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Maintaining a correct balance of N is essential for life. In mammals, the major sources of N in the
diet are amino acids and peptides derived from ingested proteins. The immediate endproduct of
mammalian protein catabolism is ammonia, which is toxic to cells if allowed to accumulate.
Therefore, amino acids are broken down in the liver as part of the ornithine—urea cycle, which
results in the formation of urea — a highly soluble, biochemically benign molecule. Mammals
cannot break down urea, which is traditionally viewed as a simple waste product passed out in the
urine. However, urea from the bloodstream can pass into the gastrointestinal tract, where bacteria
expressing urease cleave urea into ammonia and carbon dioxide. The bacteria utilise the ammonia
as an N source, producing amino acids and peptides necessary for growth. Interestingly, these
microbial products can be reabsorbed back into the host mammalian circulation and used for
synthetic processes. This entire process is known as ‘urea nitrogen salvaging’ (UNS). In this
review we present evidence supporting a role for this process in mammals — including ruminants,
non-ruminants and man. We also explore the possible mechanisms involved in UNS, including
the role of specialised urea transporters.
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Introduction

N is essential for life. Unlike plants, animals are unable to
fix N and must therefore obtain all their N requirements
from the food they consume. The interplay of absorption of
N and the excretion of N in the urine and faeces is the major
factor in the homeostatic control of N balance. Since
survival depends on the availability of N, mechanisms have
evolved that maximise its utilisation and conservation.
The major sources of N in the diet are amino acids and
peptides derived from ingested proteins. These are utilised
as the building blocks of proteins and also can be used as an
energy source. Proteins are constantly being synthesised
and broken down as part of the normal biochemistry of life.
The immediate endproduct of protein catabolism is
ammonia, which is toxic to cells if allowed to accumulate.
Evolution has dealt with this problem in several ways.
In fish, ammonia passes out into the surrounding water and
is detoxified simply by dilution. In terrestrial organisms this
is not an option; therefore other processes have evolved.
In mammals, amino acids are broken down as part of the
ornithine—urea cycle. This process occurs in the liver and
results in the formation of urea (CO(NH,),), a highly
soluble, biochemically benign molecule. There is little

doubt that the capacity to detoxify ammonia by synthesising
urea was a major evolutionary advance away from an
aquatic habitat, enabling exploitation of the terrestrial
biosphere.

Another key event in the habitation of land was the
capacity for animals to concentrate their urine. Importantly,
urea was also a key player in the evolution of this faculty.
To concentrate urine, and hence conserve water, a hyper-
osmotic compartment in the renal medulla consisting of
NaCl and urea is formed in a process termed the urinary
concentrating mechanism.

In recent years another role for urea has emerged that is
beginning to re-ignite interest in the research community.
Urea represents a no-through road to vertebrates because
they do not constitutively express urease, an enzyme that
cleaves urea into ammonia and carbon dioxide. However,
bacteria that inhabit the gastrointestinal tract express urease
and can utilise urea as an N source. Urea in the blood of the
host is able to pass into the gastrointestinal tract, where it
can be broken down. Interestingly, the story does not stop
there. The N liberated in this process is available to the host
and can re-enter the host circulation, to be used as a
substrate for synthetic processes. Reclamation of urea-N
from bacterially cleaved urea has become known as ‘urea
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nitrogen salvaging’ (UNS; Fuller & Reeds, 1998). UNS has
previously been referred to as ‘urea recycling’. However, the
use of this term can be confusing, because it is urea-N not
urea that is being recycled. In the past ‘urea recycling’ has
also been used to refer to various processes including: the
passage of urea into and out of the gut without further
metabolism; the portion of total urea synthesised by the liver
that enters the gut; urea-N that is returned, via ammonia, to
the host. In the present review, we will use the term UNS to
describe the process whereby N moieties derived from
bacterial urea breakdown are utilised by the host.

The present review summarises the evidence supporting
UNS in mammals, the potential mechanisms for UNS and
its potential relevance to man.

Urea nitrogen salvage

The principle of UNS is shown in Fig. 1. In this process, urea
passes from the circulation of the mammalian host into the
digestive tract and is broken down by the resident bacteria
into ammonia and carbon dioxide. The bacteria then use this
ammonia to synthesise amino acids and nucleotides required
for growth (Fuller & Reeds, 1998). The host can absorb either
the molecules synthesised by the bacteria or the ammonia
itself, thus completing the ‘salvaging’ of urea-N (Fuller &
Reeds, 1998).

Since the diet, anatomy of the gastrointestinal tract, and
degree of UNS are different between species, we have
chosen to describe separately the data for different groups of
mammals. The distinct groups discussed are (i) ruminants
(for example, cattle, sheep), (ii) non-ruminants (for
example, mice, rats, pigs) and, finally, (iii) man, who
although non-ruminant, will be dealt with separately
throughout the present review.
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Fig. 1. Principle of urea nitrogen salvaging. Urea is produced in the
liver, via the ornithine—urea cycle, and passed into the bloodstream
(1). Urea is freely filtered in the kidney (2) and between 40 and 60 % of
the filtered urea is reabsorbed (3); the rest is excreted in the urine (4).
Urea in the bloodstream can pass into the gastrointestinal tract,
probably via specialised transporters (5), where it is broken down by
the bacterial enzyme urease into ammonia and carbon dioxide (6).
The ammonia can either be reabsorbed directly into the bloodstream
(7), or utilised by the bacteria to produce amino acids and peptides,
which in turn can be reabsorbed (8). The return of urea-N moieties to
the host represents the ‘salvaging’ of the N present in urea.
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Ruminants

For many years, UNS has been acknowledged to play a
significant role in maintaining N balance in ruminant
animals. This has resulted in a plethora of studies aimed at
discerning factors that influence UNS as a means of
improving livestock productivity. Accordingly, there is a
wealth of data relevant to ruminant UNS. In the present
review we give a basic overview of ruminant UNS and
readers seeking a more in-depth treatise are directed to the
excellent review by Lapierre & Lobley (2001).

Inclusion within this group is reserved for animals that
possess a specialised gastrointestinal organ known as the
rumen. These animals, such as cattle (Archibeque et al.
2001), goats (Houpt & Houpt, 1968) and sheep (Packett &
Groves, 1965), have a digestive system especially adapted to
utilise the complex plant carbohydrates that they ingest. It is
important at this stage to point out that the rumen is anterior
to the small and large intestine, and that this is critical when
considering the fate of the products of bacterial metabolism.

It has been estimated that between 40 and 80 % of urea-N
synthesised by the liver enters the ruminant gut (Harmeyer
& Martens, 1980). A varying proportion of this is ultimately
returned to the ruminant host for anabolism. In this respect,
the rumen can be thought of as an on-board bioreactor into
which urea passes and is hydrolysed by the large community
of ‘commensal’ bacteria that reside there (Houpt & Houpt,
1968).

Urea enters the ruminant gut by several routes. Although
urea secreted in saliva accounts for between 10 and 40 % of
ruminal urea entry, the majority of urea enters across the
gastrointestinal tract wall — particularly across the ruminal
epithelium. There is also a minor inflow in the bile secretion
and pancreatic juice (Varady et al. 1979). However, the
relative contributions of these routes can vary enormously
depending on a complex interaction of factors, including the
composition of diet ingested. For example, in cattle fed a
concentrate diet, saliva secretion accounted for 17 % of the
total gut entry of urea, whereas in cattle fed a forage diet this
value increased to 36 % (Lapierre & Lobley, 2001).
Recently, this fact has been utilised to modify diets and
improve N retention for a given N intake. In one such study,
simply changing the sorghum grain fed to cattle from
‘dry-rolled’ to ‘steam-flaked’ increased urea-N transfer
across ruminal tissues from 32 to 42 g/d, hence increasing
the supply of microbial protein for absorption and enabling
a 15% improvement in whole-body N retention as a
percentage of N intake (Theurer ef al. 2002).

The transfer of urea directly into the rumen across the
ruminal epithelium occurs by diffusion and nearly all the
urea in the rumen is hydrolysed by bacterial urease to
ammonia and carbon dioxide (Houpt & Houpt, 1968). At
normal blood urea levels, pre-treatment with anti-bacterial
agents or thorough rinsing of the rumen (i.e. treatments that
effectively remove the ruminal bacteria) lead to a significant
reduction in urea movement into the rumen and hence
ruminal urea hydrolysis. This suggests that bacterial urea
metabolism may provide a concentration gradient down
which urea diffuses into the rumen (Houpt & Houpt, 1968).

Urea is transported across plasma membranes by
specialised transporter proteins that are the products of
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two closely related genes, SLC14al, also known as the UT-B
gene, and SLCI4a2, also known as the UT-A gene. It is
therefore probable that the epithelia of the salivary glands
and rumen possess these transporters. Several studies have
demonstrated the presence of either mRNA transcripts
encoding urea transporters or actual urea transporter
proteins in rumen (Ritzhaupt er al. 1998; Marini & van
Amburgh, 2003; GS Stewart, C Graham, S Cattell, T Smith,
NL Simmons and CP Smith unpublished results), but we are
not aware of any study addressing the salivary gland. These
proteins could potentially modulate urea flux into the rumen
by either increased expression or activation. This and other
aspects of urea transporters will be discussed in more detail
below.

What is the fate of the urea produced by the liver that
enters the gut? The current evidence indicates that ruminant
animals utilise the released urea-N in a number of ways.
In sheep, 30—50 % of the urea that enters the digestive tract
is returned to the host as ammonia, whereas this value is
25-40% for cattle (Lapierre & Lobley, 2001). The
ammonia produced by urea hydrolysis is directly reabsorbed
passively, independent of ionic concentrations, from both
the rumen and the post-ruminal gut, particularly the caecum
and large intestine (Huntington, 1986). Koenig and co-
workers reported that approximately 20% of ruminal
ammonia flux in sheep is derived from urea-N rather than
ingested N (Koenig et al. 2000). Released urea-N is also
reabsorbed as microbial nucleic and amino acids, mainly in
the small intestine (Huntington, 1986). In dairy cows,
between 10 and 40 % of bacterial N was derived from urea
that had entered the digestive tract (Al-Dehneh et al. 1997),
the precise contribution varying with diet. One model for N
uptake from ovine gastrointestinal tract lumen predicted
11-8 g ammonia-N/d, 1-5 g nucleic acid-N/d and 8-7 g amino
acid-N/d (Huntington, 1986). This indicates that approxi-
mately 50 % of the bacterial N products absorbed by the host
is ammonia, a value similar to contemporary values stated
earlier. However, it is now more clearly understood that the
precise fate of the released urea-N can vary enormously and
is greatly affected by dietary factors. This fact is a very
important consideration in modern feeding procedures for
livestock.

In ruminants, UNS is recognised as being important for
growth. From an agricultural point of view, this fact is
exploited every year as large quantities of urea are used as a
dietary supplement for ruminant animals worldwide. For
example, replacing 30 % of a low-quality forage diet with a
controlled-release urea supplement improved N retention in
sheep from 9 g/d to 36 g/d (Puga et al. 2001). However, there
is of course a limit to the extent of urea supplementation that
can be used. A recent study in cattle suggested that up to
40 % of the degradable protein intake could be replaced by
urea supplements without adverse affects (Koster et al.
2002). This practice of supplementing the diet with urea is
the modern equivalent of farmers ‘urinating on the fodder’.
Because urine contains a high concentration of urea, this
practice served to increase the N content of the diet fed to
livestock (Bankir, 1996).

The exact contribution of UNS to overall N balance is
thought to vary between species, depend on animal health,
and be regulated by dietary N intake and N demand.
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For example, it has been shown that net incorporation of urea
into bacterial protein is inversely proportional to protein
intake in Angus heifer calves (Bunting et al. 1989a). Just over
half of the urea in the rumen of cattle calves maintained on a
low-protein diet (66-5 gN/d) was degraded, compared with
26 % in calves on a high-protein diet (126 g N/d). However, it
is not yet clear whether this change was due to less urea
entering the gut, or whether it was simply due to the amount
of urea-N being ‘diluted’ by the increased levels of ammonia
derived from dietary N, and/or the bacteria preferentially
using amino acid-N. Interestingly, Bunting et al. (1989b) also
reported that ruminal urease activity was higher in low-
protein-fed calves, and bacteria at or near the rumen wall
preferentially utilised urea-derived ammonia.

Ruminants produce copious amounts of saliva — cattle
can produce 220 to 250 litres saliva/d (Maekawa et al. 2002)
— and delivery of urea into the rumen via saliva is thought to
be of increased importance when animals are maintained on
a low-protein diet (Hobson & Wallace, 1982).

In sheep, studies investigating the amount of microbial
protein entering the duodenum of animals fed a normal
(17-4gN/d) or a low-protein (7-5gN/d) diet showed that
microbial N production did not significantly differ between
groups (Tebot et al. 2002). However, although the N intake
was only 57 % lower in low-protein diets, the excretion of
urea in the urine was reduced by 84 % (Tebot et al. 2002).
This large decrease in urea excretion — brought about via
reductions in renal plasma flow and glomerular filtration rate,
and by increased urea reabsorption from tubules — is a well-
known effect of reduced protein intake in ruminants (Ergene
& Pickering, 1978; Leng et al. 1985). It can perhaps then be
concluded that changes in renal function limited the drop in
blood urea levels due to reduced urea synthesis and therefore
helped maintain delivery of urea to the rumen (Tebot et al.
2002). In agreement with this, Marini & van Amburgh (2003)
reported in cattle that changing N intake in isoenergetic diets
had no effect on the amount of N salvaged in the gut, but at
low N intakes (i) more N was derived from blood urea,
(i) microbial yield was maintained, and (iii) renal urea
clearance decreased, while gastrointestinal urea clearance
increased. One interpretation of these studies would be that at
low N intakes regulatory changes in renal and gastrointes-
tinal function help ‘maintain’ UNS at normal levels, despite a
reduction in urea synthesis. If correct, this suggests
modulation of urinary and gastrointestinal urea handling
occurs as part of an integrated response to conserve body N.

Although studies agree on an important role for UNS in
ruminant homeostasis, some studies disagree about the
regulation of UNS. For example, Sarraseca et al. (1998)
reported in sheep that the amount of urea that entered the
digestive tract was always directly proportional to N intake,
and that the proportion of gastrointestinal tract N that
returned to the ornithine—urea cycle remained constant, i.e.
there was no regulation of UNS at all. Importantly, though,
in this study there were altered amounts of feed intake
(compared with the changing of N intake with isoenergetic
diets used in the other studies), which may explain the
differences observed.

As alluded to earlier, it is believed that UNS increases in
ruminants at times when N demands are increased, for
example during pregnancy and lactation (Houpt & Houpt,
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1968). Interestingly, it has been reported in sheep that rumen
ammonia concentration increases in both pregnant and
lactating animals compared with non-pregnant controls
(Benlamlih & de Pomyers, 1989), presumably due to
increased urea hydrolysis. This occurs in conjunction with a
15 % increase in rumination time and a 30—40 % decrease in
renal urea excretion (Benlamlih & de Pomyers, 1989),
suggesting that microbial urea metabolism increases in line
with the demands of the host.

Finally, there is an additional benefit of the UNS process
in ruminants. The salvaging of urea in the gastrointestinal
tract also reduces the need for urea excretion via the
kidneys, and hence may help conserve water. This is
especially important for ruminants that inhabit a dry
environment (for example, camels). Interestingly, the
percentage of urea synthesised that enters the gastrointes-
tinal tract is extremely high in desert animals. In camels 94—
97 % of the total urea synthesised enters the gut, in desert
sheep 75 %, and in desert goats 79 % (Mousa et al. 1983).
Intriguingly, during periods of total water deprivation these
levels increase even further to 94 % in desert sheep and 95 %
in desert goats (Mousa et al. 1983). This suggests that
increased breakdown of urea in the gut may help conserve
water, presumably by reducing the need for urinary urea
excretion and therefore water loss.

In summary, UNS has been extensively demonstrated in
ruminants and the consensus is that it is beneficial to the host
animal. This fact has been capitalised on by the incorporation
of urea into feeds. On the whole, it appears that UNS is a
regulated process although it is also very dependent on the
type of diet ingested. The nature of the control mechanism
has yet to be fully resolved, but may involve several organs
including salivary gland, kidney and rumen, and specific urea
transporter proteins.

Non-ruminants

In contrast to ruminants, there is less known about UNS in
non-ruminant animals, such as mice and rats. In ruminant
animals, the most important organ in N metabolism is the
rumen, which is anterior to the major absorptive organ, the
duodenum. As the name suggests, non-ruminants lack a
rumen or rumen-like organ anterior to the small intestine
(Hill & Cook, 1986). This fact in itself has major
implications for UNS when considering the fate of
bacterially derived products such as amino acids. In non-
ruminants, the majority of urease-containing bacteria live in
the large intestine — the caecum and colon. Hence, the
‘traditional’ view was that since the majority of nutrient
absorption occurred in the small intestine and the majority
of intestinal bacteria live in the caecum and colon, UNS has
little, if any, role in non-ruminant animals. Certainly,
procedures such as dietary urea supplementation do not
appear to benefit some non-ruminants, such as the horse
(Martin et al. 1996), to the same extent as ruminants.

To establish whether UNS is present in non-ruminants
several basic criteria must be satisfied. Urea must be able to
enter the gut, ideally where the bacteria reside. Urea
breakdown should occur and the products of this breakdown
or bacterially derived metabolites should be absorbed.
We will now present evidence relating to these criteria.
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Because the large intestine has been identified as the major
repository of gut bacteria, this has been the focal point for a
majority of the studies we will present. However, it should
be noted that more recent research has demonstrated the
existence of bacteria in the small intestine of non-ruminant
species, such as dogs (Buddington, 2003) and mice (Hooper
et al. 2001).

The idea of a role for the colon in non-ruminant UNS is
supported by the demonstration of a significant flux of
labelled urea across both the proximal and distal rat colon
(mean clearance 5 (SE 1) wl/min per g), while values for
labelled mannitol were not significantly different from zero
(Fihn & Jodal, 2001). We have also shown that urea
transporters are present in the mouse colon and that the
plasma membranes of colonocytes possess functional urea
transporters (Stewart et al. 2004). This means a specific
pathway by which urea could enter the colonic lumen of a
non-ruminant animal exists in the colon. Urea breakdown
has also been shown to occur in the caecum and/or colon of
non-ruminants (Hill & Cook, 1986) — for example, dogs
(LeVeen et al. 1978) and rats (Harada et al. 1985). Indeed,
the major source of N in the colon of non-ruminant animals
is thought to be the ammonium ions derived from urea
(Mason, 1984).

In the 1980s, investigation of the urea kinetics of a non-
ruminant animal, the dog, showed that there was a recycling
of labelled ammonia back into urea, suggesting ammonia-N
was reabsorbed by the host (Wolfe, 1981). Interestingly, this
recycling of ammonia was reduced by treatment with
antibiotics (Wolfe, 1981). In another study in rats,
Torrallardona and colleagues (1996a) showed microbial-
derived lysine was utilised by the host and that in gnotobiotic
(germ-free) animals this was absent. In a further report,
Torrallardona et al. (2003) showed in pigs that gastrointes-
tinal microflora contributed significantly to the essential
amino acid requirements. However, the site of amino acid
absorption was not resolved. Taken together, these data
suggest that the basic components required for UNS are
present in the non-ruminant large intestine.

By comparing the percentage of urea produced that is not
excreted in the urine (i.e. urea that is available for hydrolysis
in the gut) between species, an indication of the relative
degree of UNS can be obtained. Under conditions of
reduced protein intake, between 60 and 70 % of the urea
synthesised is not excreted via the kidney in sheep
(Sarraseca et al. 1998). This proportion is 55-85 % in
cattle (Bunting et al. 1989a; Archibeque et al. 2001),
whereas it is generally much lower in non-ruminants — for
example, 20 % in rats (Younes et al. 1996) and 15 % in cats
(Russell et al. 2000). The latter observation is of interest
because it illustrates that even animals that consume an N-
rich diet, such as the domestic cat (Felis silvestris catus),
have the capacity to salvage urea to a small extent —
although unless protein is restricted, only about 10 % of the
urea produced enters the gut (Russell et al. 2000).

In some species that practice coprophagy, it can be argued
that bacterially derived amino acids are absorbed in the
small intestine following ingestion of faeces. For example,
prevention of coprophagy in rats greatly reduces
the anabolism of microbial amino acids (Torrallardona
et al. 1996b), suggesting the small intestine as the site of
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absorption. However, this would not explain the site of
absorption in non-coprophatic species such as man.

Man

In recent times the evidence supporting UNS in man has
begun to reach critical mass. Research has focused on
identifying pathways of urea entry into the large intestine
and on measuring the proportion of systemic urea that is
cleaved and returned to the host.

The widespread use of molecular biology and the
completion of the human genome have led to the
identification of a candidate protein that transports urea and
is expressed in the large intestine. We have identified a urea
transporter in the human colon (hUT-A6) that was isolated
from human colonic mucosa and is likely to mediate urea
transport into the colon (Smith et al. 2004). Interestingly, this
protein is activated by cAMP and may therefore serve to
regulate urea flux into the colon.

Studies dating back to the 1950s indicate that urea
hydrolysis, a pre-requisite to salvaging, occurred in man.
Walser & Bondenlos (1959) found that in normal men
20-30% of the urea produced was continuously being
hydrolysed by intestinal bacteria and that this urea
breakdown did not occur after antibiotic treatment. This
value was later confirmed by several studies, including
el-Khoury er al. (1994) who estimated bacterial urea
breakdown to be 20—-25 % of total urea production. It was
suggested by Wrong (1971) that the major site of urea
hydrolysis in man was the colon, though it was reported to
also take place in the mouth and stomach.

Urea breakdown in the stomach has become the focus of
research in the last two decades because of the discovery of
a urease containing pathogenic bacteria Helicobacter pylori.
In the 1990s it was discovered that this bacteria causes
ulceration of the stomach (Vaira er al. 1990) and is also
implicated in tumorigenesis (Correa, 1992). The fact that
infection by this bacteria depends on its capacity to cleave
urea means that it may contribute to UNS, although any
small benefits the host may gain are far outweighed by the
bacteria’s deleterious effects.

Significant amounts of amino acids of microbial origin
have been detected in human subjects (Metges et al. 1999).
Up to 20 % of host lysine (about 70 mg/kg per d) may be
derived from intestinal microbial sources (Metges, 2000).
Studies with labelled urea have demonstrated that amino
acids synthesised by intestinal bacteria using urea as an N
source are indeed absorbed by the host (Tanaka et al. 1980;
Jackson, 1998; Metges et al. 1999). Interestingly, both small
and large intestines have been implicated in the relationship
between the host N metabolism and intestinal microflora,
with microbial amino acids being found in the blood plasma
of both normal men and ileostomates (Metges et al. 1999).
It appears that the majority of microbial lysine uptake takes
place in the small intestine, with the possibility of some
additional uptake in the colon (Metges, 2000). However,
these reports also stated that without better understanding of
the interactions between the intestinal mucosa and the
microflora that inhabit the intestinal lumen and walls,
the significance of these bacterially derived amino acids to
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overall N balance cannot be stated with any certainty
(Metges et al. 1999).

Low nitrogen supply. The idea of urea salvaging in man
became popular in the 1960s and early 1970s (Wrong, 1967;
Wolpert et al. 1971; Richards, 1972; Bown et al. 1975), but
the lack of dramatic effects low-protein diets had on the
process dulled the scientific community’s interest (Jackson,
1994). However, recent compelling evidence suggests that
UNS is important in man in situations of low N intake
(Jackson, 1995; Metges et al. 1999; Waterlow, 1999).

The introduction of studies utilising stable-isotope
N-labelled urea has led to a resurgence of interest. Oral
administration of stable-isotope N-labelled urea (lSN 15 N)is
a useful method for investigating the fate of gastrointestinal
urea in man. Labelled urea that is not broken down by
bacterial urease remains as '’N'°N. In contrast, ammonia
formed as a breakdown product will contain just one N
molecule. If this is reabsorbed, either directly or as
microbial amino acids or peptides, then any future urea
produced using this molecule will now contain an
unlabelled and a labelled N molecule (**N'°N). Comparing
the amounts of different urea species therefore indicates the
overall fate of gastrointestinal urea (Lapierre & Lobley,
2001). For example, experiments using orally administered
>N-labelled urea showed that '°N incorporation was greater
in Japanese subjects fed a low-protein diet (0-5 g/kg per d)
than those on a normal diet (Tanaka et al. 1980). In addition,
it was found that adult Papua New Guinea highlanders,
whose typical diet was relatively low in protein, retained
more '°N than Japanese adults consuming a normal diet
(Tanaka et al. 1980). Indeed, evidence from one study
suggests that only 10-20% of N derived from urea
hydrolysis returns directly to urea formation (Jackson,
1998).

In men, 35g protein/d represents the minimum
physiological intake to maintain N balance. Reducing
protein intake to 35 g/d was found to decrease the amount of
urea-N excreted in the urine from 54 % to 36 % of total urea
production (Langran et al. 1992). The authors suggested that
the increased proportion of urea passing into the gut and the
resulting maintenance of urea hydrolysis was part of a
regulated UNS process. Taking into account provisos
concerning interpretation, this could suggest that in
conditions where urea production and urinary excretion
are significantly reduced, adaptive changes occur to
maximise the amount of urea salvaged from the gut.
Another study looked at the effects of feeding a diet of 30 g
protein/d. Under these conditions, N balance could not be
maintained and urea excretion was actually greater than
observed with the 35 g/d diet (Danielsen & Jackson, 1992).
Taken together these data may indicate that UNS appears to
be able to compensate for reductions in N intake, but within
limits. Additionally, feeding urea to men consuming diets
marginally inadequate for protein was shown to compensate
for low protein intake (Meakins & Jackson, 1996).

It is important to note, however, that some reports
completely contrast these findings. For example, a recent
study observed no adaptive changes in urea kinetics during
periods of starvation or low energy (2-55 MJ/d) diet, with no
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changes in the proportion of urea being hydrolysed in the
gastrointestinal tract (20—25 %; Faber et al. 2003).

High nitrogen demand. 1In addition to studies investigating
UNS during reduced N supply, several studies have
investigated UNS in situations of increased N demand —
including infant growth and pregnancy. Before considering
these it is important to mention that human growth rates are
much less dramatic than in other species, though never-
theless evidence supporting changes in UNS are apparent.

Urea is present in human breast milk (Wu et al. 2000),
where it contributes about 15 % of the N content (Donovan
& Lonnerdal, 1989; Wheeler er al. 1991). Interestingly, the
amount urea may be altered by changes in the maternal diet
— for example, a decrease in the level of urea in milk — was
reported when maternal dietary protein was decreased from
20% to 8% (Forsum & Lonnerdal, 1980). It has been
proposed that urea is a valuable source of N for neonates and
there is indeed evidence that substantial hydrolysis of urea
occurs in the neonatal colon (Wheeler et al. 1991). The
reported rate of urea hydrolysis by colonic microflora in
breast-fed infants has been found to be higher in those under
6 weeks old compared with older infants (Steinbrecher et al.
1996). This led the authors to suggest that UNS is
particularly important in the first few weeks of life.

Urea hydrolysis in the gastrointestinal tract of infants has
been shown to increase the supply of certain amino acids,
including lysine (Millward et al. 2000). Millward et al.
(2000) also reported that about 50 % of all urea produced in
these infants was hydrolysed in the gut, compared with the
20-25 % reported in adults (Long et al. 1978; el-Khoury
et al. 1994). More interestingly, infant Papua New Guinea
highlanders retained a significantly larger amount of '°N-
labelled urea than their parents (Tanaka et al. 1980). These
results suggest that UNS is more active in children than
adults, including populations where a low-protein diet
requires enhanced levels of salvaging. It has been suggested
that the marginal protein intake that occurs during breast-
feeding could be one possible explanation for this increased
UNS in infants (Heine et al. 1991). The obvious conclusion
to be drawn is that children, especially very young infants,
have significantly higher levels of UNS compared with
adults, presumably because N demands for growth are so
high.

Another situation when N demand is increased is during
pregnancy, when both the mother and fetus require large
amounts of N. Although dietary N intake increases during
pregnancy, measurements of urea production and excretion
suggest UNS also increases (Forrester et al. 1994).
Interestingly, the highest salvaging values occur in the first
trimester (about 80 mg N/kg per d compared with about
40 mg N/kg per d in non-pregnant women), when protein
intake is not as great as at later stages in the pregnancy
(Forrester et al. 1994). Since this coincides with the period
when fetal growth is slowest, perhaps these data suggest that
increased UNS helps to satisfy maternal N demands rather
than fetal requirements. Another report showed that urea
excretion decreases between week 16 and week 24 of
pregnancy (McClelland et al. 1997), perhaps indicating an
increase in UNS. The same study showed that lowering the
protein content of the diet, at any point during pregnancy,
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increases urea hydrolysis and salvaging as would be
expected (McClelland et al. 1997).

Although highly speculative, it is worth noting that
sudden infant death syndrome (SIDS) has been connected
with colonic bacterial urease activity. One report has
detailed that the faecal contents of infants who had died of
SIDS, also known as ‘cot death’, differed from those of
other unexpected infant deaths (Wiklund et al. 1998). SIDS
subjects had low faecal urease activity and unmetabolised
faecal urea, compared with the high urease activity and lack
of urea found in control subjects (Wiklund et al. 1998).
It was proposed that the unmetabolised urea in SIDS
subjects leads to metabolic alkalosis and a subsequent
respiratory insufficiency, resulting in infant death. Cur-
rently, it remains controversial whether these changes in
urea metabolism would be sufficient to cause such marked
changes in pH, with both sides of the argument passionately
supported. Nevertheless, the suggestion remains that the
mechanisms in the infant colon that transport urea to colonic
bacteria may, in some situations, actually lead to fatal
consequences if the urea is not actually broken down by the
bacterial urease enzyme.

Finally, it has been proposed that an added bonus of the
UNS process is the maintenance of a ‘healthy’ large
intestine microflora population. These resident bacteria may
guard against invasion of pathogenic bacteria and colonic
neoplasia (Gibson et al. 2002; Isolauri et al. 2002). It is
known that anaerobic bacterial fermentation in the colon
produces short-chain fatty acids, such as butyrate, that are
used by colonic cells and thought to help prevent cancer
(Hinnebusch et al. 2002). It has also been suggested that
colonic bacteria may aid normal digestion, and the fact that
germ-free experimental animals have higher energy
requirements (Heine et al. 1987) is certainly an intriguing
observation.

In summary, there is a growing body of evidence
suggesting that UNS does indeed occur in man and that it
may be a regulated process. There is also evidence
indicating that UNS plays an active role in maintaining N
balance in man under certain situations.

What are the molecular mechanisms involved in urea
salvage?

The question as to whether UNS is simply a consistent part
of the N transfer processes or a regulated process sensitive to
host N balance remains to be fully answered, but a
substantial amount of evidence suggests that it may indeed
be the latter. A regulated process would be expected to
consist of a mechanism for regulating the supply of urea
from host to bacteria and/or for regulating the movement of
the endproducts of the process, namely ammonia, amino
acids and peptides, from bacteria to host. A basic
hypothetical model of the components of the UNS
mechanism is shown in Fig. 2. The governors of this system
are the specialised transporters that are proposed to be
regulated depending upon nutritional requirements. There
are a number of points during UNS where distinct, regulated
transporters could play a role — including urea transporters,
ammonia transporters and amino acid transporters. The
evidence supporting the presence of these specialised
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proteins in the mammalian gastrointestinal tract is presented
below.

Urea transport

In order for UNS to occur, urea must pass into the
gastrointestinal tract. As previously stated, although urea is
present in the saliva of all mammals, the majority enters
across the gastrointestinal tract wall. There are several
possible mechanisms by which urea can cross an epithelial
layer. The traditional view was that urea is freely permeable
across cell membranes, via passive lipid-phase diffusion
(Galluci et al. 1971). This may indeed account for a small
amount of urea movement into the gastrointestinal tract.
However, plasma membranes are relatively impermeable to
urea and, following the discovery of specialised urea
transporter proteins, the favoured mechanism is for urea to
move via a carrier-mediated process.

Facilitative urea transporters. In the late 1980s, several
functional studies convincingly showed that erythrocytes
and terminal inner medullary collecting ducts of the kidney
nephron possessed particularly high urea permeabilities,
which were in fact too high to be explained by lipid
diffusion alone (for a review, see Marsh & Knepper, 1992).
This suggested that urea could cross certain biological
membranes by a carrier-mediated mechanism. The exist-
ence of specialised urea transporters was confirmed by the
isolation from rabbit kidney inner medulla of a cDNA
encoding a facilitative urea transporter, UT-A2, which
interestingly was also very strongly expressed in the rabbit
colon (You et al. 1993). Like all other facilitative urea
transporters later cloned, this transporter allows rapid
movement of urea down a concentration gradient, does not
require the presence of Na ions, and is inhibited by
phloretin. These proteins would therefore be well suited to

Basolateral (blood)

transporting urea from the blood, where in man urea
circulates at a concentration between 4 and 10 mMm, to the
gastrointestinal tract. Since the latter contains urea-
metabolising bacteria, a concentration gradient exists
favouring movement of urea into the gastrointestinal tract.

Facilitative urea transporters are derived from two
distinct genes — UT-A (Slc14a2) and UT-B (Sici4al) (for
reviews, see Smith & Rousselet, 2001; Sands, 2003).
Although the UT-B gene gives rise to only one protein,
UT-B, there are five well-known splice variants of the UT-A
gene (see Fig. 3). Four of these are predominantly expressed
in the kidney — UT-A1, UT-A2, UT-A3 and UT-A4 — while
a fifth, UT-AS, is found in the testis. A sixth isoform,
UT-A6, has recently been characterised that contains a
unique exon (see Fig. 3). In addition, it is now becoming
apparent that facilitative transporters are present in
numerous other tissues — including brain (Berger et al.
1998), and, importantly, the gastrointestinal tract (Timmer
et al. 2001; Inoue et al. 2004; Stewart et al. 2004).

Facilitative urea transporters have been detected in
ruminants. For example, cDNA has been isolated from
sheep rumen that encodes a fragment of a urea transporter
with 87 % amino acid identity to rat UT-B (Ritzhaupt et al.
1998). This transporter is perhaps responsible for the
phloretin-sensitive urea flux reported in sheep rumen by the
same group (Ritzhaupt et al. 1997). UT-B urea transporters
have also been found in the rumen of Holstein heifers and
preliminary results show them to be differentially expressed
depending upon dietary N content (Marini & van Amburgh,
2003). In contrast, altering N intake did not affect the
abundance of UT-B urea transporters located in sheep rumen
(Marini et al. 2004). Although their precise role in ruminal
urea transport remains to be elucidated, with even some
suggestions for a possible involvement in the re-uptake of
urea from the rumen, the regulation of urea transporters
remains an intriguing possibility.
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Fig. 2. Basic hypothetical model of components of the urea nitrogen salvaging mechanism. Urea transporters expressed in plasma membranes of
colonic epithelia mediate urea flux from host to gastrointestinal lumen. Urease-containing colonic bacteria then catabolise urea, liberating
ammonia and carbon dioxide. This action maintains a concentration gradient favouring urea flux into the gastrointestinal lumen. The ammonia is
then either absorbed by the host or utilised by the bacteria for anabolic process. The products of bacterial synthesis, in the form of amino acids and
nucleic acids, can also be taken up by the host via amino acid, peptide or as yet undefined transporters.
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Fig. 3. Summary diagram of the UT-A urea transporter family. The basic structure of the characterised UT-A urea transporter isoforms is
illustrated relative to the largest isoform, UT-A1. The horizontal black lines represent the different isoform proteins (UT-A1 to UT-A6), while the
corresponding amino acid numbers in UT-A1 are shown at the bottom. The grey solid line in UT-A6 denotes the nineteen amino acids encoded in

the unique exon 5a.

In the rat, a number of different UT-A mRNA isoforms
have been detected throughout the gastrointestinal tract
(Doran et al. 1999). Both a 2kb UT-B mRNA signal and a
50kDa UT-B protein has been detected in the rat colon
(Bagnasco et al. 2003). In the same report, it was shown that
in rats fed a low-protein diet (8 %) for 10d, colonic UT-B
expression was surprisingly decreased 56 % compared with
rats fed a control diet (Bagnasco ef al. 2003). This finding
suggests that expression levels of facilitative urea
transporters in the gastrointestinal tract can be regulated
by changes in nutritional intake. Similar regulation of
expression levels had previously been shown in renal tissue,
where reduction in dietary protein levels (from 18 % to 8 %)
caused a significant increase in UT-A1 mRNA in the rat
kidney medulla (Smith ez al. 1995). This observation helped
explain the increased phloretin-inhibitable urea transport
observed in inner medullary collecting duct cells during
low-protein diets (Isozaki et al. 1993). Further evidence of
facilitative urea transporters in the non-ruminant gut has
been found in the mouse colon. Several UT-A isoforms were
localised to mouse colonic crypts (Stewart et al. 2004).
Importantly, a phloretin-sensitive urea pathway was found
to exist in colonic plasma membrane (Stewart et al. 2004) —
see Fig. 4. This pathway is therefore similar to those
reported in other tissues, including kidney and testis, which
express UT-A and UT-B proteins (Fenton et al. 2002).

Facilitative urea transporters have also been found in
human subjects. The structure of the human UT-A gene has
recently been resolved and mapped to the Slc/4a2 gene locus
(Bagnasco et al. 2001). As predicted from studies on other
species, human UT-A1 is located in the inner medullary
collecting duct, is inhibited by phloretin and is activated by
cAMP (Bagnasco et al. 2001). The human colon has been
shown to be permeable to urea (Moran & Jackson, 1990).
Interestingly, a cDNA isolated from human colon encoding a
novel UT-A urea transporter human UT-A6 (Genbank
Accession #AK074236) has recently been characterised
(Smith et al. 2004). Like other family members, human UT-
A6 is sensitive to phloretin and cAMP. Using hUT-A6 cDNA
as a probe we have performed Northern analysis on human
gastrointestinal tract mRNA and detected two transcripts of
size 2-2 and 5-6 kb in the human colon (Fig. 5). Human UT-B
transporters have also been found in erythrocytes (Olives
et al. 1994) and endothelial cells of kidney descending vasa
recta (Timmer et al. 2001). The presence of UT-B urea
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Fig. 4. Phloretin-inhibitable urea flux in the mouse colon. Results of
refractive light experiments measuring urea flux in mouse colonic
plasma membrane vesicle preparations. Vesicle swelling,
represented by a decrease in absorbance readings, was
significantly greater in 2mm-urea (M) than in the control solution (OJ)
(P < 0-05; ANOVA). This increase in swelling due to urea (i.e. a urea
flux) was completely abolished in the presence of 500 pM-phloretin
() (P<0-05; ANOVA), a known inhibitor of facilitative urea
transporters. Mean values are shown, with standard errors
represented by vertical bars.
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Fig. 5. Northern analysis of human gastrointestinal tract poly A"
RNA (1 pg/lane) probed with full-length hUT-A6. Northern blot,
probed at medium stringency, showing strong signals at 2-2 and
5.-6kb in the ascending and descending colon — presumably
representing hUT-A6. Weaker signals of the same size were
present in jejunum, ileum, ileocaecum and caecum.
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transporters in the human gastrointestinal tract is now being
fully investigated. Initially, an RT-PCR product with 82 %
identity with human UT-B was reported in the human colon
(Ritzhaupt et al. 1998), while Northern blot analysis using a
specific human UT-B probe detected 2-0 and 3-6 kb signals in
human small intestine and colon (Olives et al. 1996). This has
now been confirmed by the detection in the human colon of a
2:0kb UT-B transcript and a 50kDa UT-B protein, which is
localised to the epithelial layers of colonic crypts (Inoue et al.
2004). Interestingly, UT-B expression has also been
displayed in an intestinal cell line, Caco-2, which possesses
a phloretin-sensitive transepithelial urea flux (Inoue et al.
2004). If considered alongside functional data from the
mouse, this provides compelling evidence that facilitated
urea transporters are expressed in the colon of non-ruminant
animals, including man, and that functionally these proteins
play a role in urea transport across cellular plasma
membranes. Intriguingly, studies in rat colon also suggest
that regulation of these transporters may occur during
changes in nutritional requirements.

Active urea transporters. Although cDNA encoding
mammalian active urea transporters have not been isolated,
functional data supporting the presence of these proteins
transport in kidney inner medulla collecting ducts have been
reported (Sands, 2003). In contrast to facilitative urea
transport, active transport can move urea against a
concentration gradient and requires the presence of Na
ions (Sands, 2003). Several different transport activities
have been characterised. These fall into two classes based
on their sensitivity to phloretin. Active urea secretion and
“furosemide-induced’ active urea absorption are inhibited
by phloretin, whereas the carrier-mediated urea absorption
activities induced by a ‘low-protein diet’ or ‘hypercalcae-
mia’ are not phloretin-inhibitable (Sands, 2003). Data also
suggest the presence of both ‘Na-urea co-transporters’ and
‘Na-urea counter transporters’.

In mammals, active urea transport has to date only been
reported in the rat kidney (Kato & Sands, 1998) and its
presence in the intestinal tract of rats or other species has yet
to be investigated. However, it is interesting to note that a
low-protein diet was shown to induce active urea transport
in rat initial inner medullary collecting ducts (Isozaki et al.
1994). Up regulation of urea transport via these transporters
may in part be responsible for the decreased renal urea
clearance observed in low-protein diets in ruminants
(Marini & van Amburgh, 2003), non-ruminants (Younes
et al. 1996) and man (Langran et al. 1992). This would
promote urea retention and may represent an integrated
response between the kidneys and the gastrointestinal tract,
geared to conserving and utilising urea as an N source. This
could involve alterations in expression levels of both the
active urea transporters, that have not yet been cloned, and
facilitative urea transporters.

Other transporters. Aquaporins (AQP) are a large family
of water transporters found in many different tissues,
including the gastrointestinal tract (for a review, see Ma &
Verkman, 1999). The functional properties of these
transporters vary considerably, and some members —
including AQP3, AQP7, AQP8 and AQP9 — are capable
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of transporting small amounts of urea (for a review, see
Echevarria & Ilundain, 1998). All four of these AQP have
been detected in the colon and could therefore be involved
in UNS mechanisms.

A number of other transporters belonging to the Na-
coupled solute transporters have been reported to be slightly
permeable to urea, for example, the Na-—glucose co-
transporter SGLT1 (Leung et al. 2000), and Na—glutamate
co-transporter (MacAulay er al. 2002). Although it is well
understood that expression levels of such transporters can be
regulated by dietary intake, for example SGLT1 is regulated
by dietary carbohydrate (Ferraris, 2001), little is known
regarding any possible role in urea transport. Indeed, while
some of these transporters are expressed in the colon, their
urea permeabilities are dramatically lower than UT-A or
UT-B transporters (for example, 1-3 X 10~ cm/s for SGLT1
(Leung et al. 2000) compared with a value of
4.5 x 1077 cm/s for the facilitative urea transporter UT-A2
(You et al. 1993)). Therefore, compared with the facilitative
urea transporters, they may be expected to play only a very
minor role in urea movement into the colon.

Bacterial toxins. An interesting possibility is that the
bacteria themselves secrete factors that permeabilise the
membrane allowing urea to pass. A recent report showed
that the H. pylori Vac A toxin may act as a urea permease,
promoting urea diffusion across epithelia and enabling
H. pylori to infect the stomach (Tombola et al. 2001). It is
therefore plausible that resident colonic bacteria secrete
‘toxins’ that act directly on intestinal epithelial layers,
promoting bacterial growth by increasing the movement of
urea into the gut lumen. Another intriguing yet untested
possibility is that bacterial toxins may induce expression of
host proteins, for example, facilitative urea transporters, and
in so doing increase the supply of urea.

Reabsorption of nitrogen

As we have described earlier, there is evidence indicating
that UNS occurs in non-ruminant animals, including man.
In terms of the process of UNS, for the host to gain access to
the urea-N liberated by the action of bacterial urease, there
is a need for proteins capable of transporting the products of
bacterial metabolism, i.e. ammonia, amino acids or
peptides. Crucially, investigation is required to determine
whether post-ileal areas of the gut that are not usually
associated with the uptake of these substances, specifically
the colon, also contribute to bacterial product transport.
There are no detailed studies of ruminant colonic
ammonia transport, but it is suggested that roughly half of
the overall N uptake in the ruminant gut is in the form of
ammonia (Lapierre & Lobley, 2001), though this varies
depending upon diet. The uptake of ammonia in ruminants
has been linked with short-chain fatty acids (Bodeker et al.
1992) and a K-coupled transport system has also been
suggested (Bodeker & Kemkowski, 1996). Ammonia
transport in non-ruminants has been demonstrated in the
equine colon, which although impermeable to amino acids,
transports ammonia (Bochroder et al. 1994). In rats,
ammonium permeates the colon through Na—K-2Cl co-
transporters (probably via the NKCC1 isoform) and Na—H
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exchangers (Ramirez er al. 1999). In contrast, the apical
membrane of rabbit colon has a very low permeability to
both ammonia and ammonium ions (Singh et al. 1995). The
human colon is known to be permeable to ammonia (Bown
et al. 1975) and approximately 9 g ammonia are absorbed
per d (Wrong, 1978). Ammonia transport may be aided by
the secretion of bicarbonate ions by the colonic mucosa,
allowing the conversion of ammonium ions to ammonia
near the apical membrane and hence allowing it to be more
readily absorbed (Wrong, 1978).

Amino acid transporters have been localised throughout
the gastrointestinal tracts of ruminants, including the colon
(Howell et al. 2001). It is also now known that Na-dependent,
chloride-dependent amino acid transporters (ATB®™), which
can transport neutral and cationic amino acids, are expressed
in the mouse colon (Hatanaka et al. 2002). One study using
3H-labelled glycine suggested that mouse ATB® ™ transpor-
ters absorb amino acids from the contents of the colon
(Ugawa et al. 2001). The mPAT1 proton-dependent amino
acid co-transporter is also highly expressed in the mouse
colon (Boll ef al. 2002). Interestingly, alanine absorption
(mean 130 (SE 15) pmol/h per g) has been measured in the
fetal rat colon (Potter et al. 1983). This finding indicates that
the fetal colon may function to help meet nutritional
requirements, possibly involving bacterial-derived amino
acids. In the human colon, although direct absorption of
amino acids remains a possibility, there are as yet no reports
of specific amino acid transporters being present. Indeed, the
nutritional benefit of absorbed bacterial-derived amino acids
has yet to be established in human subjects (Metges, 2000).

Peptide transporters have also been localised to the
mammalian colon, although there is again great species
variability. The peptide transporter PepT1 has not been
detected in the colon of ruminant animals, such as sheep and
cows (Chen et al. 1999). In the non-ruminant rat, PepT1
protein has been detected in the colon, but only in the first
week after birth (Shen ef al. 2001). However, another report
using RT-PCR detected PepT1 in the adult rat colon
(Herrera-Ruiz et al. 2001). PepT2 has also been detected in
the rabbit colon (Doring et al. 1998). Importantly, although
expressed at a lower level than in the small intestine, PepT1
is expressed in the adult human colon and may be the
pathway for colonic N absorption (Ford et al. 2003).
Interestingly, colonic human PepT1 is known to be up
regulated in cases of chronic inflammation of the colon
(Merlin et al. 2001) and in patients with short-bowel
syndrome (Ziegler et al. 2002). In addition, up regulation of
human PepT1 has been reported in the jejunum during
starvation (Ogihara et al. 1999). Other peptide transporters,
such as PTR3, PHT1 and HPT-1, have also been shown to be
present in the human colon (Herrera-Ruiz er al. 2001).
Taken together these observations indicate at least the
possibility that colonic peptide transporters may be
regulated by dietary intake and may play a significant role
in UNS, although there is as yet no direct evidence.

An in-depth discussion of these processes is beyond the
scope of the present review, but suffice to say that the
components for a complete UNS process are present in most
species so-far studied. In addition, the expression of some of
these transporters is regulated in situations of altered
nutritional requirements (for example, down regulation of
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gastrointestinal UT-B urea transporters during low-protein
diets (Bagnasco et al. 2003), up regulation of peptide
transporters in the human jejunum during starvation
(Ogihara et al. 1999)). Another intriguing possibility is
that differences in expression of these transporter systems
underlie the species differences observed for UNS. For
example, sheep can convert digestible N to absorbed amino
acid-N much better than cattle are able to (Lapierre &
Lobley, 2001). Is there an explanation for this difference at
the molecular level? Currently no, but in the future this
knowledge offers the prospect of improving N utilisation in
cattle.

In summary, it therefore remains highly plausible that
UNS is not just simply an effect of the microbial
environment, but a specific, regulated interaction between
the gut bacteria and their host. However, there is a need for
studies that profile transcripts and the expression of proteins
that are potentially involved in UNS, particularly in the
caecum and colon. Ideally, experiments should be
performed under conditions known to promote UNS (for
example, low-protein diets, growth).

Conclusions

In mammals, N balance can be maintained throughout
fluctuations in dietary intake. There is now compelling
evidence to suggest that a contributory factor to this is the
process of UNS. Evidence for the salvaging of urea-N has
been found in gastrointestinal tracts of both ruminant and
non-ruminant animals, including man. As expected, on a
day-to-day basis, UNS appears more important in ruminant
animals (for example, sheep, cattle) than in man. However,
there are a number of situations where substantial UNS may
occur in man, including ingestion of low-protein diets,
during periods of growth and during pregnancy.

The exact mechanisms of UNS are not yet fully
understood. Precisely how urea passes into the gastrointes-
tinal tract, and by which pathways bacterial-derived
ammonia, amino acids and/or peptides are reabsorbed is
still unclear. Nevertheless, it is evident that such processes
may be regulated by nutritional demands, in that several
studies have reported an increased UNS when there is a
decrease in protein intake. The role of UNS in maintaining
commensal bacteria populations and the resulting benefits
this brings are also not to be underestimated. In the present
review, we have summarised studies discussing a variety of
transporters that may be implicated in the UNS process.
Further work is now required to investigate the specific role
of facilitative urea transporters, AQP, amino acid transpor-
ters, peptide transporters and possibly other proteins.
Clearly, the most obvious step is to look at the effects of
low-protein diets, pregnancy and illness on the expression of
these transporters throughout the gastrointestinal tract,
especially in the non-ruminant colon. Functional assays of
any corresponding changes in the urea flux from these
regions of the gut are also required. Another interesting area
for further research would be to investigate the effect of
removing the intestinal bacteria, i.e. how is N metabolism
affected in germ-free animals? The possible involvement of
a breakdown in the UNS process in the colons of SIDS
victims is another area worthy of further study. Through
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studies such as these, we can gain a better understanding of
the process of UNS and how it may affect our daily lives.

What are the future implications of this work?
The significance and relevance of UNS to the wellbeing of
mammals, including man, is potentially far reaching. Taking
a step back, the relationship between host and commensal
micro-organisms is poorly understood and additional
knowledge would undoubtedly have a broad appeal.
A complete knowledge of this and the UNS process would
enable clinical intervention in a variety of important
situations. Possibilities include improving the nutritional
benefit of low-protein diets, aiding child growth, improving
the health of pregnant women, and possibly even helping
tackle the problem of cot death.
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