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Epidemiological studies have shown a positive relationship between dietary fat intake and
obesity. Since rats and mice show a similar relationship, they are considered an appropriate model
for studying dietary obesity. The present paper describes the history of using high-fat diets to
induce obesity in animals, aims to clarify the consequences of changing the amount and type of
dietary fats on weight gain, body composition and adipose tissue cellularity, and explores the
contribution of genetics and sex, as well as the biochemical basis and the roles of hormones such
as leptin, insulin and ghrelin in animal models of dietary obesity. The major factors that
contribute to dietary obesity – hyperphagia, energy density and post-ingestive effects of the
dietary fat – are discussed. Other factors that affect dietary obesity including feeding rhythmicity,
social factors and stress are highlighted. Finally, we comment on the reversibility of high-fat
diet-induced obesity.

Dietary obesity: Rats: Mice: High-fat diet

Introduction

Obesity is considered to be a major risk factor for chronic
diseases such as CHD and hypertension, type 2 diabetes, and
some types of cancer(1). Its prevalence is increasing, with
400 million obese and 1·6 billion overweight adults around
the world(1). Although genetics plays a role in the regulation
of body weight, body size and body composition and the
metabolic response to feeding in humans(2 – 6) and in
animals(7,8), the increase in worldwide obesity in a short
period of time cannot be explained by genetics; there are
individual differences in genetic susceptibility to environ-
mental factors such as diet(2,6,9 – 11).

Dietary fat intake often has been claimed as responsible
for the increase in adiposity. Human studies have shown that
high-fat diets ($30 % of energy from fat) can easily induce
obesity(10,12 – 15). Epidemiological studies conducted in
countries such as China, Canada and the USA have shown
that, when the average amount of fat in the diet increases,
the incidence of obesity also increases(16 – 19). This has led to
a worldwide effort to decrease the amount of fat in the
human diet.

Diets rich in fat not only induce obesity in humans but
also make animals obese(20 – 22). In both rats(23,24) and
mice(25,26) a positive relationship has been found between
the level of fat in the diet and body weight or fat gain. In the
scientific literature it was first shown that rats consuming
diets containing high proportions of fat gained weight faster
than those on diets containing minimal amounts of fat(27,28).

In 1949, obesity was induced for the first time in rats by
ad libitum feeding of a semi-liquid palatable diet(29). Then
in 1953, Fenton & Dowling used high-fat diets with fat at
50 % of total energy in weanling mice to induce obesity;
they called it nutritional obesity(30) but the model was later
renamed as dietary obesity(31).

Since under-reporting is an important bias in epidemio-
logical studies on diet and obesity in human subjects(32 – 34),
animal models have been widely utilised for experiments
on dietary obesity(7,8,35,36). Usually high-fat diets within
the range of 30–78 % of total energy intake are used(21) –
either by adding a particular fat to the animal’s diet or
using an assortment of fat- and sugar-rich supermarket
foods (cafeteria diet) – for studying obesity in rats(24,37 – 46)

and mice(25,47 – 52). The use of high-carbohydrate–low-
fat diets has not been found as efficient as high-fat–
low-carbohydrate diets in inducing obesity(24,41,53).

It has been reported that despite the growing problem of
obesity, Canadians and Americans are eating less fat than
a generation ago(54,55). This shows that the increasing rate of
obesity cannot be totally explained by high intakes of fat in
the diet, suggesting that the type of fat may also play a role,
although the results of the studies in human subjects and
animals have not been conclusive(56). Some studies have
reported that not all fats are obesogenic and the dietary fatty
acid profile rather than the amount of energy from fat is an
important variable in developing dietary obesity(25,47,57 – 60),
but there is some controversy on this matter since there are
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reports showing non-significant differences in final body
weight and/or body-weight gain of the animals consuming
various fatty acids(53,61 – 66).

Other factors that may contribute to obesity induced by a
diet rich in fat include failure to adjust oxidation of fat to the
extra fat in the diet(15), increase in adipose tissue lipoprotein
lipase activity(67), increased meal size and decreased meal
frequency(68), as well as overconsumption of energy
attributed to high energy density of the diet(69 – 72),
orosensory characteristics of fats and poorly satiating
properties of the high-fat diets(22,69,70). Reviews of dietary
obesity describe potential mechanisms of body weight and
food intake regulation involving the central nervous system
– mainly the hypothalamus – neuropeptides such as ghrelin
and neuropeptide Y, and hormones such as insulin and
leptin(73,74). Adipose tissue per se is considered to be an
endocrine organ that secretes cytokines such as IL-6 and
TNFa; thus obesity could possibly be regarded as a chronic
inflammatory disease(73 – 76).

Obesity occurs when energy uptake surpasses energy
expenditure in the individual animal and so the stores of
energy in body fat are enlarged, particularly in adipose
tissues. Obesity involves both or either an increase in the
number of adipocytes (hyperplasia) and their size
(hypertrophy)(10,77,78). Initially it was hypothesised that
adipocyte number was determined in early childhood and
that the obesity developed during adulthood was a result of
an increase in adipocyte size(79,80). However, it is now
known that hyperplasia is an ongoing event not limited to
childhood. At any stage of life when adipocytes enlarge to
the point of hypertrophy, they release factors such as TNFa
and insulin-like growth factor that stimulate hyperplasia of
the adipocytes(76,77,81). Conversely, recent studies on
reversal of obesity in human subjects have found decreases
not only in the size of the fat cells but also in their number:
the loss of weight is followed by apopotosis of
adipocytes(78,81).

This paper summarises the present literature on factors
that can play a role in the development of obesity and
explores mechanisms that have been proposed for obesity
induced by a diet rich in fat. The adequacy of the
paradigm of high-fat diets in animal models of human
obesity will be discussed. The possibility of reversing
dietary obesity in animal models will be explored. Physical
activity is another important factor in obesity; however, the
present paper focuses on dietary factors only. Some
reviews have been published about diverse areas of dietary
obesity that have been cited in this introduction but the
aim of the present review is to summarise the range of
relevant results and to provide a conclusive coverage of
the different aspects of obesity from high-fat diets in
non-human species.

Assessment of dietary obesity

In animal models, as in humans, obesity can be assessed by
criteria based on (1) gain of body weight or the Lee obesity
index and/or (2) increase of body fat content. However,
standard thresholds for obesity have not been developed like
BMI in human beings. In most studies, the degree of obesity
has been evaluated by comparing body weight (or fat) of the

experimental group fed a high-fat or energy-dense diet with
control animals that show normal growth while fed chow
or low-fat diets(20,24,41,42,45,82). Researchers that have
attempted to do so differed in the values that are 10–25 %
greater body weight than age-matched control rats fed
chow (normal pattern of body-weight gain) as moderate
obesity(41,42) and greater than 40 % as severe obesity(82).

The Lee index for assessing obesity in rats is similar to
BMI in humans. It was defined by Lee in 1929(83) as the
cube root of body weight (g) divided by the naso–anal
length (cm) and multiplied by 1000. Lee considered values
greater than 310 as an indicator of obesity. Since then
some researchers have used the Lee index to assess the
levels of obesity in rats(44,84 – 88). Reliable correlations were
found in some studies between the Lee index and fat content
of the body(86,89 – 91).

In human subjects body composition assessment with
methods such as air displacement plethysmography or dual-
energy X-ray absorptiometry gives a more precise idea of
the degree of obesity than do anthropometric measurements
alone(92,93). For example, children and adolescent males
have smaller fat mass than females of a similar BMI, and
this difference is more pronounced in the older age group;
and so the relationship between BMI and the direct
measures of adiposity is influenced by factors such as sex
and age(92). Dual-energy X-ray absorptiometry is also used
in rats for assessing body composition(24,94). In rats fed diets
high in fat, a linear increase in body fat with increasing body
weight has been shown(25,45). However, results of the study
of Woods et al. (42) showed that measuring body fat is a
more sensitive criterion for assessing obesity in animals,
since rats fed a high-fat diet (40 % of energy) for 10 weeks
displayed a 10 % increase in total body weight but a
35–40 % increase in total body fat compared with the
animals fed a low-fat diet.

In models of dietary obesity, animals are classified as
prone and resistant based on their body weight, body-weight
gain, body fat, or noradrenaline concentrations in urine.
Tulipano et al. (95) categorised Sprague–Dawley rats fed a
high-fat diet based on their final body weight, with rats in
the highest quartile designated as obesity prone and those in
the lowest quartile assigned as obesity resistant. In some
studies upper (prone) and lower (resistant) tertiles of body-
weight gain(46,51,96) or body fat(97) of the animals fed high-
fat diets have been used for this classification. Before
developing obesity while fed with chow, prone and resistant
animals have also been identified based on high and low
levels of urinary noradrenaline, respectively(98,99).

High-fat diets

Energy density

In humans, a significant positive relationship has been found
between the amount of dietary energy from fat and the
proportion of the population who are overweight (in
epidemiological studies), and in clinical studies between the
level of dietary fat and body-weight gain as well as between
the reduction in the dietary fat and weight loss(16,17,19,100).
These associations have also been shown in animal
studies(23 – 26,101). This relationship in humans or in animal
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models of more dietary fat leading to greater obesity
shows that the fat content of the diet is an important factor
in energy balance. In general, diets containing more
than 30 % of total energy as fat lead to the development
of obesity.

Researchers have induced obesity by diets having
different percentages and sources of fats in
rats(24,31,37 – 45,53,82,102 – 105), mice(25,47 – 52,60) and ham-
sters(106). Furthermore, the characteristics of the diets used
have differed within and between laboratories in macro-
nutrient composition, energy density and orosensory
properties. In many animal studies the composition of the
control diet was not shown or a non-purified chow control
diet was used. This could have confounding effects arising
from comparisons made with the high-fat diets.

Since the original observations of dietary obesity, obesity
has been induced in animals by diets containing fat as low as
13 % of total energy in a high-energy diet(41) (Table 1; line 26)
(which is more than the rat’s requirement for fat: 5 %) to
as high as 85 % of energy(37) (Table 1; line 1). Several
researchers have reviewed the amount of fat required to
induce obesity in animals. The most recent review was by
Buettner et al. (21) who summarised studies conducted
between 1997 and 2007, and concluded that the best method
to induce obesity in animals was to use semi-purified high-
fat diets containing animal fats at 40 % of energy, with a low
amount of n-3 fatty acids and a low amount of plant oils rich
in n-6 and n-9 fatty acids.

Interestingly, some recent studies have indicated that the
development of obesity is prevented in humans and rats
when the increase in dietary fat is accompanied by an
increase in protein (high protein:carbohydrate and low
carbohydrate:fat ratios)(107 – 109). This has been related to
greater satiety with high-protein diets, lower insulin levels
with low-carbohydrate diets and the energy required to
convert amino acids in glucose compounds for gluconeo-
genesis(107). High-protein diets were also found to increase
cholecystokinin and decrease plasma levels of the
orexigenic hormone ghrelin(110,111), reduce gastric empty-
ing(111) and increase central nervous system leptin
sensitivity(109,112). Moreover, high-protein diets resulted in
a decrease in fatty acid synthase enzyme activity in the liver
that reduces hepatic lipogenesis(107). The increase in
circulating amino acids per se is a satiety signal and
inhibits food intake through suppressing the gene expression
of agouti-related protein (a neuropeptide in the brain that
increases appetite)(110,113). However, Huang et al. (114)

showed that increasing the dietary protein:carbohydrate
ratio could not reduce the degree of obesity when obesity
had already been induced in high-fat diet-fed mice (at 40 %
of energy). Therefore they suggested that these diets might
be efficient in preventing obesity but may not reverse
obesity once established.

In the human diet, an increase in dietary fat is usually
accompanied by a decrease in carbohydrate while the
protein is relatively constant (for example, fat 35–45 %,
carbohydrate 45–55 %, protein 15–20 %). This is why a
presumably positive relationship between the level of fat of
the diet and degree of obesity is usually found in
epidemiological studies without controlling for dietary
protein level.

Dietary profile of fatty acids

Fatty acid composition of the diet may play an important
role in body-weight regulation and cellularity of adipose
tissue (fat cell volume and number)(56,59,115,116). Studies in
human subjects have shown that SFA are more obesogenic
than PUFA(57,58,117 – 119). This idea has been supported
by animal studies by showing either greater accumulation
of body fat(43,47,120 – 122) (Table 1; lines 19, 21, 16, 18 and
37, respectively) or higher body weight(25,47,60,122) (Table 1;
lines 11, 21, 33 and 18, respectively) on feeding with diets
moderate or rich in SFA. A study conducted by Ellis
et al. (53) in 3-week-old female Sprague–Dawley rats
comparing diets rich in low-SFA maize oil or high-SFA
coconut oil (40 % of total energy) for 8 weeks found higher
fat cell number in animals fed coconut oil and greater fat cell
size in the rats fed maize oil. Since hypertrophy of adipocytes
is a prerequisite for hyperplasia, those results show that
more severe form of obesity developed from feeding a diet
high in SFA.

The obesogenic effect of SFA can be explained by the fact
that SFA are poorly used for energy, and so remain to be
acylated into TAG and stored in adipose tissue, whereas
PUFA and MUFA are readily used for energy and so stored
less(59). In other words, the effective energy content of a diet
is greater when the fats in it are high in SFA. In addition, the
rate of oxidation of SFA decreases with increase of carbon
chain length(57). Furthermore, unlike MUFA and PUFA,
SFA decrease RMR and diet-induced thermogen-
esis(116,118,123 – 125). Moussavi et al. (56) suggested that
PUFA suppress the expression of lipogenic transcription
genes while MUFA and SFA do not.

Another possible mechanism is that saturation of fatty
acids decreases their suppressive effect on dietary intake:
thus fats and oils containing high proportions of linoleic
acid are more satiating than fats and oils rich in oleic or
stearic acid(13,117,126). PUFA inhibit appetite more strongly
than MUFA or SFA through an increase in the release of
cholecystokinin which augments other signals of sati-
ety(117,126). Another study, however, failed to confirm that
SFA induced less satiety than MUFA(127).

A study in adult male Wistar rats showed that feeding
high-fat diets (60 % of energy) for 8 weeks resulted in
greater intrathoracic fat mass in animals fed a SFA-rich diet
(cocoa butter) and greater intra-abdominal and epididymal
fat mass in those fed PUFA (safflower-seed oil)(61) (Table 1;
line 38). There are also reports of studies that did not show
any specific effect of SFA and PUFA on body weight or fat
mass(64,128) (Table 1; lines 17 and 25, respectively).

Short-chain (C2 : 0–C4 : 0) and medium-chain (C6 : 0–
C12 : 0) fatty acids are directly transported to the liver via
the portal system, are not dependent upon carnitine for
entering the mitochondria and therefore are oxidised more
and deposited less in adipose tissue than long-chain fatty
acids (C14 : 0–C24 : 0)(56,129,130). Short-chain and medium-
chain fatty acids also increase diet-induced thermogenesis
and energy expenditure(56,130). The lower obesogenic effect
of medium-chain TAG, which are composed of medium-
chain fatty acids, was shown in many studies. Isoenergetic
diets (with fat at 12 % of total energy) containing olive oil or
medium-chain fatty acid (octanoic acid) offered for 23 d to
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Table 1. Studies of high-fat diet-induced obesity (DIO) in animal models

Diet composition Changes in body weight and dietary intake

Amount

of fat Amount of fat

Reference

Species, strain,

sex, weight, age DIO diet

g/100 g

diet

% of

total

energy Control diet g/100 g diet

% of

total

energy

Duration

(weeks)

Final/daily

body

weight (g)

Body-weight

gain (g) Body fat (g)

Food

intake (g)

Energy

intake Line no.

Mickelsenetal.

(1955)(37)
Rats, Osborne–

Mendel, male,

300 g, adult

g/100 g g/100 g

60 Criscow (Proctor &

Gamble, Cincinnati,

OH, USA)

25 casein

7 sucrose

1 starch

4 mineral salts

3 cottonseed oil

containing:

2 vitamin A and D

1 vitamin E

63 85 30 casein

61 sucrose

2 starch

4 mineral salts

3 cottonseed

oil containing:

2 vitamin A and D

1 vitamin E

3 7 41 i nr – – – 1

Schemmel

et al.

(1969)(45)

Rats, Osborne–

Mendel, male

and female,

57·5 ^ 6·4 g

(female),

51·6 ^ 3·1 g

(male), 3·5
weeks

g/100 g Total

60 Criscow

25 casein liver

2 liver powder

0·25 DL-methionine

5 mineral mix

2·2 vitamin mix

0·01 auremycin

2 fibre

60 78 Grain nr nr 65 i nr i – – 2

Herberg et al.

(1974)(49)
Mice, NMRI, male,

19·2 ^ 0·2 g

(DIO diet),

19·3 ^ 0·2 g

(control diet),

4 weeks

g/100 g g/100 g Epididymal and

subcu-

taneous

kcal

38 soya oil

24 casein

10 starch

16 sucrose

5 powdered cellulose

1 vitamin mix

6 mineral mix

38 63 20 protein

30 oatmeal

24 whole meal

13 flour

7 wheat

2·2 sweet whey

2·5 distillers solubles

0·2 vitamin mix
1·1 mineral mix

6·2 13 11–12 i i i d 0 3

Lemonnier

et al.

(1975)(50)

Mice, Swiss, male

and female,

nr, weaning

g/100 g % of total energy Genital

53 lard

% of energy

72 lipid

22 protein

6 carbohydrate

53 72 9 lipid

22 protein

69 carbohydrate

4·5 9 i nr i – – 4

Sclafani &

Springer

(1976)(228)

Rats, CFE, female,

234–239 g,

17 weeks

g/100 g

33 Criscow

67 Purina chow þ

sweetened condensed

milk þ palatable super-

market foods: chocolate

chip cookies, salami,

banana, marshmallows,

milk chocolate, peanut

butter

.33 .52·5 Purina chow (company

not specified)

4·5 9·6 8–9 nr i – – – 5
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Table 1. Continued

Diet composition Changes in body weight and dietary intake

Amount

of fat Amount of fat

Reference

Species, strain,

sex, weight, age DIO diet

g/100 g

diet

% of

total

energy Control diet g/100 g diet

% of

total

energy

Duration

(weeks)

Final/daily

body

weight (g)

Body-weight

gain (g) Body fat (g)

Food

intake (g)

Energy

intake Line no.

Sclafani &

Gorman

(1977)(44)

Rats, CFE, male

and female,

308 g and 12

weeks (male),

233 g and 13

weeks (female)

Purina chow þ supermarket

foods: marshmallows,

cheese puffs, sugar-

coated cereal, chocolate

cookies, peanut butter,

bologna, sweetened

condensed milk

nr nr Purina chow (company

not specified)

4·5 9·6 8·5 nr i – – – 6

Faust et al.

(1978)(103)
Rats, Sprague–

Dawley and

Osborne–

Mendel, male,

nr, 17 weeks

g/100 g Retroperitoneal

and gona-

dal

55 Criscow

25 casein

13 dextrose

4 mineral salts

2·82 vitamin mix

0·12 L-cystine

0·06 L-cysteine

55 76 Purina chow (company

not specified)

4·5 9·6 8·5 i (both strains) nr i (both strains) – – 7

Oscai

(1982)(38)
Rats, Wistar,

female, nr,

weaning

g/100 g Total

4·84 maize oil

18·16 lard

18 casein

49·5 sucrose

2 brewer’s yeast

2 liver powder

4 Hegsted salt mixture

1·5 vitamin mix

23 42 Purina chow (Ralston

Purina, Nestlé Purina

PetCare, St Louis,

MO, USA)

4·5 9·6 58 i nr i nr – 8

Wade

(1982)(106)
Hamsters, golden,

male and

female,

80–110 g, nr

Total kcal

Two parts Purina chow

(Purina Rodent Chow,

no. 5001)

One part vegetable short-

ening (company not

specified)

.33 .52·5 Purina chow

(Purina Rodent Chow,

no. 5001)

4·5 9·6 4 nr i i nr 0 9

Bourgeoisetal.

(1983)(25)
Mice, NMRI, male

and female, nr,

4 weeks

g/100 g g/100 g Retroperitoneal

and para-

metrial

5 lard

3·2 bran

0·3 DL-methionine

4·3 mineral mix

2·4 vitamin mix

14 casein

70·8 wheat flour

5 6·9 78·5 wheat flour

12·1 casein

3 bran

0·4 DL-methionine

2·1 vitamin mix

3·9 mineral mix

3 6·1 13 0 nr 0 – – 10

10 lard

3·5 bran

0·2 DL-methionine

4·6 mineral mix

2·5 vitamin mix

17 casein
62 wheat flour

10 26·8 i (female only) nr 0 – –

20 lard

3·9 bran

0·1 DL-methionine

5·2 mineral mix

2·9 vitamin mix

21·9 casein

45·5 wheat flour

20 43·5 i nr i – –
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30 lard

4·2 bran

0·05 DL-methionine

5·6 mineral mix

3·1 vitamin mix

27 casein

30·1 wheat flour

30 55·9 i nr i – –

Bourgeoisetal.

(1983)(25)
Mice, NMRI, male

and female, nr,

4 weeks

g/100 g g/100 g Retroperitoneal

and para-

metrial

30 lard
4·2 bran

0·05 DL-methionine

5·6 mineral mix

3·1 vitamin mix

27 casein

30·1 wheat flour

30 55·9 78·5 wheat flour
12·1 casein

3 bran

0·4 DL-methionine

2·1 vitamin mix

3·9 mineral mix

3 6·1 13 i nr i
i v. beef tallow

(male only)

d v. beef tallow

(female

only)

– – 11

30 beef tallow

4·2 bran

0·05 DL-methionine

5·6 mineral mix

3·1 vitamin mix

27 casein

30·1 wheat flour

30 55·9 i

i v. sunflower-seed oil

(female only)

nr i

d v. lard, soya-

bean oil

(male only)

i v. lard, soya-

bean oil,

sunflower-

seed oil

(female

only)

– –

30 soyabean oil

4·2 bran

0·05 DL-methionine

5·6 mineral mix

3·1 vitamin mix

27 casein
30·1 wheat flour

30 55·9 i nr i

i v. beef tallow

(male only)

d v. beef tallow

(female

only)

– –

30 sunflower-seed oil

4·2 bran

0·05 DL-methionine

5·6 mineral mix

3·1 vitamin mix

27 casein

30·1 wheat flour

30 55·9 i

d v. beef tallow

(female only)

nr i

i v. beef tallow

(male only)

– –

Cunnane et al.

(1986)(48)
Mice, ob/ob and

in/in, male,

22 g (in/in),

36 g (ob/ob), 6

weeks

g/100 g Epididymal

10 evening primrose oil

20 casein

60 sucrose

5·5 cellulose

3·5 mineral mix

1 vitamin mix

10 21 Purina chow (Jackson

laboratory, no. 5001)

4·5 9·6 16 0

i v. cod liver oil

(ob/ob only)

0

d v. cod liver oil

(in/in only)

0 v. cod liver oil 0 – 12

10 cod liver oil

20 casein

60 sucrose
5·5 cellulose

3·5 mineral mix

1 vitamin mix

0

d v. evening primrose

oil (ob/ob only)

0

d v. evening

primrose oil
(in/in only)

0 v. evening

primrose oil

0 –

Chang et al.

(1990)(40)
Rats, Wistar,

female, nr, nr

g/100 g g/100 g Retroperitoneal

and para-

metrial

kcal

32·70 maize oil

29·20 casein

12·20 sucrose

12·15 dextrin

6·30 solka floc

2 vitamin mix

5 mineral mix

0·30 DL-methionine

0·15 choline chloride

32 60 8·2 maize oil

22 casein

29·35 sucrose

28 dextrin

6·30 Solkafloc

2 vitamin mix

5 mineral mix

0·20 DL-methionine

0·15 choline chloride

8·2 20 5 0

(obesity resistant

only)

i

(obesity prone only)

i

(obesity prone v.

obesity resistant)

i

(obesity prone v.

obesity resist-

ant)

i

(obesity prone

v. obesity

resistant)

nr i

(obesity prone

v. obesity

resistant)

13

Su & Jones

(1993)(66)
Rats, Sprague–

Dawley, male,

65–85 g, nr

g/100 g Total

22·4 fish oil

27·8 maize starch

11·2 sucrose

22·4 casein
6·19 cellulose

1·24 vitamin mix

8·65 mineral mix

22·4 42 nr nr nr 12 0 v. other DIO diets 0 v. other DIO

diets

d v. beef tallow

and olive oil

0 v. other DIO

diets

nr 14
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Table 1. Continued

Diet composition Changes in body weight and dietary intake

Amount

of fat Amount of fat

Reference

Species, strain,

sex, weight, age DIO diet

g/100 g

diet

% of

total

energy Control diet g/100 g diet

% of

total

energy

Duration

(weeks)

Final/daily

body

weight (g)

Body-weight

gain (g) Body fat (g)

Food

intake (g)

Energy

intake Line no.

22·4 safflower-seed oil

27·8 maize starch

11·2 sucrose

22·4 casein

6·19 cellulose

1·24 vitamin mix

8·65 mineral mix

22·4 42 0 v. other DIO diets 0 v. other DIO

diets

0 v. other

groups

0 v. other DIO

diets

nr

22·4 olive oil

27·8 maize starch

11·2 sucrose

22·4 casein

6·19 cellulose

1·24 vitamin mix
8·65 mineral mix

22·4 42 0 v. other DIO diets 0 v. other DIO

diets

i v. fish oil 0 v. other DIO

diets

nr

22·4 beef tallow

27·8 maize starch

11·2 sucrose

22·4 casein

6·19 cellulose

1·24 vitamin mix

8·65 mineral mix

22·4 42 0 v. other DIO diets 0 v. other DIO

diets

i v. fish oil 0 v. other DIO

diets

nr

Hill et al.

(1993)(63)
Rats, Wistar, male,

300 g, 13–17

weeks

g/100 g Total kcal

18·2 maize oil

1·3 safflower-seed oil

20 casein

16·2 sucrose

16·2 maize starch

0·3 DL-methionine

5 fibre

1 vitamin mix

3·5 mineral mix

19·5 45 nr nr nr 25 0 v. other DIO diets nr i v. fish oil – 0 v. other DIO

diets

15

18·2 lard

1·3 safflower-seed oil
20 casein

16·2 sucrose

16·2 maize starch

0·3 DL-methionine

5 fibre

1 vitamin mix

3·5 mineral mix

19·5 45 0 v. other DIO diets nr i v. fish oil – i v. fish oil

18·2 fish oil

1·3 safflower-seed oil

20 casein

16·2 sucrose

16·2 maize starch

0·3 DL-methionine

5 fibre

1 vitamin mix

3·5 mineral mix

19·5 45 0 v. other DIO diets nr d v. maize oil

and lard

– d v. lard

Shillabeer &

Lau

(1994)(120)

Rats, Sprague–

Dawley, male,

50–60 g, 4

weeks

% of total energy Epididymal, and

inguinal

kcal

59 beef tallow

21 carbohydrate
20 protein

38 45 Purina chow (company not

specified)

4·5 9·6 26 0

0 v. other DIO diets

nr i

0 v. other DIO
diets

nr 0 v. other DIO

diets

16

59 safflower-seed oil

21 carbohydrate

20 protein

38 45 0

0 v. other DIO diets

nr 0

0 v. other DIO

diets

nr 0 v. other DIO

diets

5 beef tallow

75 carbohydrate

20 protein

2·2 5 0

0 v. other DIO diets

nr 0

0 v. other DIO

diets

nr 0 v. other DIO

diets

Jones et al.

(1995)(64)
Rats, Sprague–

Dawley, male,

193 ^ 9·1 g, nr

g/100 g
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19 beef tallow

31·2 maize starch

11·2 sucrose

22·4 casein

6·2 cellulose
1·2 vitamin mix

8·6 mineral mix

20 40 nr nr nr 10 0 v. other DIO diets nr – – nr 17

19 fish oil

31·2 maize starch

11·2 sucrose

22·4 casein

6·2 cellulose

1·2 vitamin mix

8·6 mineral mix

20 40 0 v. other DIO diets nr – – nr

19 olive oil

31·2 maize starch

11·2 sucrose

22·4 casein

6·2 cellulose

1·2 vitamin mix

8·6 mineral mix

20 40 0 v. other DIO diets nr – – nr

19 safflower-seed oil

31·2 maize starch

11·2 sucrose

22·4 casein

6·2 cellulose

1·2 vitamin mix
8·6 mineral mix

20 40 0 v. other DIO diets nr – – nr

Takeuchi et al.

(1995)(122)
Rats, Sprague–

Dawley, male,

95–97 g, 4

weeks

g/100 g Epididymal,

perinephrial

and mesen-

teric

kJ

20 lard

39·8 maize starch

24 casein

5 sucrose

5 cellulose

1·2 vitamin mix

4·2 mineral mix

0·4 DL-methionine

0·3 choline

0·002 a-tocopherol

20 39·4 nr nr nr 12 i v. high-oleic saf-

flower-seed oil

and linseed oil

nr i v. high-oleic

safflower-

seed oil,

safflower-

seed oil and

linseed oil

nr 0 v. other DIO

diets

18

20 high-oleic

safflower-seed oil

39·8 maize starch

24 casein

5 sucrose

5 cellulose

1·2 vitamin mix
4·2 mineral mix

0·4 DL-methionine

0·3 choline

0·002 a-tocopherol

20 39·4 d v. lard nr d v. lard nr 0 v. other DIO

diets

20 safflower-seed oil

39·8 maize starch

24 casein

5 sucrose

5 cellulose

1·2 vitamin mix

4·2 mineral mix

0·4 DL-methionine

0·3 choline

0·002 a-tocopherol

20 39·4 0 v. other DIO diets nr d v. lard nr 0 v. other DIO

diets

20 linseed oil

39·8 maize starch

24 casein

5 sucrose

5 cellulose

1·2 vitamin mix

4·2 mineral mix

0·4 DL-methionine
0·3 choline

0·002 a-tocopherol

20 39·4 d v. lard nr d v. lard nr 0 v. other DIO

diets

Yaqoob et al.

(1995)(43)
Rats, Lewis, male,

65–85 g, 3

weeks

g/100 g g/100 g Epididymal kcal
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Table 1. Continued

Diet composition Changes in body weight and dietary intake

Amount

of fat Amount of fat

Reference

Species, strain,

sex, weight, age DIO diet

g/100 g

diet

% of

total

energy Control diet g/100 g diet

% of

total

energy

Duration

(weeks)

Final/daily

body

weight (g)

Body-weight

gain (g) Body fat (g)

Food

intake (g)

Energy

intake Line no.

20 coconut oil

1 maize oil

0·0004 cholesterol

20 protein

49·5 carbohydrate

5 non-nutritive bulk

0·12 vitamin E

21 40·5 14·6 protein

48·4 carbohydrate

18·6 non-nutritive bulk

0·01vitamin E

2·4 unspecified oil

0·0001 cholesterol

2·4 6 10 i i i

i v. other DIO

diets

i

0 v. other DIO

diets

d v. olive oil,

evening

primrose

oil, fish oil,

control

19

20 olive oil

1 maize oil

0·0004 cholesterol

20 protein

49·5 carbohydrate

5 non-nutritive bulk
0·12 vitamin E

21 40·5 i

d v. fish oil

i

d v. fish oil

i

d v. coconut oil

i

0 v. other DIO

diets

i

v. coconut oil

20 safflower-seed oil

1 maize oil

0·0004 cholesterol

20 protein

49·5 carbohydrate

5 non-nutritive bulk

0·12 vitamin E

21 40·5 i i i

d v. coconut oil i

v. evening

primerose

oil, fish oil

i

0 v. other DIO

diets

0 v. other DIO

diets

20 evening primrose oil

1 maize oil

0·0004 cholesterol

20 protein

49·5 carbohydrate

5 non-nutritive bulk

0·12 vitamin E

21 40·5 i

d v. fish oil

i

d v. fish oil

i

d v. coconut oil,

safflower-

seed oil

i

0 v. other DIO

diets

i

v. coconut oil

20 fish oil

1 maize oil

0·0004 cholesterol

20 protein

49·5 carbohydrate

5 non-nutritive bulk

0·12 vitamin E

21 40·5 i

i v. olive oil and

evening primrose

oil

i

i v. olive oil and

evening prim-

rose oil

i

d v. coconut oil,

safflower-

seed oil

i

0 v. other DIO

diets

i

v. coconut oil

Ikemoto et al.

(1996)(52)
Mice, C57BL/6J,

female, nr,

7 weeks

g/100 g g/100 g Parametrial kcal

32 palm oil

33·1 casein

17·6 sucrose

1·4 vitamin mix

9·8 mineral mix

5·6 cellulose powder

0·5 DL-methionine

32 60 4 safflower-seed oil

23·7 casein

10 sucrose

50 starch

1 vitamin mix

7 mineral

4 cellulose powder

0·4 DL-methionine

4 11 19 i i i nr 0

d v. fish oil

20

32 lard

33·1 casein

17·6 sucrose

1·4 vitamin mix

9·8 mineral mix

5·6 cellulose powder

0·5 DL-methionine

32 60 i i i nr 0

i v. perilla oil

32 fish oil

33·1 casein

17·6 sucrose

1·4 vitamin mix
9·8 mineral mix

5·6 cellulose powder

0·5 DL-methionine

32 60 0 0 0 nr i

i v. palm oil,

rapeseed oil,

perilla oil

32 perilla oil

33·1 casein

17·6 sucrose

1·4 vitamin mix

9·8 mineral mix

5·6 cellulose powder

0·5 DL-methionine

32 60 i i i nr 0

d v. lard, saf-

flower-seed

oil, fish oil
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32 rapeseed oil

33·1 casein

17·6 sucrose

1·4 vitamin mix

9·8 mineral mix
5·6 cellulose powder

0·5 DL-methionine

32 60 4 safflower-seed oil

23·7 casein

10 sucrose

50 starch

1 vitamin mix
7 mineral mix

4 cellulose powder

0·4 DL-methionine

i i i nr 0

d v. fish oil

32 soyabean oil

33·1 casein

17·6 sucrose

1·4 vitamin mix

9·8 mineral mix

5·6 cellulose powder

0·5 DL-methionine

32 60 i i i nr 0

32 safflower-seed oil

33·1 casein

17·6 sucrose

1·4 vitamin mix

9·8 mineral mix

5·6 cellulose powder

0·5 DL-methionine

32 60 i i i nr 0

i v. perilla oil

Bell et al.

(1997)(47)
Mice, Swiss Albino,

female, nr, 6

weeks

g/100 g g/100 g Retroperitoneal kJ

14·4 beef fat

6 maize oil
24·1 casein

0·4 DL-methionine

25·3 maize starch

18·1 sucrose

6 cellulose

1·2 vitamin mix

4·2 mineral mix

0·2 choline

0·004 butylated

hydroxytoluene

20·5 40·8 5 maize oil

20 casein
0·3 DL-methionine

50 maize starch

15 sucrose

5 cellulose

1 vitamin mix

3·5 mineral mix

0·2 choline

0·001 butylated

hydroxytoluene

5 11·5 8 i

i v. rapeseed oil

nr i

i v. rapeseed oil

nr 0 21

14·4 rapeseed oil

6 maize oil

24·1 casein

0·4 DL-methionine

25·3 maize starch

18·1 sucrose

6 cellulose

1·2 vitamin mix

4·2 mineral mix

0·2 choline

0·004 butylated

hydroxytoluene

20·5 40·8 0

d v. beef fat

nr 0

d v. beef fat

nr 0

Okuno et al.

(1997)(65)
Rats, Sprague–

Dawley, male,

nr, 4 weeks

g/100 g Epididymal and

perirenal

12 beef tallow

20 casein

59 sucrose

4 cellulose

0·15 choline chloride

4 mineral mix

1 vitamin mix

12 26·2 nr nr nr 12 0 v. other DIO diets nr i v. perilla oil 0 v. other DIO

diets

nr 22

12 olive oil

20 casein

59 sucrose

4 cellulose

0·15 choline chloride

4 mineral mix

1 vitamin mix

12 26·2 0 v. other DIO diets nr i v. perilla oil 0 v. other DIO

diets

nr

12 safflower-seed oil

20 casein

59 sucrose

4 cellulose

0·15 choline chloride
4 mineral mix

1 vitamin mix

12 26·2 0 v. other DIO diets nr 0 v. other DIO

diets

0 v. other DIO

diets

nr

12 perilla oil

20 casein

59 sucrose

4 cellulose

0·15 choline chloride

4 mineral mix

1 vitamin mix

12 26·2 0 v. other DIO diets nr d v. beef tallow,

olive oil

0 v. other DIO

diets

nr
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Table 1. Continued

Diet composition Changes in body weight and dietary intake

Amount

of fat Amount of fat

Reference

Species, strain,

sex, weight, age DIO diet

g/100 g

diet

% of

total

energy Control diet g/100 g diet

% of

total

energy

Duration

(weeks)

Final/daily

body

weight (g)

Body-weight

gain (g) Body fat (g)

Food

intake (g)

Energy

intake Line no.

Cha & Jones

(1998)(62)
Rats, Sprague–

Dawley, male,

209 ^ 6·5 g, nr

g/100 g Perirenal

20 fish oil

15 casein

45 maize starch

10 sucrose

5 cellulose

3·5 mineral mix

1 vitamin mix

0·18 L-cystine

0·25 choline bitartrate

0·004 tert-butylhydroqui-
none

20 36 nr nr nr 10 0 v. other DIO diets nr d v. safflower-

seed oil,

beef tallow

0 v. other DIO

diets

nr 23

20 safflower-seed oil

15 casein

45 maize starch

10 sucrose

5 cellulose

3·5 mineral mix

1 vitamin mix

0·18 L-cystine

0·25 choline bitartrate

0·004 tert-butylhydroqui-

none

20 36 0 v. other DIO diets nr i v. beef tallow,

fish oil

0 v. other DIO

diets

nr

20 beef tallow

15 casein

45 maize starch

10 sucrose

5 cellulose

3·5 mineral mix

1 vitamin mix

0·18 L-cystine

0·25 choline bitartrate

0·004 tert-butylhydroqui-
none

20 36 0 v. other DIO diets nr i v. fish oil

d v. safflower-

seed oil

0 v. other DIO

diets

nr

Loh et al.

(1998)(104)
Rats, Zucker,

genetically

obese and

lean, male,

lean: 112–

113 g, obese:

132–136 g, 5

weeks

g/100 g g/100 g Total kcal

35·8 soyabean oil

23·5 casein

2·7 sucrose

15 maize starch

17·9 fibre

1 vitamin mix

3·5 mineral mix

0·3 L-cysteine

0·25 choline chloride

35·8 65 6·85 soyabean

19·5 casein

53·6 sucrose

10 maize starch

5 fibre

1 vitamin mix

3·5 mineral mix

0·3 L-cysteine

0·25 choline chloride

6·8 15 8 0 0

d v. palm olein

(only in

obese)

0

d v. palm olein

(only in

obese)

nr i (only in obese) 24

30 palm olein

5·8 soyabean oil

23·5 casein

2·7 sucrose
15 maize starch

17·9 fibre

1 vitamin mix

3·5 mineral mix

0·3 L-cysteine

0·25 choline chloride

35·8 65 i (only in obese) i (only in obese)

i v. soyabean

oil (only in

obese)

i (only in obese)

i v. soya-

bean oil

(only in
obese)

nr i (only in obese)

George et al.

(2000)(128)
Mice, C57B/6J,

female, nr,

9–10 weeks

g/100 g

Cocoa butter 17·5 nr Purina chow (Purina

Rodent Laboratory

Chow, no. 5001)

8·25 nr 15 0

0 v. safflower-seed oil

nr – nr nr 25
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Safflower-seed oil 17·5 nr 0

0 v. cocoa butter

nr – nr nr

Harrold et al.

(2000)(41)
Rats, Wistar, male,

150 g, 6 weeks

g/100 g Epididymal and

perirenal

kJ

33 Nestlé condensed milk

7 sucrose

33 ground pellet

6·3 13 Standard pellet (CRM Bio-

sure, Cambridge, UK)

% of total energy

9 fat

65 carbohydrate

24 protein

4·3 9·2 8 i (high weight-gainers

only)

0 (low weight-gainers

only)

i (high v. low weight-

gainers)

i (high weight-gai-

ners only)

0 (low weight-gai-

ners only)

i (high v. low

weight-gai-

ners)

i (high v. low

weight-gai-

ners)

nr i (high v. low

weight-

gainers)

26

Ainslie et al.

(2000)(39)
Rats, Wistar,

female, 223–

233 g, 20–22

weeks

Abdominal,

infrarenal

and subcu-

taneous

kJ

10 ml fat emulsion (Intralipid;

Kabi Pharmacia, AB,

Stockholm) þ non-puri-

fied laboratory diet (not
specified)

20 36 Non-purified diet (not

specified)

3 6·5 14 i nr i nr i 27

Ghibaudi et al.

(2002)(24)
Rats, Sprague–

Dawley, male,

50–60 g,

weaning

% of total energy % of total energy Total kcal

45 fat

35 carbohydrate

20 protein (D12451;

Research Diets, New

Brunswick, NJ, USA)

26 45 10 fat

70 carbohydrate

20 protein

(D12450B; Research

Diets)

4·6 10 26 i i i nr i 28

32 fat

51 carbohydrate

17 protein (D12266;

Research Diets)

17 32 0 0 0 nr 0

Levin & Dunn-

Meynell

(2002)(82)

Rats, Sprague–

Dawley (DIO

and DR), male,

DR: 282–

327 g, DIO:

368–402 g,

10–12 weeks

g/100 g Epididymal, ret-

roperito-

neal, perire-

nal and

mesenteric

kcal

8 maize oil
44 sweetened condensed

milk

48 Purina chow (Purina Rat

Chow, no. 5008)

% of total energy

31 fat

48 carbohydrate

21 protein

16·6 31 Purina chow (Purina Rat
Chow, no. 5008)

4·5 9·6 10 i (Only in DIO)
d v. Ensurew

i (Only in DIO)
d v. Ensurew

i (Only in DIO)
d v. Ensurew

nr 0
d v. Ensurew

29

DIO diet þ chocolate-

flavoured liquid diet

(Ensurew; Ross Pro-

ducts Division, Medical

Supplies Depot, AL,

USA)

% of total energy

22 fat

64 carbohydrate

14 protein

11·1 22 i

i v. DIO diet

i

i v. DIO diet

i

i v. DIO diet

nr i

i v. DIO diet

Levin & Dunn-

Meynell

(2002)(46)

Rats, Sprague–

Dawley (DIO

and DR), male,

300–425 g, nr

g/100 g Total

8 maize oil

44 sweetened condensed

milk

48 Purina chow (Purina Rat

Chow, no. 5001)

% of total energy

31 fat

48 carbohydrate

21 protein

16·6 31 nr nr nr 4 i v. DR nr i v. DR nr nr 30

Ellis et al.

(2002)(53)
Rats, Sprague–

Dawley,

female, 61 g, 3

weeks

g/100 g g/100 g Total, % change kcal
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Table 1. Continued

Diet composition Changes in body weight and dietary intake

Amount
of fat Amount of fat

Reference

Species, strain,

sex, weight, age DIO diet

g/100 g

diet

% of

total

energy Control diet g/100 g diet

% of

total

energy

Duration

(weeks)

Final/daily

body

weight (g)

Body-weight

gain (g) Body fat (g)

Food

intake (g)

Energy

intake Line no.

20 maize oil

22·6 casein

45·4 dextrin

0·5 DL-methionine

1·5 vitamin mix

3 mineral mix

4 cellulose

20 40 2·4 maize oil

18·2 casein

70·5 dextrose

0·4 DL-methionine

1·5 vitamin mix

3 mineral mix

4 cellulose

2·4 6 8 i

i v. coconut oil

(only in low-fat

diet)

i

i v. coconut oil

(only in low-fat

diet)

i

i v. coconut oil

(only in low-

fat diet)

nr 0 31

20 rapeseed oil

22·6 casein

45·4 dextrin

0·5 DL-methionine
1·5 vitamin mix

3 mineral mix

4 cellulose

20 40 2·4 rapeseed oil

18·2 casein

70·5 dextrose

0·4 DL-methionine
1·5 vitamin mix

3 mineral mix

4 cellulose

2·4 6 i i

i v. coconut oil

(only in low-fat

diet)

i

i v. coconut oil

(only in low-

fat diet)

nr 0

20 coconut oil

22·6 casein

45·4 dextrin

0·5 DL-methionine

1·5 vitamin mix

3 mineral mix

4 cellulose

20 40 2·4 coconut oil

18·2 casein

70·5 dextrose

0·4 DL-methionine

1·5 vitamin mix

3 mineral mix

4 cellulose

2·4 6 i

d v. maize oil

(only in low-fat

diets)

i

d v. rapeseed oil,

maize oil (only

in low-fat

diets)

i

d v. rapeseed

oil, maize oil

(only

in low-fat

diets)

nr 0

Rolland et al.

(2002)(105)
Rats, Zucker (lean

and obese),

male, obese:

227 ^ 12 g;

lean:

196 ^ 12 g, 6

weeks

g/100 g Total

17·1 butter

54·4 starch

20·4 casein

2 cellulose

5 mineral mix
1 vitamin mix

0·15 methionine

17·1 30 nr nr nr 11 i v. soyabean oil (only

in obese)

d v. soyabean oil (only

in lean)

nr i v. soyabean oil

(only in

obese)

i v. soyabean

oil

nr 32

14·1 soyabean oil

56·5 starch

21·2 casein

2 cellulose

5 mineral mix

1 vitamin mix

0·15 methionine

14·7 27 d v. butter (only in

obese)

i v. butter (only in lean)

nr d v. butter (only

in obese)

nr

Wang et al.

(2002)(60)
Mice, C57BL/6J,

male, nr, 3

weeks

g/100 g g/100 g Epididymal,

perirenal

and inguinal

kJ

16·9 beef tallow

16·9 maize starch

8·5 sucrose

25·4 casein

1·9 gelatin

5·1 bran

6·7 mineral mix

1·3 vitamin mix

0·3 methionine

16·9 58 4·1 safflower-seed oil

43·8 maize starch

23·9 sucrose

18·8 casein

1·4 gelatin

3·8 bran

5 mineral mix

0·97 vitamin mix

0·23 methionine

4·1 10 7 nr nr i

i v. fish oil

d v. high-fat

safflower-

seed oil

(week

5–7)

i

0 v. other DIO

diets

33

16·9 safflower-seed oil
16·9 maize starch

8·5 sucrose

25·4 casein

1·9 gelatin

5·1 bran

6·7 mineral mix

1·3 vitamin mix

0·3 methionine

16·9 58 4·1 safflower-seed oil
43·8 maize starch

23·9 sucrose

18·8 casein

1·4 gelatin

3·8 bran

5 mineral mix

0·97 vitamin mix

0·23 methionine

4·1 10 7 nr nr 0 i v. high-fat
beef

tallow

(week 5–7)

i
0 v. other DIO

diets
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16·9 fish oil

16·9 maize starch

8·5 sucrose

25·4 casein

1·9 gelatin

5·1 bran

6·7 mineral mix

1·3 vitamin mix

0·3 methionine

16·9 58 nr nr d

d v. beef tallow

nr i

0 v. other DIO

diets

Jen et al.

(2003)(102)
Rats, Wistar,

female, nr,

3 weeks

g/100 g g/100 g Abdominal fat kcal

40 soyabean oil

26 casein

0·65 maize starch

0·217 maltodextrin

20 maltose dextrin
6·5 cellulose

0·008 butylhydroquinone

4·5 salt mix

1·3 vitamin mix

0·039 vitamin E

0·39 L-cystine

0·325 choline bitartrate

40 65·4 7 soyabean oil

20 casein

32·1 maize starch

10·72 maltodextrin

20 maltose dextrin
5 cellulose

0·008 butylhydroquinone

3·5 salt mix

1 vitamin mix

0·03 vitamin E

0·3 L-cystine

0·25 choline bitartrate

7 15·9 6 i

i v. fish oil

nr i

i v. fish oil

nr 0

d v. palm oil

34

33 palm oil

7 soyabean oil

26 casein

0·65 maize starch

0·217 maltodextrin

20 maltose dextrin

6·5 cellulose

0·008 butylhydroquinone

4·5 salt mix

1·3 vitamin mix

0·039 vitamin E

0·39 L-cystine

0·325 choline bitartrate

40 65·4 i

i v. fish oil

nr i

i v. fish oil

nr i

i v. soyabean

oil, fish oil

33 fish oil

7 soyabean oil
26 casein

0·65 maize starch

0·217 maltodextrin

20 maltose dextrin

6·5 cellulose

0·008 butylhydroquinone

4·5 salt mix

1·3 vitamin mix

0·039 vitamin E

0·39 L-cystine

0·325 choline bitartrate

40 65·4 0

d v. soyabean oil,
palm oil

nr 0

d v. soyabean
oil, palm oil

nr 0

d v. palm oil

Woods et al.

(2003)(42)
Rats, Long–Evans,

male and

female,

250–350 g,

9–10 weeks

g/100 g g/100 g Total kJ

19 butter oil

1 soyabean oil

16·4 casein

30·3 maize starch

11·5 dextrose

8·9 sucrose
5·8 cellulose

5·2 mineral mix

1·17 vitamin mix

0·21 L-cystine

0·29 choline bitartrate

20 40 3 butter oil

1 soyabean oil

14 casein

45·5 maize starch

15·5 dextrose

10 sucrose
5 cellulose

4·5 mineral mix

1 vitamin mix

0·18 L-cystine

0·25 choline bitartrate

4 8 10 i nr i nr i 35

Huang et al.

(2004)(51)
Mice, C57BL/6J,

male, nr,

3 weeks

% of total energy % of total energy kcal

59 fat

14 carbohydrate

27 protein

(not specified)

38·9 59 10 fat

63 carbohydrate

27 protein

(company not specified)

4·6 10 13 nr i (only in obesity

prone)

– nr i 36

Silva et al.

(2006)(121)
Rats, Wistar, male,

nr, 3 weeks

g/100 g Epididymal
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Table 1. Continued

Diet composition Changes in body weight and dietary intake

Amount

of fat Amount of fat

Reference

Species, strain,

sex, weight, age DIO diet

g/100 g

diet

% of

total

energy Control diet g/100 g diet

% of

total

energy

Duration

(weeks)

Final/daily

body

weight (g)

Body-weight

gain (g) Body fat (g)

Food

intake (g)

Energy

intake Line no.

7 soyabean oil

15 casein

67·9 maize starch

5 cellulose
3·5 mineral mix

1 vitamin mix

1·8 L-cystine

0·25 choline

7 16 nr 3–4 d v. palm oil and

hydrogenated

vegetable oil

nr d v. palm oil and

hydrogen-

ated veg-

etable oil

0 v. other DIO

diets

(starting

week 3)

– 37

5 palm oil

2 soyabean oil

15 casein

67·9 maize starch

5 cellulose

3·5 mineral mix

1 vitamin mix

1·8 L-cystine

0·25 choline

7 16 nr 3–4 i v. soya oil and

rapeseed oil

nr i v. soya oil,

rapeseed oil

and hydro-

genated

vegetable

oil

0 v. other DIO

diets

(starting

week 3)

–

6 rapeseed oil

1 soyabean oil

15 casein

67·9 maize starch

5 cellulose

3·5 mineral mix

1 vitamin mix

1·8 L-cystine

0·25 choline

7 16 d v. palm oil and

hydrogenated

vegetable oil

nr d v. palm oil and

hydrogen-

ated veg-

etable oil

0 v. other DIO

diets

(starting

week 3)

–

6 hydrogenated vegetable oil

1 soyabean oil

15 casein

67·9 maize starch

5 cellulose

3·5 mineral mix

1 vitamin mix

1·8 L-cystine

0·25 choline

7 16 i v. soya oil and

rapeseed oil

nr i v. soya oil and

rapeseed oil

d v. palm oil

0 v. other DIO

diets

(starting

week 3)

–

Okere et al.

(2006)(61)
Rats, Wistar, male,

329 ^ 9·7 g,

8–9 weeks

Abdominal, epi-

didymal and

intra-thor-

acic

kcal

Cocoa butter

(Research Diets, New

Brunswick, NJ, USA)

nr 60 Purina chow

(Teklad)

4·7 10 8 0

0 v. other DIO diet

0

0 v. other DIO diet

i

i v. safflower-

seed oil

(intra-thor-

acic)

d

d v. safflower-

seed oil

(epididymal

and
abdominal)

nr 0

0 v. other DIO

diet

38

Safflower-seed oil

(Research Diets, New

Brunswick, NJ, USA)

nr 60 0

0 v. other DIO diet

0

0 v. other DIO diet

0

i v. cocoa butter

(epididymal

and

abdominal)

d v. coca butter

(intra-thor-

acic fat)

nr 0

0 v. other DIO

diet

nr, Not reported; i, increase v. control diet or as specified; 0, no change or difference v. control diet or as specified; –, not measured; d, decrease v. control diet or as specified; DR, dietary obesity resistant.
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overweight adult female Wistar rats led to a lower final
weight and fat mass in medium-chain fatty acid-fed
animals(131). Similarly, lower body weight and fat gain
were found in adult male Sprague–Dawley rats fed
medium-chain TAG-rich high-fat diets (at 50 % of energy)
for 8 weeks than in rats fed high-fat diets based on long-
chain fatty acids(132). Other studies in animals(133 – 135) and
in human subjects(136,137) reported similar findings.

The location of the terminal double bond of PUFA may
affect their action. Diets rich in n-3 fatty acids have been
shown to prevent obesity better than other subclasses of
PUFA(56,116). This effect has been reported in studies in
human subjects(57,138,139), mice(48,60) and rats(62,63,65,66,102).
In most of the animal studies lower fat deposition in
subjects fed n-3 fatty acids was shown despite comparable
food and energy intake among the groups(48,60,62,65,66)

(Table 1; lines 12, 33, 23, 22 and 14, respectively); therefore
this effect can be related to the metabolic effects of n-3 fats.
Suggested mechanisms involved in this effect of n-3 PUFA
are: (1) low expression of lipogenic transcription genes with
diets high in n-3 PUFA(59,60,116,118); (2) increased concen-
trations of thromboxane A2, leukotriene B4 and some
cytokines that are elevated by an increase in n-6 PUFA intake
and decrease in n-3 PUFA, and a low dietary n-6:n-3 ratio is
beneficial for preventing them(140); (3) inhibition of PG
synthesis by n-3 PUFA leading to suppression of terminal
differentiation of adipocytes(65).

The configuration of the double bonds of PUFA may also
affect the development of obesity. Conjugated fatty acids are
PUFA that have at least one double bond separated by one
single bond. Conjugated linoleic acid was shown to prevent
obesity, and this effect has been attributed to: lower energy
intake by decreasing the expression of neuropeptide Y and
agouti-related protein, increased diet-induced thermogen-
esis, decreased pre-adipocyte differentiation via decreasing
the expression of PPARg which is a key factor for
adipogenesis, and decreased lipogenesis through decreasing
lipoprotein lipase activity and fatty acid synthase
expression(141,142). The antiobesity effect of conjugated
linoleic acid was reported in studies conducted in
rodents(143,144) and human subjects(145,146). However,
animal(147) and human(148) studies have found that feeding
conjugated linoleic acid-rich diets might also lead to insulin
resistance.

The studies mentioned varied in species, strain, age
and/or sex of the animals used, which may explain some
divergences among the results. Using different fats or fatty
acids at various percentages of animal or plant origin and
in a wide range of durations might have affected the results
as well. For example, in a diet containing 40 %(47) or
58 %(60) energy as beef tallow (48 % SFA and 52 % PUFA),
the percentages of SFA and PUFA would be 19 and 21 %
(in the 40 % diet) and 28 and 30 % (in the 58 % diet),
respectively. These percentages might have been high
enough to reveal the obesogenic effect of SFA when used
for a 7–8-week period. The source of fat (plant origin v.
animal origin) also might have affected the results, for
example, because SFA of plant origin might not be as
effective as SFA of animal origin in developing obesity.
Indeed, SFA of plant origin mainly contain medium-chain
fatty acids (lauric acid in coconut oil and palm kernel oil)

rather than long-chain fatty acids which are abundant in
fats of animal origin(149).

Taken together, the findings indicate that rats and mice
are appropriate models for studying the effects of various
fatty acids in developing obesity.

Physiological mechanisms of high-fat diet-induced
obesity

Food efficiency and diet-induced thermogenesis

Some reports have attributed obesity induced by high-fat
diets to their high food efficiency (g body-weight gain per kJ
food consumed). Energy from fat has a larger effect on
body-weight gain than has energy from non-fat
sources(12,14,22,49,106,150,151). Diet-induced thermogenesis is
the energy for digesting, absorbing and storing nutrients and
produces a loss of energy for the body which is 2–3 % for
fats, 25–30 % for proteins and 6–8 % for carbohydrates.
Therefore, the efficiency of nutrient utilisation differs
among macronutrients and fats have an efficiency of
97–98 %, whereas efficiency is 70–75 % for proteins and
92–94 % for carbohydrates(10,12,22,112). In addition, it costs
energy to build long-chain fatty acids from glucose or amino
acids, whereas dietary fat contains long-chain fatty acid
pre-formed.

Energy density

Some studies have shown that a fat-rich diet induces obesity
by increasing energy intake(24,38,39,41,42). If weight of intake
is not increased at least in proportion, this implicates the
high energy density of high-fat diets.

Individuals with ad libitum access to diets with different
energy densities ate the same amount of food by weight (in a
meal or over a few days)(72,152 – 155). On the other hand, after
2 weeks of exposure, subjects learned to compensate for the
higher energy density of the diet, and ate less weight of
food(156). Rats and mice have been labelled as hyperphagic
when fed a fat-rich diet, which was based on animals
ingesting more energy and not necessarily weight of
food(24,39,42,51). Although in the mentioned studies, the
wieght of food ingested was not always reported, rats might
have attempted to adjust their intake according to the energy
density of the fat-rich diet. While some of the high-fat diets
were less dense in other macronutrients and micronutrients,
rats could not fully adjust for the extra dietary energy while
ingesting a minimal amount of the high-fat diet to meet their
requirements (for example, 5 % protein for maintenance and
15 % for growth)(157) with carrying extra energy. Therefore,
high-fat diets used to induce obesity in animal models
should meet macronutrient and micronutrient requirements
of the animals, so that hyperphagia can be better interpreted.

Satiating effects of fat

Weaker satiety signals from fat than from carbohydrates and
proteins have been suggested to play a role in over-
consumption of energy from fat-rich diets(69,70,158,159). To
clarify if the hyperphagia from fat-rich diets is due to their
post-ingestive effect, rats were administered by gastric
self-infusion for 16 d isoenergetic high-fat (59·9 % of
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energy) and high-carbohydrate (fat: 16·7 % of energy) liquid
diets(160). Rats self-infused more energy per d of the high-fat
diet than of the high-carbohydrate diet; thus, when
orosensory effects are minimised, hyperphagia on high-fat
diets remains. Poorly satiating post-ingestive effects of fat
produced more frequent meals and resulted in large
meals(160).

Post-ingestive effect of nutrients also may increase food
intake by conditioning sensory preference(159). In a 9 d
study, adult female Sprague–Dawley rats were infused
intragastrically with isoenergetic high-fat (59·6 % of
energy) and high-carbohydrate (14·6 % of energy) diets
paired with different flavours (cherry, grape or strawberry).
The rats drank substantially more (38 %) of the solution
paired with the infusion of the high-fat diet than the solution
paired with the infusion of the high-carbohydrate diet, hence
the post-ingestive effect of the diets high in fat enhances
preference for the sensory features of high-fat diets(159).

Various mechanisms have been suggested for a reduction
in satiety signals with high-fat feeding and attenuation of
suppression of energy intake by high-fat diets. These
include: (1) attenuated enterogastric inhibition of gastric
emtpying and secretion of satiety hormones (cholecysto-
kinin, peptide YY (PYY) and glucagon-like peptide-1)
which are normally stimulated by the presence of fat in the
small intestine, and thus decrease late satiety(161,162); (2)
inhibition of fatty acid oxidation(163,164), so that high-fat
diets lower the rate of oxidation of fatty acids, hence they
may increase intake; (3) insensitivity to the food intake
reducing the effect of apoA-IV, which is a peptide that
decreases meal size(165,166). Low-energy-dense diets have
greater volume and so induce more stomach distension than
diets with higher energy density(13).

Hormones

Signals from adipose tissue (leptin, adiponectin and
resistin), stomach (ghrelin and obestatin), pancreas (insulin)
and intestine (cholecystokinin, PYY and incretins including
glucagon-like peptide-1 and gastric-inhibitory peptide) are
sent to the brain to regulate energy balance(167 – 169). The
present review reports the most extensively studied
hormonal effects on energy balance (by reducing energy
expenditure or increasing energy intake) associated with
high-fat feeding.

Leptin. Leptin, first identified in 1994 by Rockefeller
University scientists, is an important hormone in the control
of food intake and body weight(170). It is as an obese gene
product produced by adipose tissue, generally in proportion
to fat mass, with rises in plasma levels resulting in a
decrease in food intake and increase in energy expendi-
ture(170 – 174). Plasma leptin levels display a circadian
rhythm. In humans, leptin is increased during the night
and peak values are reached at about 24.00 hours, while
minimum values are found at midday(175,176). Studies in
human subjects have shown that obesity is associated with
higher concentrations of plasma leptin(176). Moreover, in
healthy men, leptin levels increased in response to a high-fat
meal; however, no differential effects among fatty acid
chain length or saturation were reported(177).

Laboratory rats have similar circadian variations of
plasma leptin, although maximum levels are reached in the
middle of their active phase (at night) and minimum levels
in the middle of their resting phase (daytime)(178,179). In a
study in weanling male and female normal FVB mice, 12
weeks of feeding a high-fat diet (Western diet, Teklad
Adjusted Calories Western-Type Diet, no. 88 187, fat at
40 % of total energy; Harlan-Teklad, Madison, WI, USA)
produced 2·6- to 4·6-fold elevation in plasma leptin levels
(measured between 09.00 and 11.00 hours) relative to
control mice fed chow, but intake of energy was not less
than that of the chow-fed controls(180). Higher leptin levels
were also found after a 2 h high-fat meal at dark onset
compared with pre-meal levels in adult male obesity-prone
Sprague–Dawley rats(181).

In adult male Osborne–Mendel rats, adapted to a high-fat
diet (56 % of energy) for 2 weeks, no reduction in food
intake at 2, 4, 6 and 24 h following intraperitoneal injection
of leptin (0·5 mg/kg body weight) after an overnight fast was
found(182). In contrast, when the rats had been adapted to a
low-fat diet, the injection suppressed the food intake at all
time points. Thus, the intake response to peripheral leptin
was impaired by chronically high levels of fat intake(182).
Harrold et al. (41) found hyperleptinaemia after 1 week of
feeding adult male Wistar rats a raised level of energy as fat
(13 % of energy). Levin & Dunn-Meynell(46) showed that
when adult male Sprague–Dawley rats were fed a high-fat
diet (31 % of energy) for 1 week and were then switched to
3 weeks of chow feeding, leptin levels (time of sampling
not mentioned) were higher in rats that were prone to
developing obesity on the high-fat diet than in rats that were
resistant to dietary obesity despite having comparable body
weights. Both obesity-prone and -resistant Sprague–
Dawley rats fed high-fat diets (at 20 % of total energy)
showed resistance to the anorectic effect of centrally
administered leptin (10mg; intracerebroventricular; ICV),
while control animals fed a low-fat diet (3 % of total energy)
decreased their energy intake following leptin adminis-
tration(95). However, in another study resistant animals did
not show compromised responsiveness to the food-lowering
effect of leptin when fed high-fat diets(183). Overall, these
results indicate that high-fat feeding induces hyperleptinae-
mia and leptin resistance and that this effect is independent
of obesity-induced leptin resistance.

The mechanism thought to be involved in hyperleptinae-
mia and leptin resistance on the high-fat diet involves
hypothalamic leptin receptors and their signalling path-
ways(180). Animals susceptible to dietary obesity have
reduced hypothalamic leptin receptor gene expression and
show an early leptin response to an increase in dietary fat(184).

In contrast to this, Ainslie et al. (39) showed that female
hooded Wistar rats aged between 20 and 22 weeks fed a
high-fat diet (36 % of energy) for 4 weeks had significantly
lower plasma leptin levels (measured after an overnight fast)
than control rats fed low-fat diets (6·5 % of energy)(39).
A more recent study showed that adult male Sprague–
Dawley rats fed a high-fat diet (60 % of energy) for 2 weeks
were hypersensitive to the food intake-lowering effect of
ICV administration of leptin (3mg); however, after 5 weeks
on the high-fat diet, rats became insensitive to this effect of
injected leptin(185). Another study in weanling C57BL/6J
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mice led to similar conclusions(186). The researchers
suggested that early in high-fat feeding, animals are
sensitive to the food-lowering effect of leptin but despite
the reduction in food intake animals become fat as a result of
the increase in food efficiency, leading to an increase in
plasma leptin levels that is followed by insensitivity to its
action(186). This implies that leptin resistance after long-
term feeding on a high-fat diet is an effect of the obese state
rather than the cause of obesity development.

Animal studies found that the fatty acid composition of a
high-fat diet may influence leptin levels in the circulation.
Lower serum leptin levels (measured 3–6 h after initiation
of the dark phase) were found in 8-week-old lean male
Wistar rats fed a diet rich in long-chain SFA (cocoa butter at
60 % of energy) than in animals fed a diet rich in long-chain
PUFA (safflower-seed oil at the same percentage) or chow
for 8 weeks(61). Although total body fat was similar across
dietary groups, SFA-fed rats had less abdominal and
epididymal fat, and more intrathoracic fat compared with
the other groups. Another study found that adult male
Sprague–Dawley rats fed a beef tallow-based diet for
10 weeks had lower leptin levels than animals fed safflower-
seed or fish oil, while fish oil-fed animals had the lowest
amount of perirenal fat(62). These studies suggest that the
site of fat accumulation depends on the fatty acid profile of
the diet, and various adipose tissue depots can differently
contribute to circulating leptin. However, no differences
were found between moderate-SFA and -MUFA beef tallow,
high-PUFA safflower-seed oil and high-n-3 PUFA fish oil in
the increased fasting leptin levels in adult male Sprague–
Dawley rats fed these diets for 10 weeks(187). Greater leptin
levels were found in weanling C57BL/J6 male mice fed
high-fat diets (at 58 % of energy) based on beef tallow for
7 weeks than mice fed high-fat diets based on fish oil,
safflower-seed oil or animals fed low-fat diets (at 10 % of
energy); leptin levels were correlated with body fat as
well(60). Similar results were found in other studies(102,188).

Ghrelin. Ghrelin is a peptide released by cells in the fundus
of the stomach that stimulates the release of growth hormone
from the pituitary and was identified by Kojima et al. in
1999(189). Ghrelin rises before and falls after each ad libitum
meal and increases food intake(190,191). In humans ghrelin
levels peak in the morning (08.00 hours), at noon (12.00 to
13.00 hours) and in the evening (17.00 to 19.00 hours) and
fall after each peak(192). Obese individuals have lower
fasting ghrelin levels than lean individuals and reduced
suppression of ghrelin secretion after a meal(193 – 196). A fat-
rich meal has a smaller suppressive effect on plasma ghrelin
concentration than a carbohydrate-rich meal regardless of
obesity status(197). So far, no effect of dietary fatty acid
profile on total ghrelin levels has been reported(177,198).

In rats there is a peak of plasma levels of ghrelin 5 h after
light onset (resting phase) which remains relatively high for
9 h(178). There is also a second rise just before the beginning
of the dark phase, followed by a sharp drop and then a
gradual rise during the remainder of the dark phase(199).
Ghrelin gene expression and plasma ghrelin concentrations
have been found to be lower in mice with dietary obesity
than in their lean counterparts, coupled with a decrease in
sensitivity to the orexigenic effects of ghrelin as well as

impairment in suppression of ghrelin in response to a
meal(200,201). A study was conducted by Liu et al. (202) in
two strains of rats with different susceptibilities to develop
obesity (Osborne–Mendel prone and S5B/P1 resistant) fed
a diet high in fat (56 % of energy) for 2 weeks. Ghrelin gene
expression was increased in the stomach of fasted
susceptible rats but plasma ghrelin concentrations remained
unchanged, while in resistant rats both expression and
plasma levels of ghrelin remained unchanged. This
indicated that ghrelin may play a role in susceptibility to
dietary obesity. In adult Long–Evans rats, 2 weeks of high-
fat feeding (70 % of energy) was associated with lower
levels of ghrelin than was feeding on a high-carbohydrate
diet(203). In an attempt to distinguish between the effects of a
high-fat diet and of dietary obesity on ghrelin concen-
trations, Greeley et al. (204) fed adult male Sprague–Dawley
rats high- (45 % of energy) or low (12 % of energy)-fat diets
for 3 weeks. Both groups were tested with triiodothyronine
(T3) to prevent accumulation of fat. Decreased ghrelin levels
in high-fat-fed animals were not restored by T3 treatment,
despite the fact that the groups had comparable weights.
Moreover, duodenal and jejunal infusion of fat suppressed
plasma ghrelin less than glucose and amino acids in adult
male Sprague–Dawley rats(205).

The mechanisms suggested for ghrelin’s actions are
twofold. It stimulates hypothalamic secretion of neuropep-
tide Y that increases food intake, decreases fat oxidation and
utilisation of fat and plays a role in meal initiation(190,203).
Ghrelin also decreases the utilisation of fat(191). High-fat
diets are known to down-regulate ghrelin secretion(200,203)

and an inverse relationship between leptin and ghrelin has
been reported(203). On the other hand, hypothalamic
expression of ghrelin receptors was enhanced and ghrelin
levels were greater in adult male Wistar rats fed a fat-rich
meal(206). Thus, regulation of ghrelin concentration through
fat intake remains inconclusive.

Since suppression of ghrelin levels after a meal is
associated with postprandial satiety, the lower suppression
of ghrelin secretion following high-fat diets might be an
explanation for hyperphagia on high-fat diets. Thus, in an
environment with abundant high-fat foods, impairment of
ghrelin suppression after a meal leads to overconsumption
of energy and induces obesity. Furthermore, the obesity
itself impairs the suppression of ghrelin secretion after a
meal which further exacerbates the development of obesity.

Insulin. Obesity is associated with elevated basal plasma
insulin levels and resistance to the metabolic effects of insu-
lin(77,207). Independent of obesity, high-fat feeding itself
contributes to impaired glucose tolerance and insensitivity
to the blood glucose-lowering effect of insulin(207,208).
The fatty acid profile of the diet plays a crucial role
in insulin resistance dependent on a high-fat diet(207 – 209).
In a human study, intake of SFA and MUFA was positively
correlated with plasma levels of glucose and insulin(210).
Replacing SFA with MUFA had no beneficial effect on
blood glucose and insulin levels during 4 weeks of high-fat
feeding in adult overweight and obese men(119). On the other
hand, some studies have shown beneficial effects of MUFA
intake on glucose homeostasis and insulin sensitivity(211).
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Animal studies have also shown that hyperinsulinaemia
and insulin resistance are induced by high-fat feed-
ing(42,166,212). In female C57BL/6J mice fed high-fat diets
(at 10, 20, 30, 40, 50 and 60 % of total energy) for 15 weeks,
a linear relationship between the percentage of dietary fat
and glucose intolerance was found(26). This dose-dependent
effect was also seen in weanling male Sprague–Dawley
rats fed diets with different percentages of energy as fat
(10, 32, 45 %)(24).

Mechanisms of the hyperinsulinaemia and insulin
resistance with high-fat diets and obesity are discussed in
reviews by Lichtenstein & Schwab(207), and Riccardi
et al. (208). These authors suggest that decreases in insulin
receptors, glucose transport and metabolism are involved,
plus reduction in liver and muscle glycogen synthase
activity and storage of glucose as glycogen(207,208). These
abnormalities thus develop when the intake of fat is more
that 40 % of total energy. Excessive amounts of adipose
tissue (hypertrophy and hyperplasia) stress the endoplasmic
reticulum, resulting in secretion of cytokines and decrease
in the responsiveness of the cells to insulin(77).

Differences among dietary fatty acids affect the
composition of the cell membranes and this in turn
influences the affinity of receptors for insulin and so its
action on the cell(207,208,213). Some studies have found that
insulin secretion and sensitivity are enhanced as the degree
of unsaturation of fatty acids increases, especially with n-3
feeding, and thus feeding diets rich in SFA results in more
insulin resistance than MUFA and PUFA(116,207,208,213). In a
study in 7-week-old female C57BL/6J mice fed high-fat
diets (60 % of energy) composed of palm oil, lard, fish oil,
perilla oil or rapeseed oil for 18 weeks, blood glucose levels
were higher in all the high-fat-fed animals 30, 60 and
120 min after an oral glucose challenge than in the group fed
a high-carbohydrate–low-fat diet (fat: 11 % of energy), but
the increase in fasting blood insulin levels was only reliable
in the group fed palm oil(52). In weanling female Wistar rats,
no difference in insulin levels was found between soyabean
oil and palm oil groups(102), whereas lower plasma insulin
levels were found in adult male Wistar rats fed a high-fat
diet (60 % of energy) rich in SFA (cocoa butter) than in the
control animals (10 % of energy)(61). These disparities might
be related to different fats used in these studies: palm oil and
cocoa butter differ in SFA content and so diets will vary in
SFA at the different percentages of total energy used in the
studies. The same can be said for lard, soyabean oil and
safflower-seed oil. Beneficial effects of n-3 PUFA on action
of insulin are reported in many studies(52,62,214,215).

Since human and animal studies have shown comparable
relationships of hormones to obesity, these models can be
used to clarify the uncertain areas such as effects of fatty
acid profile of the diet on these hormones. However, relating
hormone action to obesity itself requires demonstration of
its effect on energy intake and/or expenditure.

Behavioural mechanisms of high-fat diet-induced
obesity

As discussed in the previous sections, one explanation why
high-fat diets induce obesity is hyperphagia(24,38,39,41,42),
i.e. increased weight or volume of daily dietary intake.

Effects of energy density were reviewed earlier. A possible
lack of inhibitory effects of fats on intake (‘satiety’) was
discussed above. Here the intake-facilitatory effects of
sensory characteristics (or palatability) of high-fat diets will
be considered(13,22,69,70). Feeding rhythmicity(216,217), social
environment(5,218 – 228) and stress(229 – 231) may also promote
obesity. Each of these will be reviewed below. Because
social environment is not documented in relation to high
fat intake, only feeding rhythmicity and stress will be
reviewed below.

Sensory facilitation of intake

Facilitation of intake by the sensory characteristics of high-
fat foods is an important influence on ingestion. Sensory
stimulation from food consumption can influence energy
intake directly(232), by promoting selection, consumption,
digestion and absorption of a food(233). It also increases
diet-induced thermogenesis(234,235). Foods high in fat are
usually preferred by rats to those that are low in fat and are
consumed in greater amounts as a result(13,70,156,236).
A variety of sensory properties contribute to this high
palatability of fat-rich diets, mainly texture and
odour(69,160,237,238).

In a study on adult male Long–Evans rats, Warwick &
Weingarten(160) compared the sensory effects of a high-fat
(59·9 % of energy) and a high-carbohydrate diet (fat at
16·7 % of energy). In order to minimise the post-ingestive
effect of diets on intake, they used a preparation in which
most of the ingested liquid food drained out of the stomach
via a fistula. When both diets were offered simultaneously,
rats consumed more of the high-fat diet than the high-
carbohydrate diet, demonstrating a sensory preference.
Warwick et al. (238) concluded from a study in weanling
female Sprague–Dawley rats that consuming high-fat diets
early in life can lead to a sensory preference for this fat
product which is relatively stable.

Evidence for sensory preferences for fats in rat and mouse
animal models is likely to be based on NEFA released from
the TAG in food(239,240). Lingual lipase has such activity in
rodents; taste receptor cells in the oral cavity of rats can
easily detect these NEFA; these gustatory signals are
transmitted to the brain where they cause release of
neurotransmitters such as dopamine and endorphin(239 – 241).
Long-chain PUFA stimulate T-cell receptors more effi-
ciently and thus are more strongly preferred than other types
of fatty acid(241). Preference for fat is also found in humans,
with textural, olfactory and gustatory cues being
involved(242).

Rhythmicity of feeding

Rhythmicity in feeding (variation over time in total amount
ingested, size and frequency of meals) may play a role in the
development of obesity. In human subjects, a lower risk of
obesity was reported in both adults and children with a high
frequency of eating episodes(216,217,243). A greater number
of meals each day was consumed by obese women than
healthy-weight women in Sweden in a cross-sectional
survey(244). However, similar meal patterns were found in
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obese and healthy-weight Swedish men in a dietary
survey(245).

Time of eating also may play a role in the development of
obesity. In humans, meals eaten late in the evening have
been suggested to be one of the risk factors of
obesity(217,246). In free-living individuals food intake in
the morning was more satiating and associated with less
overall intake throughout the day than evening food(5).
However, in another study, percentage energy from evening
food intake and weight changes were unrelated(247). Taylor
et al. (248) and Bellisle(249) suggested that the effects of meal
patterns on human obesity have yet to be clarified.

Unlike humans, rats are nocturnal animals that ingest 70–
80 % of their food during the dark phase(250). There are two
peaks in meal frequency and rate of intakes: at the beginning
of the night and towards the end, i.e. dusk and dawn
feeding(251,252). In adult male Wistar rats fed a stock diet
containing 10 % energy as fat, the greater intake during the
dark phase resulted in positive energy balance and fat
deposition, with negative energy balance along with the
oxidation of fat in the light phase over fourteen 24 h
cycles(250,253). Altered circadian rhythmicity of intake
characterised by larger meal size and decreased meal
frequency has been found in genetically obese animals fed
non-purified diets(252,254 – 257).

Some animal studies have found a relationship between
sizes of meals and susceptibility to obesity. Adult male
Sprague–Dawley rats that ingested chow in larger meals
had a higher rate of weight gain when fed high-fat diets than
rats that were fed on chow in smaller meals(258). When
weanling male obesity-prone Sprague–Dawley rats were
fed high-fat diets (45 % of energy) for 19 weeks, they ate
larger meals than resistant animals(259). In adult inbred
obesity-prone and -resistant rats fed chow, on the other
hand, the obesity-prone rats ingested smaller meals more
frequently(260). These results suggest that an irregular meal
pattern is not a cause of developing obesity in obesity-prone
animals. A 6 h meal pattern analysis during the dark phase in
adult male Sprague–Dawley rats exposed to isoenergetic
high- and low-fat diets (soya oil at 38 and 10 % of total
energy) for 2 weeks revealed comparable amounts of food
ingested in the first meal, but less food ingested in the
second and third meal of high-fat-fed rats, as well as greater
meal frequency, shorter inter-meal interval (IMI) and lower
rate of weight gain than animals fed the low-fat diet(261).
However, when feeding period was prolonged to 8 weeks,
the size of the second meal and IMI increased. Increased
meal size and decreased meal frequency have also been
found in rats acclimatised to a mixture of high-fat and
high-carbohydrate diets (providing 38·5 % energy as fat)
for 14 d and then fed a fat-rich diets (at 60 % of total
energy) for an additional 8 d(262).

There is a shift of food intake from the dark phase to the
light phase in genetically obese rats and mice(254 – 256).
Mistlberger et al. (263) reported higher weight gain in
genetically obese Zucker rats when fed ad libitum than in
those fed only during the 14 h dark phase, while both groups
had similar food intakes. In addition, rats differ in their
macronutrient selection during the light–dark cycle. It has
been reported that when rats are offered a two- or three-way
selection between macronutrients, they eat more

carbohydrate at the beginning of the dark phase, and more
protein and fat at the end of the dark phase and during the
light period(264). Thus it is probable that, with high-fat
feeding, more food will be ingested in the light period that
may further facilitate the development of obesity.

Obesity-prone rats respond more than resistant animals
with an increase in meal size. This might account for the
hyperphagia with high-fat feeding in dietary obesity. Further
research is needed to find out the cause–effect relationship
between eating patterns and obesity.

Stress

Many studies have shown that long-term stress increases
food intake and promotes weight and fat gain in human
subjects(265,266). In addition, obesity was found to be
associated with depression(267). Higher levels of obesity in
depressed individuals as well as higher prevalence of
depression in overweight and obese women and extremely
obese men (BMI $ 40 kg/m2) were found(268,269).
Depressed individuals with eating disorders often describe
themselves as chronically stressed and usually are obese,
suggesting that they eat more when stressed in an attempt to
cope with the situation and feel better(230). Energy-dense
foods with high fat and sugar are known as ‘comfort food’
and are more often eaten during stress(229,266,270). On the
other hand, some individuals show loss of appetite during
stress(271). It has been suggested that this difference is based
on the dieting history of the individual: usually dieters
increase and non-dieters decrease their intake while in a
stressful situation(271).

A different pattern of responsiveness to stress has been
shown in a variety of rodent models(99,272 – 274). Rowland &
Antelman(274) discovered that in adult female Sprague–
Dawley rats mild stress induced by six daily sessions
(10–15 min) of pinching of the tail for 5 d at equal intervals
while they had free access to sweetened milk and tap water
resulted in greater food intake and body-weight gain than in
the control animals. However, chronic exposure of adult
male Sprague–Dawley rats to an immobilisation stressor
led to a decrease in food intake, independent of the duration
of the stress, while handling stress did not result in change
in food intake(273).

Obesity-prone and -resistant animals are also different in
their responsiveness to stress. A study was conducted by
Levin et al. (272) in 2·5-month-old selectively bred male
obesity-prone and -resistant Sprague–Dawley rats fed a
high-fat diet (31 % of energy) for 1 week. They were then
randomly assigned to a stress group or control group while
fed the high-fat diet for 3 weeks and then the high-fat diet
plus Ensurew (Ross Products Division, Medical Supplies
Depot, AL, USA) for another 2 weeks. Rats in the stress
group had daily exposure to different stressors for 5 weeks,
which were restraint for 15 min, moving the animal to the
cage of another, exposure to another male rat for 10 min,
2 min swimming or saline injection. Results showed that
stressed obesity-resistant rats gained less weight without
any decrease in energy intake with little effect of the
stressors on body-weight gain and energy intake of obesity-
prone animals. Adding Ensurew to the high-fat diet
increased energy intake and rate of weight gain in resistant
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animals, but cumulative weight gain over 5 weeks was still
lower in stressed rats than in control animals. Weight gain
and intake of the obesity-prone rats were unaffected by the
addition of Ensurew. It was suggested that resistant rats had
a lowered sympathetic activity compared with their
unstressed controls, which was shown by lower noradrena-
line levels in their urine.

The effect of a high-fat diet on weight gain after stress
was investigated in a study in 3- to 4-month-old male
obesity-prone and -resistant Sprague–Dawley rats that were
restrained once for 20 min, and after release were presented
either a high-fat diet (at 31 % of energy) or chow for 9 d(99).
Stressed prone rats fed the high-fat diet gained more weight
than unstressed prone rats fed the same diet while having
similar food intakes. However, when stressed prone rats
were fed chow, they gained less weight than unstressed
prone rats fed the same diet. These results showed that prone
rats were less responsive to the weight-reducing effect of
immobilisation stress when fed a high-fat diet; at the same
time they were more responsive to this effect when fed
chow. Immobilisation stress had no effect on body-weight
gain in resistant rats fed either diet(99). In another study,
adult male Sprague–Dawley rats fed high-fat (at 40 % of
total energy) or low-fat diets (at 12 % of total energy) for 4 d
were divided into two groups of stressed (restraint tubes
with no food and water access followed by tail blood
sampling, 3 h daily for three consecutive days) and mildly
stressed rats (moved to new cages, food and water deprived
for the same period and blood sampled)(275). On the days of
restraint, stressed rats lost weight regardless of the diet.
High-fat-fed mildly stressed animals stopped gaining
weight; however, low-fat-fed mildly stressed rats gained
weight throughout the experiment(275). Results showed that
low- and high-fat diets resulted in similar body-weight
changes under a severe stress, whereas with a mild stress
high-fat-fed animals were more responsive to the weight-
lowering effect of stress. In adult male Long–Evans rats, the
weight loss resulting from chronic stress was regained after
recovery from stress and body-weight and fat gain were
greater in high-fat-fed rats than in chow-fed control
animals(276). Higher preference for high-fat feeding during
chronic stress was reported in mice(277).

Mechanisms that influence food intake during acute and
chronic stress are different. Physiologically, the initial
response of the body to an acute stress is secretion of
corticotrophin-releasing factor from the paraventricular
nucleus of the hypothalamus that stimulates the secretion of
adrenocorticotropin hormone from the anterior pituitary
which in turn leads to the release of cortisol from the adrenal
cortex to provide energy for the brain and/or muscles. Then
cortisol itself makes a negative feedback for its further
secretion. However, with a chronic exposure to stressor, the
negative feedback does not work efficiently and thus
induces an increase in food intake and body-weight gain
through increased secretion of glucocorticoids which
elevate appetite, food intake and fat storage especially in
the abdomen(230,231,278). In adult male Wistar rats, a chronic
stress of keeping rats in cages filled with water to a height of
2 cm for 5 d led to delayed gastric emptying during the first
24 h of exposure, but after that it was accelerated and
exceeded that of the control group by day 5. In addition,

catecholamines were increased during the first 24 h and then
decreased while active ghrelin levels were high on day 3 and
remained elevated until day 5(279). It was suggested that the
increased sympathetic activity after 24 h stimulated ghrelin
secretion, and therefore the increased food intake found
during chronic stress might be a result of enhanced plasma
ghrelin. Plasma ghrelin levels were also found to be
increased with acute stress(280).

Susceptibility to obesity

There is a genetic background for susceptibility to obesity
with interacting environmental factors; the environment
alone has an impact on the inherent risk of obesity in
individuals(5,6,281 – 283). This has been shown in many studies
in human subjects(2).

An underlying genetic predisposition to be obesity prone
or resistant is also shown in animal models(46,184). Rats and
mice known as the standard models for studying dietary
obesity are different in their susceptibility to obesity:
outbred Sprague–Dawley rats, Wistar rats and C57BL/6C
mice can be easily categorised to prone and resistant
phenotypes with ad libitum access to high-fat diets(7,8,21).
There are also strains known as genetically obese, such as
Zucker fa/fa rats and ob/ob mice(8,35).

When exposed to high-fat diets, some animals are sensitive
to high-fat diet-induced obesity and become obese (obesity-
prone animals), while others resist to this obesogenic effect
and grow normally (resistant animals)(82,284). Some
researchers have attributed this difference to higher energy
intakes in obesity-prone animals(51,60,97,259,285,286), while
others have found similar intakes in prone and resistant
animals, and suggested that susceptible animals were
capable of storing energy with greater efficiency(95,287,288).

Suggested mechanisms for the difference between prone
and resistant animals in responding to high-fat diets are that
prone animals have lower fat oxidation(40,98,288,289),
increased lipoprotein lipase activity in their adipose tissue
and no change in lipoprotein lipase activity of their muscles
which favours fat storage in these animals(97,289,290).
However, Commerford et al. (286) fed 7-week-old male
Wistar rats high-fat diets (45 % of energy) for 1 or 5 weeks
and found comparable fat accumulation and lipogenesis in
prone and resistant rats after provided with an isoenergetic
14C-labelled high-fat meal, suggesting that the increased
energy intake is the main reason for accelerated weight gain
in prone animals.

Dietary obese-prone animals also had increased arcuate
neuropeptide Y mRNA expression (an orexigenic neuro-
peptide)(291), decreased noradrenaline turnover and a2-
adrenoceptor binding in some parts of the hypothalamus
(ventromedial, dorsomedial and lateral) compared with
resistant animals, as well as in the pancreas and heart, which
shows a reduced sympathetic activity in these organs(292).
The reduction in noradrenaline turnover in the pancreas leads
to an increase in insulin release and development of obesity.

Sex differences

In humans, there are differences between the two sexes
in energy expenditure and requirements as well as in fat

N. Hariri and L. Thibault290

N
u
tr
it
io
n
R
es
ea
rc
h
R
ev
ie
w
s

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0954422410000168
Downloaded from https://www.cambridge.org/core. IP address: 54.167.112.42, on 19 Nov 2018 at 18:15:11, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0954422410000168
https://www.cambridge.org/core


metabolism and fat distribution(293 – 295). Greater storage of
fat in the lower body in females (gynoid) due to lower basal
fat oxidation and greater number of a2-adrenoceptors, as
well as decreased a2-adrenergic sensitivity in the abdominal
region, all lead to more fat storage in the thigh region and
less in the abdomen compared with men who have greater
storage of fat in the upper body (android)(293 – 295). Moreover
women have more subcutaneous fat than men(296). Despite
all these differences, in a recent review of the genetic studies
of obesity in different countries it was shown that overall
obesity rates of males and females as determined by BMI
were small and inconsistently different, with no indication
of obesity in either sex being more prevalent(295).

These differences can also been found in animal models
of obesity(35). In laboratory rats, males gain weight steadily
throughout their lives while the body weight of female rats
becomes stable in early adulthood(297). As a result, female
rats are better models for studying obesity during adulthood
since they are more like humans in their growth patterns.
Besides, more subcutaneous fat is found in females due to
higher concentrations of oestrogen and progesterone
receptors in these depots while males have more visceral
fat related to high concentrations of androgen receptors in
this area(298).

The sex of the animals may also affect the cellular
response of the adipose tissue to high-fat feeding. This was
shown in adult rats fed cafeteria diets for 9 weeks which led
to a more rapid development of obesity in female rats, and
their difference in weight compared with control animals
became obvious after 5 d while in males this became
significant after 40 d(44). The same report showed that
weight gain of male and female rats fed a supermarket diet is
more similar to each other than that of rats fed chow.
Therefore, the sex difference in weight gain normally seen
in rats is reduced when animals are developing dietary
obesity. Female golden hamsters, aged 10 weeks, fed a fat-
rich diet (52 % of energy) ate significantly more energy and
gained more weight than males(106). Likewise, 10 d old
female Wistar rats fed a cafeteria diet for 14 weeks gained
more weight than their male counterparts fed the same diet,
suggesting less thermogenic capacity in females when fed
the cafeteria diet(299). A study in 3-month-old Sprague–
Dawley rats showed that female rats fed chow had higher
food intake and greater increase in ghrelin and decrease
in leptin levels than males following a 12 h fast(300).
Moreover, an interaction between sex and site of fat
accumulation was found in 6-week-old NMRI mice given
different amounts of fat (17, 27, 43·5, 60 % of energy) for
14 weeks, with more fat accumulation in retroperitoneal
and parametrial sites in females, and in subcutaneous depot
in males(25).

All together, similar to humans, male and female rats
have different body fat distribution which makes them
appropriate models for studying adipose tissue. Besides,
female animal models are better responders to high-fat
feeding, mimicking susceptibility to obesity in humans.
However, in a recent review, male mice and rats are
introduced as ‘gold standards’ for studying dietary
obesity(7). This might be because of the oestrous cycle of
the female animals which is repeated every 4–6 d and can
affect the food intake of the animal during this period(301).

Reversibility

Animal studies have shown that low-fat diets can induce
weight loss in dietary obese rats. A reduction in energy intake
and obesity reversal was found when adult male Wistar rats
fed a high-fat diet at 60 % of total energy for 17 weeks were
switched to chow for 13 weeks(302). Decreased energy intake
and obesity reversal with significant weight and fat loss
were found in weanling male C57BL/6 mice switched
from 17 weeks of high-fat feeding (at 58 % of energy) to
low-fat feeding (at 11 % of energy) for 17 weeks(303) or
after 13 weeks of high-fat feeding (at 59 % of energy) to
low-fat feeding (10 % of energy) for 6 weeks(51). Likewise,
a reduction in energy intake and a complete reversal of
diet-induced obesity were found when 13-week-old
female Wistar rats originally fed high-fat diets (at 30 or
60 % of energy provided by Criscow; Proctor & Gamble,
Cincinnati, OH, USA) for 8 or 14 weeks were switched
to chow(101).

In other studies, however, ad libitum low-fat feeding was
not an efficient method to completely reverse dietary obesity.
For example, an initial decline in body weight followed
by a plateau have been found in adult male obesity-prone
and -resistant Sprague–Dawley rats after switching from
10 weeks of a high-fat diet (at 31 % of energy) to chow
feeding for 2 weeks(288); however, when animals were
restricted on chow to 50 % of their energy intake for 3 weeks,
their body weights reached the level of chow-fed control
animals. Decline in body weight and a plateau were also
found in adult male obesity-prone Sprague–Dawley rats
switched from 10 weeks of being fed a high-fat diet (at 31 %
of energy) to 7 weeks of chow feeding, although their energy
intake was decreased while on chow(82). Wade(304) reported
that young male and female golden hamsters fed a high-fat
diet (at 52 % of energy) for 4 weeks and then switched to
chow for 4 weeks (fat at 4·5 % energy) decreased their energy
intake and lost 80 % of their weight gain from feeding on the
fat-rich diet. Adult male obesity-prone Sprague–Dawley rats
fed a high-fat diet (at 31 % of energy) for 12 weeks and then
switched to chow for 1 week decreased their energy intake
(by 10–20 %) but failed to lose weight(305).

Both hyperplasia and hypertrophy of fat cells are involved
in developing obesity(77,78,81). A total of 8 weeks of energy
restriction in normal-weight adult male Sprague–Dawley
rats did not result in hypoplasia despite the significant
decrease in body weight and body fat(306). When weanling
male Sprague–Dawley rats made obese by feeding a diet
containing chow, Criscow, sweetened condensed milk and
sucrose solution for 19 weeks were then food deprived for 8,
15 or 25 d, body weight and fat cell size decreased, but fat
cell number was comparable with that of the chow-fed
control animals(307). Another study in adult male C57BL/6J
mice fed a high-fat diet (45 % of energy, Research Diets,
New Brunswick, NJ, USA) for 10 weeks and then switched
to chow for 2 weeks had similar results(308). Centrally
administered leptin (10mg, ICV) for 4 d in normal-weight
adult male Sprague–Dawley rats caused a decrease in the
number of inguinal fat cells(309). Leptin injections (5mg;
ICV) over 5 d decreased the number of fat cells in young
(aged 3 months) male Sprague–Dawley rats, but not in
mature (aged 8 months) animals(310). This was also found in
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a study in mice(308). However, a decrease in fat cell number
was not found following dietary reversal of obesity in rats
and mice(306 – 308). These findings contrast with human
studies that showed hypoplasia of adipocytes following
reversal of obesity(78,81).

Conclusions

The physiological mechanisms involved in high-fat diet-
induced obesity are overconsumption of high-fat diets due
to their low satiating effects, the high efficiency of dietary
fat in being stored in the body as well as the alterations in the
hormones involved in energy balance, such as high-fat
diet-induced hyperleptinaemia and hyperinsulinaemia
accompanied by leptin and insulin resistance, and lowered
suppression of ghrelin secretion following high-fat diets.
Among the behavioural mechanisms, the sensory facili-
tation of intake with high-fat diets is well understood. Meal
pattern analysis of high-fat-fed animals in a pre-obese v.
obese state could be useful to understand the development of
obesity. An area for future research is to investigate whether
different patterns of eating in animal models before obesity
development can be a predictor of prone and resistant
phenotypes, and to assess their feeding circadian rhythms.
There has been extensive research on the obesogenic effects
of fatty acids with different degrees of saturation but no
constant pattern of outcome under different conditions has
been found. More work is needed to prove that body weight
can be regulated by the fatty acid profile in high-fat diets.
An important key point in designing animal studies is that
high-fat diets meet animals’ minimal nutrient requirements,
especially for protein, vitamins and minerals, to eliminate
the possibility of overconsumption of the diet to fulfill these
nutrient needs. The ineffectiveness of low-fat diets fed
ad libitum to reverse dietary obesity induced by long-term
high-fat feeding stresses the use of restricted regimens.
This could help to investigate whether a significant and
sustainable weight loss accompanied by decrease in fat cell
number can be achieved.
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