Are the health benefits of fish oils limited by products of oxidation?

Rufus Turner, Carlene H. McLean and Karen M. Silvers*

New Zealand Institute of Crop & Food Research, Private Bag 4704, Christchurch, New Zealand

Human clinical trials have shown that fish oils reduce the risk of a variety of disorders including CVD. Despite this, results have been inconsistent. Fish oils are easily oxidised and some fish oils contain higher than recommended levels of oxidised products, but their effects have not been investigated. Recent evidence indicates that dietary oxidised fats can contribute to the development of atherosclerosis and thrombosis. This review summarises findings from cellular, animal and human trials that have examined the effects of oxidised lipids and their potential to affect health outcomes, and proposes that oxidised products in fish oils may attenuate their beneficial effects. More research is required to determine the magnitude of negative effects of fish oil on health outcomes in clinical trials.

Fish oils: Oxidised lipids: Hydroperoxides: Human clinical trials: Animals: Cells

Introduction

The consumption of fish oils is beneficial for a variety of health outcomes. The major benefit demonstrated to date has been a reduction in the risk of CVD (Burr et al. 1989; Valagussa et al. 1999; Bucher et al. 2002; Calder, 2004a; Okuda et al. 2005; Schmidt et al. 2005b). Fish oils also have anti-inflammatory properties (Calder, 2004b). These are thought to improve tenderness and stiffness in the treatment of rheumatoid arthritis, although relatively high doses (4–5 g/d) of fish oil are required for an effect (Cleland et al. 2003). The role of fish oils in brain function and mental health has also been investigated with studies showing beneficial effects on pre- and postnatal brain development (Jorgensen et al. 1999; Helland et al. 2003). Other studies have found that low fish consumption is associated with depression and other mental conditions (Adams et al. 1996; Hibbeln, 1998; Silvers & Scott, 2002; Heude et al. 2003).

Fish oil composition varies markedly depending on a variety of factors including fish species, sex and season. Fish oils tend to contain relatively high concentrations of long-chain n-3 PUFA of which EPA and DHA are the most prominent (Fig. 1). They also contain relatively high levels of tocopherol. Fish oils are available to consumers either in free form or in capsules.

Epidemiological evidence suggests that the intake of high levels of n-3 PUFA found in the flesh of oily fish or the livers of lean fish, such as, cod-liver oil, is associated with a reduced risk of CHD (Hu & Willett, 2002; De Caterina et al. 2003; Lee & Lip, 2003; Harrison & Abhyankar, 2005). This is further supported by the results of randomised controlled trials in the treatment of patients with heart disease (Burr et al. 1989; Valagussa et al. 1999). After supplementation with fish oil capsules, these patients had a longer life expectancy with a greater reduction in the risk of fatal myocardial infarctions.

However, randomised controlled trials investigating the potential effects of fish oils on markers of heart disease have produced inconsistent results. A meta-analysis of randomised controlled trials involving patients with heart disease indicated that the relative risk of sudden death for those taking fish oil capsules (containing 0.9–9 g EPA and DHA/d, combined) was 0.7 (95% CI 0.6, 0.8) compared with placebo (Bucher et al. 2002). Another meta-analysis, investigating the effects of fish oil supplementation (1–7 g EPA and DHA/d) on serum lipids and lipoproteins (Harris, 1997), indicated that the major beneficial effect of fish oil supplementation was a 25% reduction in triacylglycerol levels in human subjects.

While both meta-analyses aimed to determine the effects of consuming moderately high levels of EPA and DHA, the effects of the same dose on cholesterol and triacylglycerols varied considerably between the studies included in the meta-analyses, some finding a reduction in cholesterol levels whilst others found small increases. The degree of triacylglycerol reduction also varied by over 100% but this may have been related to the original sample population. However, there appeared to be little or no correlation between the quantity of fish oil consumed and the degree of triacylglycerol reduction or effect on cholesterol levels. In addition, the consumption of low levels of fish oil did not appear to reduce triacylglycerols

Abbreviations: HODE, hydroxide; HPODE, hydroperoxide; PV, peroxide value.

Corresponding author: Dr Karen M. Silvers, P.O. Box 41043, Christchurch, New Zealand, fax + 64 3 325 2074, email karen.silvers@xtra.co.nz
but did increase total and LDL-cholesterol. For instance, an intake of 0.7 g DHA/d had no significant effects on triacylglycerol levels compared with placebo, but did increase LDL-cholesterol by a net 7% (Theobald et al. 2004).

There are also inconsistencies in the literature regarding the effect of fish oils and other preparations of n-3 PUFA on LDL-cholesterol concentrations, with some showing an increase and others a decline (Kaul et al. 1992). In some studies, an increase in LDL-cholesterol was observed (Leigh-Firbank et al. 2002; Wilkinson et al. 2005). However, the amount of atherogenic LDL-3 cholesterol decreased by more than 22% at the same time, thus suggesting a reduction in atherogenic risk profile.

There are several possible explanations for the inconsistencies. These include the quantity and composition of fish oil (Kris-Etherton et al. 2003; Buckley et al. 2004; Kew et al. 2004), the CHD risk of participants (Markmann & Gronbaek, 1999) and the participant’s genotype (Minihane et al. 2000). However, the degree of fish oil oxidation has not been discussed previously.

Fish oils are oxidised during processing and after encapsulation (Hamilton et al. 1998; Undeland et al. 1998; Baik et al. 2004). Potential routes of lipid oxidation include auto-oxidation, photo-oxidation and metal-catalysed oxidation, as well as ionically catalysed oxidation (Frankel, 2005). EPA and DHA are more susceptible to lipid oxidation than other fatty acids under identical conditions because they have a relatively high number of double bonds (unsaturation) and readily form hydroperoxides (HPODE; the initial degradation product in free radical-catalysed lipid oxidation). This paper reviews the influence that lipid oxidation products in fish oils may have on health outcomes.

Fish oils

Oil extracted from marine animals is a valuable source of n-3 PUFA but is also an extremely unstable product. Fish oil is obtained primarily from fish rendering plants during the processing of whole or filleted fish bodies into fishmeal. These products are mainly used in the agriculture and aquaculture sectors as fertiliser and fish feed, with only about 2% of the resulting fish oil used in products for human consumption in 2000 (Barlow, 2000).

As the demand for human consumption has risen, fish oil is increasingly being packaged as a high-value niche product. However, the processing and handling of the raw material has changed little. As a result, the quality of fish oil products on the market has been generally poor, due to the instability and rapid oxidation of the very-long-chain n-3 PUFA (Hamilton et al. 1998). To counter this, some crude oil from fishmeal plants is refined to improve its organoleptic properties for human consumption (Venugopal & Shahidi, 1998).

Oxidation of fish oils

Oil degradation through oxidation occurs when unsaturated fats come into contact with atmospheric O2. This oxidative process may be accelerated by the presence of metals and by exposure to light and heat. Fish oils are more vulnerable to oxidative degradation because they contain higher quantities of very-long-chain n-3 PUFA (Fig. 1) than vegetable or other animal fats (Khayat & Schwall, 1983).

Auto-oxidation (Fig. 2 (a)) is the major oxidative reaction in oils, and involves the formation of free radicals in the presence of ‘initiators’. Initiators catalyse the removal of a hydrogen ion from an unsaturated fatty acid bond. Examples of these include HPODE and transition metals, both of which are common in foods (Frankel, 2005).

The other common oxidation reaction in oils is photo-oxidation (Fig. 2 (b)). With light exposure (UV radiation)

```
(a) LH (lipid) → L’ + H'(radicals)
L’ + O2 → LOO’
LOO’ + LH → L’ + LOOH (hydroperoxide)

(b) Initiator, e.g. UV light
3O2 → 1O2
1O2 + LH → LOOH (hydroperoxide)
```

Fig. 2. (a) The auto-oxidation and free radical formation of hydroperoxides. (b) The photosensitised formation of hydroperoxides. LH (lipid).
and a sensitizer (chemicals that can be excited by UV radiation) present, triplet oxygen \((^3\text{O}_2)\) is converted to singlet oxygen \((^1\text{O}_2)\), which then interacts with fatty acid double bonds to form lipid HPODE. This type of reaction occurs at a more rapid rate than auto-oxidative reactions owing to the low activation energy required (Min & Boff, 2002). The products of photo-oxidation can often initiate further auto-oxidation reactions (Frankel, 1991).

The primary products of lipid oxidation are known as HPODE. Over time, these compounds break down into secondary oxidation products (aldehydes and ketones) which cause the unpleasant odours associated with rancid oils. These may eventually break down into short-chain tertiary products (Fig. 3).

Antioxidants are usually added to fish oils to prolong their shelf life and preserve their organoleptic properties. Radical scavenging is the main mechanism by which antioxidants protect foodstuffs (Pokorny et al. 2001). However, antioxidants vary in their ability to prevent auto-oxidation and photo-oxidation. For example, free radical scavengers, such as vitamin C, anthocyanins and phenolics, are most effective against auto-oxidation, whereas singlet oxygen quenchers, such as flavonoids, β-carotene, and tocopherols, are most effective against photo-oxidation (Gunstone, 1999). Antioxidants can also work by inhibiting oxidation enzymes, for example, flavonoids, or by chelating pro-oxidant metals, such as, citric acid.

Oxidative degradation of fish oils begins while the fish is still alive, induced by the stress of ageing and then capture (Passi et al. 2004). The rate of n-3 PUFA degradation rapidly increases when the fish is processed, as tissue lipids are subsequently exposed to pro-oxidants such as atmospheric O\(_2\) (Unendland et al. 1998) and to endogenous metals and enzymes (Richards & Li, 2004). As a result, amounts of EPA and DHA tend to decrease, while the peroxide value (PV), an indicator of the degree of primary oxidation product, increases (Fritsche & Johnston, 1987).

During the common ‘wet-reduction’ method of commercial fish oil production, the fish is cooked (about 100°C) to facilitate tissue protein coagulation and promote oil expression. The product is then pressed and centrifuged, during which the oil is exposed to both O\(_2\) and heat for several hours (Bimbo, 1987). Oil produced from typical fishmeal production processes is likely to have a PV ranging from 6 to 22 mEq O\(_2\)/kg, depending on processing and handling conditions, and will oxidise further in the absence of antioxidants (Fritsche & Johnston, 1987). Once the oil is extracted and clarified, it is generally stored in large drums. The PV may be temporarily retarded at this stage if antioxidants are added and there is no headspace in storage containers. However, oxidation will continue once the containers are opened and the oil is further processed.

Our research shows that currently available commercial fish oil supplements contain varying levels of primary and secondary oxidation products (CH McLean, unpublished results). Table 1 shows the results of testing commercial fish oil supplements for PV and p-anisidine value, p-Anisidine value is an indicator of levels of secondary oxidation products, i.e. aldehydes and ketones (Aidos et al. 2001). It is important to measure both p-anisidine values and PV when looking at oil quality, as together they give a more accurate profile of the condition of the oil. Specifications for food-grade oils usually indicate a maximum PV of 2 mEq O\(_2\)/kg and a p-anisidine value of 10, but the values in Table 1 show that most commercially available fish oils do not meet these specifications.

Effects of oxidised lipids on health

Cellular, animal and human studies have investigated the effects of dietary oxidised lipids on a range of biomarkers of disease, including lipid metabolism, oxidative stress and inflammation. The effects on each biomarker are discussed in turn. Although none of the products of oxidation have been derived from fish oils, it is envisaged that the outcomes would be similar.

Lipid and chylomicron metabolism

Lipid and chylomicron metabolism are factors used to determine the risk of CVD (Roche & Gibney, 2000; Rivellese et al. 2003). This risk can be assessed in both the fasted and postprandial states.

Cellular studies. To date, most research on the effects of HPODE and hydroxy derivatives (hydroxides; HODE) in animal and human cells has focused on vascular smooth muscle cells. Cellular studies have indicated that oxidised linoleic acid modifies cholesterol metabolism. 13-HPODE and 13-HODE were found to compete with linoleic acid for absorption across the cell monolayer when 13-HPODE, 13-HODE and linoleic acid were incubated together with a human colon cancer cell line (CaCo-2 cells; Muller et al. 2002). This competition led to a decrease in the amount of linoleic acid and an increase in hydroxy fatty acids in released triacylglycerols. The resulting increase in hydroxy fatty acids was then incorporated into lipoproteins, thus increasing their susceptibility to oxidation (Muller et al. 2002).

In addition, oxidised linoleic acid is potentially atherosclerotic, as it increases the solubility of cholesterol in

Fig. 3. General process of lipid oxidation. L, lipid.
micelles, thereby increasing cholesterol uptake in CaCo-2 cells. This effect has been attributed to the fact that oxidised linoleic acid (13-hydroxy linoleic acid) and lithocholic acid, a bile acid used in the solubilisation of cholesterol in micelles, have similar chemical structures (Penumetcha et al. 1996; Roche & Gibney, 2000; Karpe et al. 2001). Chylomicron uptake of cholesterol by the liver was inhibited by 33 % in rats fed a diet containing 1 ml thermally oxidised maize oil (1 h at 100°C). This was thought to be due to a 30 % reduction in hydrolysis of chylomicrons containing oxidised lipids by endothelial lipoprotein lipase (Staprans et al. 1993a). There was also a 40 % increase in chylomicron binding to the heart endothelium in rats fed thermally oxidised maize oil compared with unheated maize oil.

LDL-receptor-deficient mice fed a high-fat diet with or without oxidised linoleic acid have also been used in several studies (Khan-Merchant et al. 2002; Penumetcha et al. 2002). Mice fed a diet containing 21 % enzymatically oxidised (using lipoxigenase) linoleic acid were found to have cholesterol levels that were 33 % higher than those fed an equi-caloric diet containing non-oxidised fat (Penumetcha et al. 2002). As with CaCo-2 cells, this effect was thought to be due to the increased solubility of oxidised lipids, resulting in increased uptake of cholesterol in the presence of oxidised linoleic acid (Penumetcha et al. 2002). Levels of plasma LDL-cholesterol increased by 26 % in mice fed a 21 % fat diet containing 13-HODE compared with those fed the same diet without oxidised fat (Khan-Merchant et al. 2002). In another study, cholesterol levels in both LDL and HDL fractions were found to be approximately 35 % lower in pigs fed a diet containing 15 % thermally oxidised sunflower-seed oil (48 h at 110°C) and lard (94:6; w/w) (Eder & Stangl, 2000).

Table 1. Measure of oxidation products in commercial fish oil supplements

<table>
<thead>
<tr>
<th>Brand</th>
<th>Peroxide value (mEq O2/kg)*</th>
<th>p-Anisidine value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brand A</td>
<td>4-1</td>
<td>11</td>
</tr>
<tr>
<td>Brand B</td>
<td>5-4</td>
<td>9</td>
</tr>
<tr>
<td>Brand C</td>
<td>3-5</td>
<td>15</td>
</tr>
<tr>
<td>Brand D</td>
<td>4-6</td>
<td>17</td>
</tr>
<tr>
<td>Brand E</td>
<td>3-2</td>
<td>16</td>
</tr>
<tr>
<td>Brand F</td>
<td>5-5</td>
<td>20</td>
</tr>
</tbody>
</table>

† AOCS official method CD 18–90 (American Oil Chemists Society, 1998).

Animal studies. Results of studies in rats show that dietary peroxides were the major source of peroxides found in serum lipoproteins, and that these were correlated with peroxides in plasma chylomicrons (Staprans et al. 1993b). Very low levels of peroxides were found in serum lipoproteins when rats were fed a fat-free diet. However, after the addition of 1 ml oxidised maize oil (100°C for 1 h; high PV) to the diet, there was a 5-fold increase in peroxide levels in the serum lipoprotein of healthy rats, and a 16-fold increase in diabetic rats compared with those on a control diet. A similar effect could increase oxidative stress in human consumers and could therefore have adverse cardiovascular effects (Esterbauer et al. 1993; Staprans et al. 1994).

Sulzle et al. (2004) showed that the intake of oxidised lipids altered lipid metabolism in rats. Rats were fed a diet containing 10 % fat or a control diet. The fat was a mixture of sunflower-seed oil and lard that was either oxidised (38 d at 50°C) or unoxidised. Various genes were upregulated after consumption of the diet containing oxidised oil, but not by the control diet. The upregulated genes were related to cytochrome P450, β-oxidation, lipid metabolism and protein metabolism. For instance, there was a 14-fold upregulation of cytochrome P450A. Similarly, Chao and co-workers observed a 5-fold upregulation in P450A expression in rats fed a 20 % oxidised soyabean-oil diet (Chao et al. 2004).

Such cytochrome P450A activation is believed to increase oxidative stress in rats, man and rabbits, and may therefore lead to an increase in the risk of CVD (Fleming, 2004; Thum & Borlak, 2004; Zangar et al. 2004). Some have suggested that the induction of cytochrome P450A was caused by the activation of PPARα expression in rats (Sulzle et al. 2004). However, if this is the case, it is less likely to be an issue in humans, as they have significantly less PPARα than rats (Holden & Tugwood, 1999).

Chylomicron metabolism is an important factor in postprandial lipid metabolism. A delay in chylomicron remnant clearance has been linked to premature coronary sclerosis and thrombosis (Patsch et al. 1992; Weintraub et al. 1996; Roche & Gibney, 2000; Karpe et al. 2001). Chylomicron uptake of cholesterol by the liver was altered the metabolism of cholesterol in all three models. In pigs fed a diet containing 1 ml thermally oxidised maize oil (1 h at 100°C), this was thought to be due to a 30 % reduction in hydrolysis of chylomicrons containing oxidised lipids by endothelial lipoprotein lipase (Staprans et al. 1993a). There was also a 40 % increase in chylomicron binding to the heart endothelium in rats fed thermally oxidised maize oil compared with unheated maize oil.

Human studies. In one study (Naruszewicz et al. 1987), five human subjects were fed a meal containing 100 g untreated soyabean oil followed the next day by an identical meal containing the same quantity of oxidised soyabean oil (heat-treated for 7 h at 220°C). On each occasion, blood samples were taken just before the test meal and then 4 h afterwards. On both days, plasma chylomicrons were isolated and incubated with mouse peritoneal macrophages for 48 h. There was a 10-fold increase in the concentration of cholesteryl esters in macrophages incubated with chylomicrons from participants who had consumed the thermally oxidised soyabean oil meal. In addition, the chylomicrons containing oxidised lipids were more quickly degraded by the macrophages. This suggested that there had been a substantial alteration in the composition of triacylglycerol-rich lipoproteins following consumption of oxidised soyabean oil, but not with fresh soyabean oil.

Summary of effects of oxidised lipids on lipid and chylomicron metabolism. Evidence indicates that dietary oxidised lipids are both absorbed and metabolised, and also alter the metabolism of cholesterol in all three models. In most studies, oxidised lipids were shown to increase the uptake of cholesterol and levels of total cholesterol. This is likely to be a result of an increase in the solubility of lipoproteins in micelles. These effects, along with the
inhibition of cholesterol re-uptake by the liver, have the potential to increase the risk of atherosclerosis.

Effects on oxidative stress
Oxidative stress is considered to be an important factor in the development of CVD. Oxidative stress is indicated by increases in oxidised products, increased activity of enzymes involved in reducing oxidative stress or a reduction in tissue levels of antioxidants. The intake of oxidised lipids is known to affect several of these oxidative stress markers.

Cellular studies. 13-HPODE has been shown to increase the production of H$_2$O$_2$ (a free radical generator) in endothelial and smooth muscle cells (Santanam et al. 1999). As a result, the expression of catalase (an antioxidant enzyme) is increased in various cell types when incubated with 13-HPODE. Catalase expression increased 2–7-fold, 7-fold and 1·5-fold in rabbit smooth muscle cells, mouse macrophages (RAW 264·1) and human umbilical vascular endothelial cells respectively (Meilhac et al. 2000). Such increases indicate that 13-HPODE is able to increase oxidative stress in cells. In addition, Wang et al. (2000) found that incubation of CaCo-2 cells with HPODE led to a redox imbalance, as demonstrated by an 8-fold increase in apoptotic cell deaths and a dose-dependent increase in DNA fragmentation.

Animal studies. Several studies in rats have found an increase in oxidation products in both serum and liver lipoproteins when the rats were fed diets containing oxidised oils. When rats were fed oxidised (50°C for 16 d) sunflower-seed and linseed oils (80:20, w/w), there was a significant doubling in lipid HPODE and thiobarbituric acid-reactive substances (a secondary marker of lipid oxidation) found in the liver compared with the control diet. In another study, Wang et al. (2000) found that incubation of CaCo-2 cells with HPDE led to a redox imbalance, as demonstrated by an 8-fold increase in apoptotic cell deaths and a dose-dependent increase in DNA fragmentation. 13-HPODE has been shown to increase the production of H$_2$O$_2$ (a free radical generator) in endothelial and smooth muscle cells (Santanam et al. 1999). As a result, the expression of catalase (an antioxidant enzyme) is increased in various cell types when incubated with 13-HPODE. Catalase expression increased 2–7-fold, 7-fold and 1·5-fold in rabbit smooth muscle cells, mouse macrophages (RAW 264·1) and human umbilical vascular endothelial cells respectively (Meilhac et al. 2000). Such increases indicate that 13-HPODE is able to increase oxidative stress in cells. In addition, Wang et al. (2000) found that incubation of CaCo-2 cells with HPODE led to a redox imbalance, as demonstrated by an 8-fold increase in apoptotic cell deaths and a dose-dependent increase in DNA fragmentation.

Human studies. The oxidised lipids consumed by six human subjects fed a meal containing thermally oxidised (100°C for 3 h) maize oil (1 g/kg body weight) were found to be the major source of oxidised products found in each participant’s plasma (Staprans et al. 1994). There was a 4–7-fold increase in the concentration of conjugated dienes (a marker of lipid HPODE) in the postprandial chylomicron fraction of those fed the oxidised oil. In other studies, consumption of the oxidised oil caused a significant increase in the level of oxidative products (as shown by thiobarbituric acid-reactive substances) in the chylomicron fraction of plasma (Naruszewicz et al. 1987; Staprans et al. 1994). The oxidative lag time of plasma LDL-cholesterol obtained from volunteers fed oxidised (exposed to air for 6–8 weeks) maize oil (1 g/kg body weight) was also reduced by approximately 25% compared with control (Staprans et al. 1994). This reduction in lag phase again indicates that LDL is more susceptible to oxidation, and is thus conducive to the development of atherosclerosis (Wittzum & Steinberg, 1991; Parks et al. 1998). An even larger reduction in the LDL lag phase (50%) was observed when human subjects were fed a meal containing 400 mg oxidised cholesterol (α-epoxy cholesterol) compared with a control meal (Staprans et al. 2003). Oxidised lipids also affect the activity of paraoxonase. Low paraoxonase activity is seen in individuals at high risk of CHD (Mackness et al. 2003). In fact, the inhibitory effect of HDL-cholesterol on LDL-cholesterol oxidation has been partially attributed to paraoxonase in HDL-cholesterol (Mackness et al. 1993). In addition, mice with reduced paraoxonase activity have been found to be more susceptible to atherosclerosis (Durrington et al. 2001).

Sutherland et al. (1999) found that postprandial serum paraoxonase activity was 17% lower than baseline 4 h after the consumption of a meal containing 46 g thermally oxidised fat. This fat had been obtained from a fast-food restaurant just before its replacement with fresh fat and was equivalent to the fat content of an average fish-and-chip meal. As might be expected, this decrease in paraoxonase activity was accompanied by an increase in the peroxide concentration found in the LDL-cholesterol of participants fed the oxidised fat (Sutherland et al. 1999).
Conversely, paraoxonase activity increased by 14 % when an identical meal containing previously unused fat was consumed (Sutherland et al. 1999). In contrast, individuals with diabetes showed no reduction in paraoxonase activity after consuming 60 g thermally oxidised fat (Wallace et al. 2001), but this may have been due to the already high oxidative load in individuals with diabetes (Bucala et al. 1994; Basta et al. 2004).

Summary of effects of dietary oxidised lipids on oxidative stress. Various markers of oxidative stress and redox balance are affected by oxidised lipids. These include increases in markers of oxidisability (LDL oxidation lag phase; thiobarbituric acid-reactive substances and lipid HPODE), a reduction in plasma levels of dietary antioxidants (α-tocopherol) and modification of antioxidant enzyme activities (catalase and glutathione peroxidase).

Effects on inflammation and vascular function

Inflammation is widely recognised as a contributor to the atherosclerotic process (Ross, 1999; Glass & Witztum, 2001). Fish oils are beneficial for anti-inflammatory, endothelial and other vascular functions (Khan et al. 2003; Schmidt et al. 2005a), but products of lipid oxidation may nullify these beneficial effects.

Cellular studies. Cell studies have indicated that oxidised linoleic acid inflames smooth muscle cells. 13-HPODE induces cell-surface expression of vascular and intracellular adhesion molecules in human umbilical vascular endothelial cells (Khan et al. 1995). Such expression of cell adhesion molecules is thought to be an early event in the development of inflammation and atherosclerotic plaques (Davies et al. 1993; Li et al. 1993). In addition, 13-HPODE increases the vascular cellular adhesion molecule expression both in porcine and human vascular smooth muscle cells, thus promoting an inflammatory response, whereas 13-HODE does not (Natarajan et al. 2001).

13-HPODE also activates kinase 3-fold in porcine aortic cells (Natarajan et al. 2001) and 4-fold in rat aortic cells (Rao et al. 1995). Such increased kinase expression is pro-inflammatory, and therefore 13-HPODE can be considered both pro-inflammatory and atherosclerotic (Natarajan & Nadler, 2004). In addition, a significant increase in caspase-3 activity was observed when intestinal epithelial CaCo-2 cells were incubated with HPODE, providing further evidence of pro-inflammatory activation (Cohen, 1997; Fuentes-Prior & Salvesen, 2004).

13-HPODE also activates monocyte chemoattractant protein-1, an inflammatory marker for increased risk of CVD, in human vascular smooth muscle cells (Dwarakanath et al. 2004). 9- and 13-HPODE both induce cytotoxicity in rat vascular smooth muscle cells via production of the superoxide anion following activation of NAD(P)H oxidase. However, Dwarakanath et al. (2004) found that the corresponding HODE do not have this effect.

Sethi (2002) suggested that oxidised EPA may underlie the anti-inflammatory effects of n-3 PUFA in fish oil. This conclusion was based on a single experiment in human endothelial cells and mice. Results showed that oxidised EPA was better than EPA at inhibiting the adhesion of leucocytes to endothelial cells. These results can be explained because oxidised EPA is a better activator of PPARα than EPA in mice (Sethi, 2002). However, the finding is not likely to be relevant in humans, as rodents have much higher levels of PPARα (Auboeuf et al. 1997; Holden & Tugwood, 1999).

Animal studies. Animals fed oxidised lipids are at increased risk of developing atherosclerosis (Schwartz et al. 1991). Atherosclerotic lesions in the aorta of mice fed 13-HODE (8 mg/d), were twice the size of those fed unoxidised linoleic acid (Penumatcha et al. 2002). Inclusion of 13-HODE in the diet increased the total: HDL-cholesterol ratio by 15–25 % depending on levels of fat and cholesterol in the background diet. Similar effects on atherosclerotic lesions and oxidised cholesterol products were observed in both LDL receptor- and apo E-deficient mice when they were fed 5–10 % oxidised cholesterol (1 % of diet, w/w) compared with a diet containing unoxidised cholesterol (Staprans et al. 2000).

Similarly, in rabbits fed a diet containing thermally oxidised maize oil (2 h at 100°C) containing 120 mg oxidised fatty acids/d, aortic lesions doubled in size, and a 2.5-fold increase in total cholesterol and a 4-fold increase in cholesteryl esters were observed in their pulmonary arteries (Staprans et al. 1996).

Human studies. Endothelium-dependent dilation in human subjects was adversely affected by the consumption of thermally oxidised fat obtained from a fast-food restaurant (Williams et al. 1999). Indeed, endothelium-dependent dilation decreased more than 7-fold after the consumption of a meal containing thermally oxidised fat (46 g oxidised fat obtained from the deep-fat fryer of a restaurant) compared with either equicaloric low-fat meal or a meal containing previously unused fat. This decrease in dilation would be detrimental to the function of the endothelium and is thought to be an important initial event in atherogenesis (Ross, 1993; Sader & Celermajer, 2002).

Twenty-five volunteers were fed a meal containing walnut oil (30 ml) that contained 26 mg hydroxy fatty acids (Wilson et al. 2003). After 6 h, HODE levels in the volunteers’ plasma had doubled, indicating that oxidised lipids in the diet could be absorbed. Following stepwise regression analysis, the intake of plasma hydroxy fatty acids was also found to be a significant predictor of postprandial factor VIIa levels ($r^2 0.56; P = 0.007$). Plasma factor VIIa is the activated form of factor VII (Roche et al. 1998; Sanders et al. 2000; Miller et al. 2002) and higher levels of plasma factor VII are an indicator of increased risk of thrombosis, and therefore CHD, in middle-aged men (Meade et al. 1986; Golino, 2002; Lefèvre et al. 2004).

Summary of the effects of dietary oxidised lipids on inflammation and vascular function. The results of cellular studies provide a strong basis for the pro-inflammatory effects of oxidised lipids, and animal and human studies indicate that vascular function is compromised by the consumption of oxidised lipids. However, vascular function is a complex area and the studies mentioned have various limitations.
Potential limitations

Most cellular studies have focused on the 13-HPDGE of linoleic acid but others have also looked at the 9-HPDGE and HODE of linoleic acid. It is important to note that while other fatty acids such as, DHA and EPA are known to yield different HPDGE as their initial breakdown products, these have not been studied.

The concentration of oxidation products will also vary significantly depending on the method and conditions of oxidation (Frankel, 2005). In the animal and human studies mentioned, the source of oxidised lipid used and the degree of oxidation varied substantially between trials, meaning that the concentration and identity of the oxidised lipid species also varied.

Only a few human trials have been done, the sample sizes have been small, and most have been in individuals with medical conditions. Until larger studies are done it is difficult to draw firm conclusions about the likely impact of oxidised lipids in human subjects. Despite this, animal and human studies have consistently shown that consumption of oxidised lipids has a significant effect on a range of biomarkers, including lipid metabolism, oxidative stress and vascular function that are known to adversely affect health.

Conclusions and recommendations

Oxidised lipids have numerous harmful effects on health, including the potential to increase the risk of atherosclerosis and thrombosis. These effects have been seen with relatively low levels of oxidised product, similar to those that could be obtained from the regular consumption of fish oil capsules. While products of oxidation in fish oils have not been considered previously, one would have to assume that they too are likely to affect health based on the evidence presented in this review. Indeed, oxidation products could account for the varying degrees of effectiveness and other inconsistencies associated with fish oil supplementation that have been reported in the literature.

To enable an accurate evaluation of the effects of oxidised fish oils, it is important that levels of oxidised product in fish oil are taken into account when designing studies involving fish oil supplementation. Reports of relevant studies should state (1) levels of HPDGE and/or other oxidation products in the capsules at the start and completion of recruitment; (2) which antioxidants, if any, and at what concentrations, have been added to the oil to inhibit lipid oxidation; (3) the complete fatty acid composition of the oil used, because different fatty acids have different rates of oxidation.

References

Mackness MI, Arrol S, Abbott C & Durrington PN (1993) Protection of low-density lipoprotein against oxidative...
modification by high-density lipoprotein associated paraoxo-

Marcxmann P & Gronback M (1999) Fish consumption and
coronary heart disease mortality. A systematic review of
prospective cohort studies. *European Journal of Clinical

Meade TW, Brozovic M, Chakrabarti RR, Haines AP, Imeson JD,
Mellows S, Miller GJ, North WRS, Stirling Y & Thompson SG
(1986) Hemostatic function and ischemic heart disease –

peroxides induce expression of catalse in cultured vascular

Miller GJ, Cooke CJ, Nanjee MN, Howarth DJ, Cooper JA,
activation, apolipoprotein A-I and reverse cholesterol transport:
possible relevance for postprandial lipaemia. *Thrombosis and
Haemostasis* **87**, 477–482.

Min DB & Boff JM (2002) Chemistry and reaction of singlet
oxygen in foods. *Comparative Reviews in Food Science and

Minihane AM, Khan S, Leigh-Firbank EC, Talmud P, Wright JW,
Murphy MC, Griffin BA & Williams CM (2000) ApoE
polyorphism and fish oil supplementation in subjects with an
atherogenic lipoprotein phenotype. *Atherosclerosis Thrombosis

Perurbation of lipid metabolism by linoleic acid hydroperoxide

Naruszewicz M, Wozny E, Mirkiewicz E, Nowicka G & Szostak
(1986) Hemostatic function and ischemic heart disease –

Natarajan R & Nadler JL (2004) Lipid inflammatory mediators in
diabetic vascular disease. *Atherosclerosis, Thrombosis and

Natarajan R, Reddy MA, Malik KU, Fatima S & Khan BV (2001)
Signaling mechanisms of nuclear factor-kappa B-mediated
activation of inflammatory genes by 13-hydroperoxyoctadeca-
dienoic acid in cultured vascular smooth muscle cells,

Okuda N, Ueshima H, Okayama A, Saitoh S, Nakagawa H,
Rodriguez BL, Sakata K, Choudhury SR, Curb JD & Stamler J
(1999) Overexpression of human catalase gene decreases
oxidized lipid-induced cytotoxicity in vascular smooth muscle

peroxides, and ascorbate in trout hemoglobin-mediated lipid
oxidation of washed cod muscle. *Journal of Agricultural and

Rivellesse AA, Maffettone A, Vessby B, Uusitupa M, Hermans K,
effects of dietary saturated, monounsaturated and n-3 fatty acids
on fasting lipoproteins, LDL size and post-prandial lipid

Roche HM & Gibney MJ (2000) The impact of postprandial
lipidemia in accelerating atherothrombosis. *Journal of Cardio-

Roche HM, Zampelas A, Knapper JME, Webb D, Brooks C,
Jackson KG, Wright JW, Gould BJ, Kafatos A, Gibney MJ &
Williams CM (1998) Effect of long-term olive oil dietary
intervention on postprandial triacylglycerol and factor VII

reactivity and gender differences in the cardiovascular system.

Sanders TAB, de Grassi T, Miller GJ & Morrissey JH (2000)
Influence of fatty acid chain length and cis/trans isomerization
on postprandial lipemia and factor VII in healthy subjects

Santanam N, Auge N, Zhou M, Keshava C & Parthasarathy S
(1999) Overexpression of human catalase gene decreases
oxidized lipid-induced cytotoxicity in vascular smooth muscle

Schmidt EB, Arnesen H, de Caterina R, Rasmussen LH &
Kristensen SD (2005) Marine n-3 polyunsaturated fatty acids
and coronary heart disease – part I. Background, epidemiology,
animal data, effects on risk factors and safety. *Thrombosis

Schmidt EB, Arnesen H, Christensen LH, Rasmussen LH,
Kristensen SD & De Caterina R (2005b) Marine n-3
polyunsaturated fatty acids and coronary heart disease – part
II: Clinical trials and recommendations. *Thrombosis Research*
115, 257–262.

Sethi S (2002) Inhibition of leukocyte-endothelial interactions by
oxidized omega-3 fatty acids: a novel mechanism for the anti-
inflammatory effects of omega-3 fatty acids in fish oil. *Redox

Sivers KM & Scott KM (2002) Fish consumption and self-
reported physical and mental health status. *Public Health

