content deposition in subcutaneously placed catheters. It did not shorten the time to complete epithelialisation of skin defects of 2 cm². Barbul et al. (1990) supplied L-arginine to thirty-six young healthy human subjects, divided into three groups, who received either 17 or 25 g oral L-arginine or placebo for 2 weeks. Both L-arginine-supplemented groups displayed enhanced hydroxyproline accumulation in subcutaneously placed catheters. Besides this, lymphocyte immune reactivity was enhanced.

So far, no human studies on the effect of L-arginine on angiogenesis in wound healing have been published.

Conclusion and future directions
First, it can only be concluded that up to now, monotherapy with L-arginine has scarcely been studied in the various disease states described in the present review. However, the numerous studies using immunonutrition containing L-arginine amongst other nutrients have led to negative advice on clinical L-arginine supplementation. Again, it must be emphasised that from studies using mixtures of parenterals, no valid conclusions can be drawn with regard to the separate effects of the contents. Therefore, from a scientific point of view, more studies using L-arginine as a monotherapy in a controlled setup are needed before definitive conclusions can be drawn.

Second, only limited information is available on in vivo arginine-NO metabolism in both health and disease. Since both arginine and NO appear to affect various tissues in different ways, research into (inter)-organ physiology would be valuable. Because inter-organ studies are only possible to a limited extent in human volunteers and patients for ethical reasons, animal models will be a necessary source of information. Thereupon, results can partly be confirmed in human subjects. Moreover, without knowledge of the pathophysiological changes in arginine metabolism, it is almost impossible to determine the optimal timing, way of administration (intravenously or enterally) and amount of L-arginine to be supplemented. As a result, up to now, protocols for L-arginine administration have been mere guesses and may not result in optimal results of L-arginine supplementation. Next, other mechanisms that may affect arginine availability and thereby affect NO production should be studied more closely, including arginase activity, de novo arginine synthesis, oxidation of arginine, and the presence of endogenous arginine analogues. Also, studies may focus more on the pathophysiological consequences of decreased NOS1 and NOS3 instead of on increased NOS2.

Finally, the optimal source to supply L-arginine in diseases remains to be determined. Instead of L-arginine itself, this may be glutamine or citrulline, since both these amino acids can be converted to arginine in the body.

References

Arginine supplementation in disease

203

Chone W, Kim S, Hwang TS & Lee SS (2003) Expression of...

Arginine supplementation in disease

endothelial function in arterial hypertension and hypercholesterolemia. Current Hypertension Reports 5, 199–207.

Y. L. J. Vissers et al.

Arginine supplementation in disease

Windmueller HG & Spaeth AE (1975) Intestinal metabolism of glutamine and glutamate from the lumen as compared to glutamine from blood. *Archives of Biochemistry and Biophysics* 171, 662–672.

Wither MB, Thornton FJ, Tantry U & Barbul A (2002c) l-Arginine

