
Journal of Functional Programming 1 (3): 245-285, July 1991 245

Type inference with simple subtypes
JOHN C.MITCHELL

Department of Computer Science, Margaret Jacks Hall, Stanford University,
Stanford, CA 94305-2140 USA

Abstract

Subtyping appears in a variety of programming languages, in the form of the 'automatic
coercion' of integers to reals, Pascal subranges, and subtypes arising from class hierarchies in
languages with inheritance. A general framework based on untyped lambda calculus provides
a simple semantic model of subtyping and is used to demonstrate that an extension of Curry's
type inference rules are semantically complete. An algorithm G for computing the most general
typing associated with any given expression, and a restricted, optimized algorithm GA using
only atomic subtyping hypotheses are developed. Both algorithms may be extended to insert
type conversion functions at compile time or allow polymorphic function declarations as in
ML.

Capsule review

The notion of subtypes occurs in a variety of different programming languages. Most relevant
to functional programming is the use of subtypes to provide a basis for the insertion of
automatic coercions in languages with ad hoc polymorphism (or overloading). This paper
introduces type inference algorithms for the lambda calculus which correctly handles subtypes,
The paper is fairly theoretical but it constitutes an important addition to the arsenal of
techniques available to the functional language implementor.

In the main sections of the paper, two sets of rules for type inference and two algorithms
based on the first system are introduced. The rule systems are distinguished from the standard
approach by the fact that a set of coercions, specifying containments between types, is used as
well as the usual type assignment. The first system CC has the standard Curry rules plus a rule
which says that a term which has a type a also has any supertype of a. Unfortunately, CC is
not semantically complete; terms which are not strongly normalizable are not typable, but may
be equivalent to terms which are strongly normalizable and thus typable. This problem can be
fixed by adding two rules which assign equal types to equal terms and equal types to eta-
convertible terms; this gives the system CCeq which is necessarily undecidable. The rest of
the paper considers algorithms based on CC. The algorithms compute a type and substitution,
in the normal way, and also compute the minimal set of coercions required to make the term
typable. The first algorithm allows arbitrary containments between types, a consequence of
which is that all terms are typable. The second algorithm is an optimized algorithm which
restricts coercions to be atomic; this algorithm will only type pure terms which have Curry
types. The paper concludes with a brief discussion of techniques for the automatic insertion of
coercions and extensions to the algorithms to handle ML polymorphism.

The paper is largely self-contained and will handsomely repay careful reading.

10 FPR 1

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

246 John C. Mitchell

1 Introduction

Type inference is a form of type checking. In programming languages where all
identifiers are given types as they are introduced, it is often a simple matter to check
whether the types of operators, functions and procedures agree with the types of
operands and actual parameters. For some programming applications, it is convenient
to be able to omit type declarations from programs, leaving the programming
language processor (editor, interpreter or compiler) with the task of inferring the
missing type information. Automatic type inference may make it easier to write
experimental programs quickly or allow a single untyped program to represent many
explicitly typed programs. In addition, type inference sometimes provides more useful
debugging information. If we expect a function to have one type, and the
programming language processor infers another, this may suggest a bug in the
function declaration. Type inference seems to have originated with Curry and Feys
(1958), Hindley (1989) and, independently, Milner (1978). A general discussion of the
use of type inference in programming languages may be found in Milner (1978); for
further information on type inference, see, e.g., Barendregt et al. (1983), Coppo et al.
(1983), Coppo (1983), Kanellakis et al. (1991), MacQueen et al. (1986), Mitchell
(1990) and Wand (1987).

Many programming languages use some form of subtyping. The most common
uses are in 'coercions', as in the automatic conversion of integers to real (floating
point) numbers, and in the subclassing mechanisms of object-oriented languages such
as C++ (Stroustrop, 1986). In this paper, which extends the conference abstract
(Mitchell, 1984 a), we investigate the semantics and algorithmic aspects of type
inference for pure lambda terms in the presence of various forms of subtyping
hypotheses. The main results are a semantic completeness theorem and two type
inference algorithms. The semantic study uses a model of subtyping based on set
containment: if type a is a subtype of T, then we will think of the set of values
associated with type a as a subset of the values associated with type x. Mathematically,
the integers may be regarded as a subset of the reals, and so our model applies. Some
' subtyping' relationships, such as simplified versions of Pascal subranges, may also
be interpreted in this manner. The basic results in this paper may also have some
application to languages with subtyping derived from class hierarchies (cf. Cardelli,
1988; Wand, 1987). However, we do not consider subtyping based on structural
similarities between distinct record types. For discussion of this related topic, see, e.g.
Cardelli (1988), Cardelli and Mitchell (1989), Jategaonkar and Mitchell (1988), Wand
(1987) and Remy (1988).

Even without subtyping, type inference allows a single untyped function to have
infinitely many types. For example, the body J[x) of the function

Apply(J,x)=Ax)

has type / whenever/has functional type s-> t and x has type s. (The type operator
-> means'function space', so s->t is the type of functions with domain s and range
t.) Thus Apply has type

Apply :((s^-

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

Type inference with simple subtypes 247

for every pair of types s and /. (The type operator x means ' product space'. For
example, int x bool is the type of pairs <a, b} where a is an integer and b is a boolean.)
In particular, Apply has every type that is a substitution instance of the above
expression, for example

Apply: {int -*• bool) x int) -*• bool

Apply: ((real-* int) x real)-»• int.

In typed programming languages similar to Algol or Pascal, we would have to declare
a different Apply function for each type of application function that we need.
However, since application functions of different types are defined the same way,
except for type declarations, this seems an unfortunate restriction; it would be simpler
to declare Apply only once. One way for a typed language to allow this flexibility is
to use a type inference algorithm. Since an inference algorithm could infer that an
untyped Apply function has type ((s-> t) x s)-+1 for every s and t, an inference
algorithm could allow calls of the form Apply(g, y) whenever the type of the pair (g,
y) is a substitution instance of (s -> t) x s. By this means, type inference algorithms
may be used to support an implicit form of polymorphism.

ML is a popular and well-known programming language incorporating implicit
polymorphism (Gordon et al., 1979). In the ML type system, every typable expression
M has a most general typing, consisting of an association A of types to free variables
of M and a type expression a. The efficiency of the ML type checker seems to be a
direct consequence of the fact that every type of an ML expression may be
constructed from the most general typing by substitution. In this paper, we will add
subtyping to a subset of ML and obtain similar results. For every typable M, there
will be a set of subtyping conditions C, an association A of type expressions to
variables, and type expression CJ such that every legal typing of M can be constructed
from C, A and a. With subtyping, alternative typings are constructed from the
principal typing using substitution as a proof system for subtypes.

The typing algorithms developed in this paper provides a means for combining
implicit ML-style polymorphism with user-specified subtyping or coercions. There
are a number of programming language design issues surrounding user-defined
coercions which will not be addressed in any detail. As far as type inference goes, it
may be possible to allow arbitrary coercions to be declared at any point in a program,
However, if user-supplied conversion functions are used, then the meaning of a
program may not be uniquely determined (see Reynolds, 1980). For this reason, most
practical programming languages are likely to allow only a restricted form of user-
defined subtypes, such as those associated with class and subclass declarations. One
reasonable and algorithmically interesting kind of subtyping is coercion between
atomic types. Since the most reasonable place to declare new subtyping relationships
seems to be when new types are declared, and type declarations generally introduce
new atomic type names, this may be the most useful case in practice. In addition,
atomic subtyping restricts the type inference problem in a way that allows
optimization of the typing algorithm. Finally, if added to ML, atomic subtyping
would preserve the character of the language in that precisely the same set of pure
expressions would be typable. One implication is that programmers would receive

10-2

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

248 John C. Mitchell

approximately the same kind of error messages in ML with atomic subtyping as in
ML without. Since the ML type checker has proven useful for detecting errors over
many years, the restrictions imposed by atomic coercions might be useful in practice.

Some basic facts about lambda calculus will be reviewed in section 2, followed by
a discussion of type expressions, coercions sets and typing statements in section 3. The
typing rules and soundness and completeness theorems appear in section 4. A general
typing algorithm is presented in section 5, and a restricted, optimized version
developed in section 6. Some extensions and variations of the algorithms are
discussed in section 7, with section 8 concluding. Unification and some variants,
which are used in the typing algorithms, are discussed in the appendix.

Preliminary versions of some of the results presented here were summarized in
Mitchell (1984a). Later studies (based on Mitchell, 1984a) include Jategaonkar and
Mitchell (1988), Fuh and Mishra (1988) and Wand and O'Keefe (1989).

2 Lambda calculus and its semantics

Lambda calculus will be used to demonstrate type inference with subtyping. The
terms of untyped lambda calculus are defined by the grammar

M--:=x\MN\Xx.N,

where x may be any variable. Intuitively, MN is the application of function M to
argument N, and Xx. M is the function we obtain by treating M as a function of x.
Although programs also contain constants like 0, 1, 2, + and ' if . . . then...else... ', it
will be notationally simpler to only consider pure lambda terms without constants.
The main results of this paper may be extended to expressions with constants without
difficulty.

A lambda model <£), -,e> is a set D together with binary operation •, 'choice
element' eeD, and elements K,SeD satisfying certain algebraic conditions. This is
the combinatory model definition of Meyer (1982); see also Barendregt (1984). We
will not be concerned with the specific properties of K and S, but it is worth pointing
out that (e • d) • e = d- e for all d,eeD, and ifd1e = d2e for all eeD, then e • d1 = e • dr

Intuitively, these conditions mean that e • d represents the same function (on D) as d,
and that if dx and d2 represent the same function, then edt = E- d2. This means that
for every function / which is represented by some deD, we can use e to choose
' canonical' element e • d representing / . The fact that d and e • d represent the same
function will be important for understanding some properties of functional types.

Given a lambda model <Z), •, e> and environment r\ mapping variables to elements
of D, the meaning of a lambda term M is denned inductively by

= r](x)

(kx.M] = e-d, where de = IM]n[e/x].

The existence of K and S ensure that there always exists a d as required in the
definition of (Xx. M\. The element 8 makes the meaning of Xx. M independent of the
specific choice of d. Again, the reader is referred to Barendregt (1984) and Meyer

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

Type inference with simple subtypes 249

(1982) for more information. One specific fact relevant to functional types is that if
x is not free in M, then (kx.Mxjr] = e-[M]r|.

A few facts about the reduction rules (operational semantics) of lambda calculus
will be used. The reader is referred to Barendregt (1984) for a comprehensive
presentation. We consider lambda terms modulo a-conversion

(a) Xx.M = Xy.[y/x]M if y is not free in M

so that we can rename bound variables. The reduction rules are

(p) (Xx.M)N^[N/x]M,

(T|) XX.Mx-*i\M if x is not free in M,

where substitution of N for x in M, written [N/x] M, is defined with renaming of
bound variables to avoid capture. If a term M is of the form of the left-hand side of
rule (p) or (r|), then M is a P- or r\-redex. We say that M ^-reduces to N in one step
if there is a subterm P of M which is a P-redex and N is the result of contracting this
redex in M. The term M ^-reduces to N, written M-*>$N, if there is a sequence of P-
reductions leading from M to N. The T|-reduction relation is defined similarly. The
combination of p- and T|-reduction is called $,r\-reduction and written M-» p nN. A
term which cannot be reduced is in normal form.

The equational proof system for lambda calculus is obtained by taking all instances
of (a) and an equational version of (P) as axioms, along with inference rules to make
= a congruence with respect to application and lambda abstraction. A lambda theory
is any set of equations containing (a) and (P) and closed under the inference rules. A
theory is extensional if it contains all instances of an equational version of (n).
Conversion is the least congruence relation containing reducibility; = p denotes P-
conversion and =Pit l denotes p, n-conversion. Thus M = ^ N iff every theory contains
M = N, and M = p N iff every extensional theory contains M = N.

One important model is the term model. Given any lambda theory Th, we let [M]Th

be the set of terms N with M = Ne Th. The term model <Z>, •, e> for Th has
equivalence classes of terms as elements,

D = {[M]Th | M an untyped term}.

Application, •, in term models is defined by

[M]-[N] = [MN]

and choice element defined by

e = [Xx.Xy.xy],

where we omit the subscript Th when it seems to be clear from context. See
Barendregt (1984) and Meyer (1982) for further discussion of term models.

3 Type expressions, coercions and type assignments

Although product types, lists and other kinds of types are useful in programming
languages, function spaces seem to raise most of the significant typing issues related
to subtyping, short of the more involved problems that arise with record types (see

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

250 John C. Mitchell

Jategaonkar and Mitchell, 1988; Cardelli and Mitchell, 1989). Therefore, -> will be
the only type connective. We will adopt the notational conventions that

r, s, t,... denote type variables

p, a, x,... denote type expressions.

To be precise, the type expressions are defined by the grammar

Intuitively, the functional type c->i consists of the set of functions which take
arguments of type o to results of type T. We have omitted type constants as a matter
of notational convenience, and to eliminate routine cases in inductive proofs.
Constants do not alter the inference rules, and require only minor modifications to
the supporting algorithms given in the appendix. The necessary modifications will be
discussed briefly there.

For grammatical reasons, we will often use ' coercion' as a synonym for subtyping.
We will use CT £ x to denote the fact (or assumption) that CT is a subtype of x or,
equivalently from our point of view, values of type a may be coerced to values of type
x. If we think of subtyping as an ordering, then -> is monotonic in its second
argument:

if a £ p then x -»• a <= x -» p.

However, -> is antimonotonic in its first argument, i.e.

if a £ p then p -+ x £ CT _> T

rather than the reverse inclusion. If every value of type a can be treated as a value of
type p, then every function which maps p to x also maps o to x. For example, if/is
a function of one real argument, and integers are coercible to reals, then/should be
applicable to all integer values. Some 'domain-theoretic' semantics of ->• are carefully
constructed so that -> is monotonic in both arguments, since this is helpful in solving
domain equations (Scott, 1976; Smyth and Plotkin, 1982). However, anti-
monotonicity in the first argument is the standard, categorical view of function spaces
(Lambek and Scott, 1986; MacLane, 1971), and seems most natural when we think
of containment as either substitutivity or the ability to coerce.

Types will be interpreted as arbitrary sets of elements of lambda models, as in
previous studies such as Barendregt et al. (1983) and Hindley (1983 a). A type
environment n for a model <Z>, •, e> is a mapping from type variables to subsets of D.
The meaning of a type expression a in a type environment r\ is defined inductively by

= {d\Veelo]r\,d-eefz\T\}.

This is the 'simple semantics' for ->. Note that membership in o^-x is determined
only by the applicative behavior of an element d, so that

rfe[a-»-T]T) iff e-de[a-*-TITI.

The simple semantics will be used because this seems to be a natural and
representative interpretation of ->; other semantics for -»• are discussed in (Hindley
(1983 a, b), MacQueen and Sethi (1982), Mitchell (1988) and Scott (1976).

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

Type inference with simple subtypes 251

A coercion set C is a set of subtype assertions a s T between types. A model <D, •,
e> and type environment n satisfy a coercion set C if

|[a] r| c [T]n for all a^zeC.

Generally speaking, coercion sets may include statements like (t -»• t) c t, which are
closer to ' domain equations' than the simple containments like int £ real which are
often given as typical examples of coercions. In fact, some coercion sets allow us to
type every pure lambda term. For example, the two coercions

(t^-t)^t and (£((->;),

imply t = / -> /. Since every solution of this equation forms a model of untyped
lambda calculus (Barendregt, 1984; Scott, 1976, 1980; Smyth and Plotkin, 1982), we
would expect to type every term with these two coercions. This is borne out in Lemma
2. In later sections of the paper, we will develop a typing algorithm which only allows
coercions between atomic types, and therefore only types expressions which are
typable without coercions.

A type assignment A is a finite set of basic typing statements of the form x: o. An
environment n mapping type variables to subsets of D and ordinary variables to
elements of D satisfies a type assignment A if

n(x)e[CT]r| for all x:aeA.

If x is a variable, CT a type expression and A a type assignment, then A[x: a] is the type
assignment given by A[x: a] = (A — {x: x}) U {x: a} if we have x:xeA, and A[x: a] =
A U {x: a}, otherwise.

A typing statement describes the type of an expression, given coercions between
types and the types of variables, Informally, the statement

C,A^ M:a

means that if types may be coerced according to C, and free variables have the types
assigned by A, then the term M has type a. More formally, a model </), -,e> and
environment n mapping term variables to elements of D and type variables to subsets
of D satisfy a typing M: a if

A statement C,A => M:G holds (or is satisfied) in a model if every environment which
satisfies C and A also satisfies M:o. A statement is valid if it holds in every model.

4 Rules for type inference

4.1 Overview of the rules

We will consider six type inference rules. The first three are essentially Curry's rules
for functional types (Curry and Feys, 1958). The next rule (coerce) formalizes the
property that if a term M has type a, and the type a is coercible to the type x, then
M also has type T. These four rules will be called the Curry rules with coercions, or CC
for short, and will provide the basis for the typing algorithm G in section 6. As in
Gordon et al. (1979) and Milner (1978), rules for other applicative programming
language constructs may be added. However, the main issues involved in treating
coercions seem adequately illustrated by the system we will consider.

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

252 John C. Mitchell

The Curry rules with coercions are not semantically complete. If we want semantic
completeness, then untyped terms that have the same meaning must be given the same
types. The simplest way to achieve this is to add a fifth rule (equal) based on equality
of untyped terms. However, we will see that with the 'simple semantics' of -+, rule
(equal) still does not give us semantic completeness with respect to certain equational
theories. Therefore, we will also consider a sixth rule allowing us to n-reduce terms
of functional types. The six typing rules define Curry typing with containment and
equality, or CCe(l. Although (equal) is not a recursive inference rule, since no non
trivial lambda theory is decidable, we could replace (equal) by a set of recursive,
schematic rules based on the usual axioms and inference rules for lambda theories.
However, there does not seem to be any advantage of doing so. As we will see later
on, the set of valid typings is undecidable.

4.2 Rules for deducing coercions

The rule (coerce) for coercing terms from one type to another will use two subsidiary
rules for deducing consequences of coercion sets. The axiom and rules for deriving
coercions are

(ref) CT £ CT,

(arrow) 1 ~—-—=—L-

a £ T, x £ p
(trans) - .

o £ p

It is easy to verify the soundness of these rules. A coercion a £ p is provable from C,
written

Cha£ p,
if a £ p can be derived from the formulas in C using (ref), (arrow) and (trans). We
will write CY-C if CY-a £ x for every a £ xeC. It is easy to show that I— is a
transitive relation on sets.

Lemma 1
If CY-C and C" Y- C", then CY-C".

4.3 Curry typing with coercions

Three well-known rules for assigning types to lambda terms (Curry and Feys, 1958;
Damas and Milner, 1982; Hindley, 1983 a, b), are

(var) C,A^>x:a whenever x.aeA,

C A 1 AT Z*"1 A \T

• . / I —' 1VJ. . \J r I , V_», f\. —J iV • \J

(app) —

(abs)

C,A

C,A[x:a] => M:x

These three rules are called the Curry typing rules (except that they are usually written

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

Type inference with simple subtypes 253

without coercion sets). The coercion rule for typing lambda terms, based on the rules
for deducing coercions, is

. C,A =>
(c o e r c e) Q

The four rules (var), (app), (abs) and (coerce) are called the Curry rules with
coercions, or CC for short. We will write I- C, A => M: a if this typing statement is
provable from the CC rules. The soundness of the rules is left to the reader.

It is easy to show that the CC rules are conservative over the Curry rules in the
sense that if h- 0, A => M:a, then this typing statement may be proved without using
rule (coerce). For this reason, we will call a typing statement of the form 0, A => M: o
a Curry typing. Whenever a term M has a Curry typing, M must be strongly
normalizing, which means that there is no infinite sequence of reductions starting from
M (cf. Hindley, 1983 a). In contrast, every untyped lambda term may be assigned a
type using coercions.

Lemma 2
Let M be any untyped lambda term and let A be a type assignment with x: teA for
every variable x free in M. Let C be the coercion set C = {/ £ (f-v /), (?-• /) £ t}. Then
\-C,A =>M:t.

The proof is a straightforward induction on the structure of terms, using t £ (t->t)
in the application case, and ((->()£/ for an abstraction. A related translation of
untyped terms into typed terms with t = t->t is given in Scott (1980).

A useful fact about the typing rules is that all free variables must be given types,
and types given to variables that do not appear free are irrelevant.

Lemma 3
If I- C, A => M.a, and x occurs free in M, then x:xeA for some T. Furthermore, if
x:TeB for every x:xeA with x free in M, then I— C,B => M:o.

The lemma is proved by an easy induction on typing derivations.
An interesting property of the Curry and coercion rules is the following

generalization of the Subject Reduction Theorem of Curry and Feys (1958). The
lemma shows that types, as defined by CC, are closed under P,T| -reduction (but not
conversion). The lemma is interesting in itself, and will be used to derive some useful
corollaries to the completeness theorem.

Lemma 4 {Subject Reduction Lemma)
H\-C,A=> M:a and M p,^-reduces to N, then I- C, A => N:a.

Proof
Let us assume for the moment that the lemma holds in the special case that M is a
redex and iV is obtained by contracting M. We will first argue that the lemma as stated
follows from this special case, and then justify the assumption. Suppose M is a term

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

254 John C. Mitchell

with a subterm P which is a p- or n-redex. We can write M = C[P] for some context
C[] with a single 'hole'. Let TV be the result of contracting the redex P in M. It is easy
to show by induction on the structure of the context C[] that if C,A => M:a is
provable, then so is C, A => N.a. Thus whenever M reduces to N by a single reduction
step, the lemma holds. In general, M may reduce to TV by more than one reduction
step. By induction on the length of the reduction path, we can prove the lemma. It
now suffices to prove the lemma in the special case that M is a redex.

We consider n-reduction first. Assume that the statement C,A=>Xx.Mx:a is
provable for x not free in M. We wish to show that C, A => M: a is provable. For some
type x, there is a proof of C, A z>\x. Mx: x which ends in a use of rule (abs) and such
that C \- x £ o. Since the proof of C, A => Xx. Mx: x ends in a use of rule (abs), the
type x must be of the form x1^-x2. Furthermore, we must have a proof of the
antecedent of (abs),

C,A[x:Xj) => Mx:x2.

It follows that for some type p with C I— p £ x2, there is a proof of

C, ^4[*:xJ => Mx: p

that ends in a use of rule (app). Hence, for some type u, the statements

C, ^[xixj => M:u->p

and C,A[x\x^\ => x : v

are both provable.

Since the typing C,A[x:xJ => x:u is provable, it is easy to argue that C\- x1 £ u.
Thus, by (arrow),

C\~ U->p£T1^-T2

and so by rule (trans)
Cl-u-^p £ a.

From this, we may use Lemma 3 to conclude that there is a proof of C,A => M:a.
The remaining case is P-reduction. Assume that C, A => (kx.M)N:a is provable,

for some terms M and N. We wish to conclude that C,A => [N/x]M:a is provable.
There is some type x with C\~ x £ p such that C, A => (kx.M)N:x has a proof that
ends in a use of rule (app). Thus for some type p, we have proofs of

C, A => Xx.M: p->x

and C,A => N: p.

A straightforward induction on the structure of M shows that if C,A[x: p] => M:u
and C,A=>N:p are provable then so is C, A => [N/x] M: u. This implies that C,A =>
[N/x] M: o is derivable, and finishes the proof of the lemma. •

4.4 Curry typing with coercions and equality

As mentioned earlier, the CC rules are not semantically complete. This follows from
the fact that without coercion hypotheses, only the Curry typing rules apply, and
these are not semantically complete. More specifically, a term M can have a Curry

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

Type inference with simple subtypes 255

typing only if there is no infinite sequence of reductions from M (cf. Hindley, 1983 a).
Therefore, although the expression

(kx .ky.y) ((kx. xx) (kx. xx)),

is semantically equally to ky.y, we cannot type this term since the subterm
(kx. xx) (Xx. xx) may be reduced infinitely many times. More precisely, the typing
statement

0,0 =>(kx.ky.y)((kx.xx)(kx.xx)):t^t

is semantically valid, but cannot be proved using the CC typing rules. Another way
to show that the CC rules are not semantically complete is to compare Theorem 5,
which shows that the valid typing statements are undecidable, against Theorems 13
and 14, which imply that the consequences of the CC rules are decidable.

We will give equal terms the same types by adopting the rule

(equal)
C, A => N: a

If we are interested in deducing typings that hold in all models, then we use P-
conversion for = in (equal). To consider only extensional models, we would use P, n-
conversion instead. In both of these cases, the CC rules together with (equal) are
semantically complete. If we wish to consider the typing statements that hold in all
models of some lambda theory Th, then we would use Th for equality in (equal).

For certain lambda theories, even CC+(equal) may not be semantically complete.
The reason is that in the ' simple semantics' of ->, a term M has a functional type a
->x iff kx.Mx has type CT->T. This implies that the rule

. . C, A => kx. Mx: a -»x _ . . .
(eta) —— x not free in M

C,A=> M:a^-T

is sound. However, the set of typing statements derivable using CC+(equal) from Th
may not be closed under rule (eta). For example, if we assume that kx = x for some
constant k, then we can prove kx. kx:t->t. However, we cannot prove k:t-yt without
rule (eta), as explained at the end of this paragraph. Therefore, we will adopt (eta) as
an additional inference rule. It is worth remarking that the need for rule (eta) stems
only from the choice of simple semantics for ->, and is not related to the presence of
coercions. The reason we cannot prove k:t^-t without (eta) is that CC+(equal) are
sound for the /"-semantics of -»•, discussed in Hindley (1983 a, b), while kx = x does
not imply k:t->t in the /"-semantics. It is worth pointing out that although this
example is stated using a constant symbol k, this is for notational simplicity only. The
same reasoning applies if we replace the constant k with the closed term
(kx.xx)(kx.xx).

The CC rules with (equal) and (eta) will be called the Curry rules with coercions and
equality, and abbreviated CC^. We will write I—eQ C, A => M: a if the typing statement
is provable using the CCe(l rules, with P-conversion in rule (equal). Similarly, if
C, A => M:o is provable from CC^ using an equational theory Th, we will write

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

256 John C. Mitchell

Th l-eq C, A => M: a. It is clear that if Th is closed under r| -conversion, then rule (eta)
is not needed. We will also see that if Th is the theory of p-conversion, then (eta) is
superfluous.

Since we have introduced undecidable equational reasoning into the typing rules,
it seems worthwhile to point out that the set of semantically valid typing statements
is undecidable.

Theorem 5
The set of valid typing statements of the form C, A => M:t, with C = 0 and A = {x:
t}, is not recursive.

Proof
This theorem follows from the classical undecidability results in lambda calculus,
which imply that for any variable x, the set of terms M such that M = px is
undecidable (Barendregt, 1984). Specifically, if 0,{x:t} => M:t is valid, then this
typing statement must hold in the term model for P-conversion, with type t assigned
to the singleton set containing only the equivalence class [x] of x. Therefore, the
typing statement 0,{x: t} => M: t is valid iff M =$x. •

If we replace (eta) by a more general proof step, then we can generalize the Equality
Postponement Lemma for Curry typing (Hindley, 1983 a) to show that in any typing
derivation, all uses of (equal) and (eta) may be ' postponed' until the end of the proof.
One application of this will be to show that rule (eta) is unnecessary if Th is P-
conversion; some other applications will be discussed at the end of this section. An
unsound 'inference rule' that will facilitate proof-theoretical analysis is

C, A => M:o-+x , ,

which includes (eta) as a special case. We will say that ^-reduction passes through Th
if M-»n N and Th \- N = P imply that there exists a term Q with Th \- M = Q and
Q -»n P. It follows from Corollary 15.1.6 of Barendregt (1984) that r|-reduction passes
through the theory of P-conversion. We now have the following useful but rather
elaborate lemma.

Lemma 6 (Equality and Eta Postponement)
Suppose Th h-eq C,A=> M: a and Ax is a derivation of this typing statement using Th.
Then there is a derivation A2 of the same typing statement, possibly using (eta)trick,
with the following properties:

(i) A2 has the same number of occurrences of each typing rule as A1; provided we
consider (eta)trick an acceptable replacement for (eta).

(ii) All CC rules appear before any occurrences of (equal) or (eta) in A2. If T|-
reduction passes through Th, then we may choose A2 so that, in addition,

(iii) all occurrences of (equal) appear before any uses of (eta)trlck.

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

Type inference with simple subtypes 257

If (eta) does not occur in the derivation A15 then from (ii) and the transitivity of
equality, we may coalesce all uses of (equal) in A2 into one. Similarly, when (iii)
applies, we may assume A2 contains at most one occurrence of (equal) followed by at
most one use of (eta)trick.

It is important to emphasize that (eta)trick is merely a technical device for analyzing
• typing derivations, and is not a sound typing rule with respect to arbitrary equational
theories. Therefore, care must be taken in applying this lemma.

Proof
The proof is a straightforward induction on the derivation of C, A => M: a, and some
details will be left to the reader. If we have a use of (equal) preceding any CC rule,
then it is easy to produce a valid derivation with the order of the two rules reversed.
For example, if A1 proves the following sequence of typings

C, A => M:a->-T

C, A => N: a -> T by (equal) using M = N

C,A=> NP:i by (app) using C, A => P:o,

then we can replace this sequence by

C,A = > M : O - > T

C, A => MP:x by (app) using C,A=> P:o

C,A=> NP:x by (equal) using MP = NP.

The other cases are similar.
If we have a use of rule (eta) followed by any CC rule, then we may also switch the

order of rules, provided we allow (eta)trick in place of (eta). The argument is similar
to that for (equal). This shows that we may transform Ax into a derivation A2

satisfying conditions (i) and (ii) of the lemma.
If n-reduction passes through Th, then we may further simplify the sequence of

(eta)trlck and (equal) rules following the CC rules in A2. More specifically, if (eta)trlck

is followed by (equal) to prove a sequence of typing statements of the form

C, A => M:a-»x

C,A^>N:o^-i by (eta) using M-»nN

C,A=> P:o^z by (equal) Th \- N = P

then the assumption that n-reduction passes through Th is precisely what we need to
reverse the order of the two rules. •

An interesting corollary of Lemma 4 and Lemma 6 is that for typing with respect to
the theory of P-conversion, rule (eta) is unnecessary.

Corollary 7
If 1—«, C,A=>M:G then this typing statement may be proved from the theory of P-
conversion without using rule (eta).

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

258 John C. Mitchell

A similar corollary is proved in Hindley (1983a), following the Subject Reduction
Theorem, using similar facts about reduction.

Proof
Suppose \-e(lC,A => M.o, Since ri-reduction passes through P-conversion, Lemma 6
implies that there exist terms N and P such that I- C, A =i N: a by the CC rules only,
N = p /" and /*-»•„ M. Using well-known properties of p- and n-reduction we will show
that there is a term V such that n -»p n K and K = p Af. This will allow us to apply the
subject reduction lemma.

By the Chruch-Rosser property of p-conversion, there is some term U with iV-»p

U and P-»p U. Thus i> may be reduced to M by (n), or to U by (P). Since (P) and (n)
commute (Lemma 3.3.8 of Barendregt, 1984), there is some term Kwith M-»p Kand
£/-»,, V. Putting the reduction paths together, we obtain N-»p,,, V and M-»p K, as
desired.

By the subject reduction lemma for the CC rules, we may conclude \- C,A ZD V.Q.
Therefore, from M =p V, we have I—eqC,A =) M.a without using (eta). •

4.5 Semantic completeness

We will now prove the semantic completeness theorem for CCetl. Since (coerce) is
unnecessary for proving Curry typings, our theorem implies that Curry's rules,
augmented with (equal) and (eta), are complete for Curry typing with respect to any
equational theory. In addition, by Corollary 7, Hindley's completeness theorem for
Curry typing with P- or p, T|-conversion as equality, but without rule (eta), also
follows.

Theorem 8
Let Th be any lambda theory. There is a lambda model D for Th such that Th \- C,
A =i M.a iff the typing statement C,A=> M.o holds in every environment for D.

In contrast to the theorem stated earlier in Mitchell (1984 a), this completeness
theorem applies to typing with unrestricted coercions. However, the proof is quite
similar.

Proof
The first step is to construct a model D for Th. Let <£>, •, e> be the term model for
Th, so that D is the collection of all equivalence classes [M]Th of terms modulo Th.
As mentioned earlier, we will write [M] for the equivalence class [M]Th. A standard
property of term models (Barendregt, 1984; Meyer, 1982) is that if n is any
environment, and 5 is a substitution such that n(x) = [Sx] for every term variable x,
then

It turns out that we will only need to consider one environment in the proof, namely
an environment mapping each term variable x to its equivalence class.

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

Type inference with simple subtypes 259

Let Co, Ao => MQ: a0 be any typing statement. It is easy to verify that the typing rules
are sound, so that if Th I—eq Co, Ao => Mo: o0, then this statement must hold in every
environment for <£>, -,e>. Therefore, we will assume that C0,A0 => M0:a0 is not
provable. The rest of the proof will be devoted to showing that there is some
environment T| satisfying Co and Ao but with [M0]T|£ | (J0]]T| . We will do this by
choosing an infinite type assignment A containing Ao and using the proof system to
define an environment r\ from A.

Let A be any set of basic typing statements x: a, with no x appearing twice in A,
such that

(i) Ao s A
(ii) for every type a, there are infinitely many variables x with x:cseA.

The reason for having infinitely many variables of each type is so that given any
term M and type a, we can find some x: a e A with x not free in M. We will extend
our notation slightly and write Th\-C,A is M:a if Th\-e^C,A1 => M:a for some
finite subset A1 of A. Let r| be an environment which maps each term variable x to
its equivalence class [x], and each type variable t to the subset of D given by

= {[M]\Th\-e<iC,A ^ M:t}.

We will see that r\ satisfies Ao and Co, and that the rules are complete, by showing that

(•) [M]e[a]Ti iff Th\-e(lC,A => M:a.

The argument will proceed by induction on the structure of type expressions.

For a type variable /, the equivalence is a trivial consequence of the definition. For
any functional type a -> T, suppose that the statement

is provable from Th. We must show that [M] belongs to [CJ->T]]T|. For any term N,
if [./V] e [CT] T|, then by the inductive hypotheses there is a proof of C, A => N: a, and so
we can prove C, A r> MN:x by rule (app). Therefore, by the inductive hypotheses,
[MAf]e[T]]T|. Thus, by definition of [o->T]n, we have [M]e[0->T]Ti.

For the converse, assume that [M]e[a->x]|r|. For any term Af, if C,A => N:a is
provable, then [TV] e [a] r\ by the inductive hypotheses, and so

Thus Th \- C, A => MN: T, again by the induction hypotheses. In particular, if x is any
variable x.aeA, we can use this argument to show that

C,A =>

and by, by rule (abs),
Th I—eq C, A => Xx. Mx :a--x.

By the construction of A, we may choose x to be a variable not free in M. Therefore,
we may use rule (eta) to derive Th\-e^C,A => M:a->T, which finishes the proof of

(*)•

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

260 John C. Mitchell

It is now easy to see that r\ satisfies Ao and Co. If x: a e Ao, then x.aeA and so

Mil = Me [a] n

by (•). If a s x e Co, then for every [Af] £ JCTJ n, we have 7% l-eQ C0,A=> M:a by (*).
Therefore, by rule (coerce), we have Th\-eciC0,A => M:x and so [Af]e[T]T|. Thus r\
satisfies Co. Finally, using (*) again, we have [M0]^[CT0]TI, and so the unprovable
typing statement C0,A0 => M0:a0 does not hold in environment T|. This proves the
theorem. •

The completeness theorem has two important implications for CC typing: CC is
semantically complete for terms in normal form, and the three containment rules are
complete for deducing consequences of coercion sets.

Corollary 9
If M is in P-normal form and C, A => M: CJ holds in all lambda models, then \-C,A
=> M:a.

Proof
Suppose C,A => M:a holds in all models. Then by Corollary 7, I— eqC, A => M.a
without using rule (eta). By the equality postponement lemma, there is some TV which
is P-equivalent to M with \— C,A => N:o. But since M is in P-normal form, N
must reduce to M. Therefore, by the subject reduction lemma, it follows that 1— C,
Az^M-.a. •

Corollary 10
If CT £ / holds in every model and environment satisfying coercion set C, then

Proof
Note that if C semantically implies a ^ -c, then C, {x: a} => x: x must be valid for any
variable x. Since x is in normal form, this typing statement is provable using rule
(var), (app), (abs) and (coerce). But then it is easy to see that the only applicable rules
are (var) and (coerce). Thus C H o £ T. •

The proofs of both corollaries rely on equality postponement and the subject
reduction lemma. Although rule (arrow) is not used in the proof of Theorem 8, it is
used critically in the proof of subject reduction.

5 Typing algorithm with unrestricted coercions

5.7 Introduction

Since semantic typing characterized by CCe(l and any nontrivial lambda theory is
undecidable, it is impossible to build a practical type checker based on CCe(i.
However, CC forms a natural subset of the CC^ system, and we will see that there

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

Type inference with simple subtypes 261

is an efficient algorithm for CC typing. While it might seem that CC+(eta) would also
provide a reasonable basis for practical type checking, recall that by Lemma 4, the
consequences of the CC rules are closed under rule (eta). Therefore, we will study
algorithmic properties of CC typing in the remainder of the paper. Section 5 will be
concerned with unrestricted CC typing. In section 6 we will consider a restriction of
CC typing in which only atomic containment hypotheses are allowed.

One plausible approach to type inference with subtyping might be to provide a term
M and coercion set C as input to a typing algorithm, and then compute a description
of the set of all A and a such that \- C,A => M:a. However, this approach does not
seem fruitful. The main problem is that there does not seem to be any succinct,
understandable description of all suitable types and type assignments. If every term
had a semantically minimal type, in each context, then this would be a natural way
of characterizing all other types. However, typable terms do not have minimal types
in each context. To give a simple example, let us suppose we have expression and type
constants; the same phenomenon occurs without this assumption, but slightly less
obviously. Now suppose the only coercion is int £ real, and that function constant/
has type real-*bool. In this context, the expression

Xx.Kx(fx)

where K=Xu.Xv.u returns its first argument and discards its second, has types int
-> int, int ->• real and real^- real. It is easy to see that int -»• int is contained in int -> real,
but from Corollary 10 we can see that, neither int -»• int £ real'-»• real, nor the reverse
containment, is semantically valid. Therefore, there is no semantically minimal type
to use as a representation of all other types. This suggests that the seemingly natural
approach of leaving the set of coercions fixed is impractical. Instead, our type
inference algorithm will compute a minimal set of coercions necessary to type a given
term. Although there is a certain computational cost associated with this, since sets
of coercions must be manipulated, there is an added generality which provides some
insight into typing.

The general typing algorithm presented in this section is a straightforward
generalization of the special case presented in Mitchell (1984 a) to arbitrary coercion
sets. Algorithm GA of this paper, which only allows a restricted form of coercion set,
corresponds to the original Algorithm TYPE of Mitchell (1984a).

5.2 Substitutions, instances and general typings

A useful property of Curry typing is that the probable typings are closed under
substitution. CC typings are not only closed under substitution, but also a more
general relation involving entailment of coercion sets. After a brief discussion of
substitution, we will define ' instance' and show that every instance of a provable
typing is provable. The correctness proof for algorithm G will later establish that
every term has a ' most general typing' with all alternative typings as instances.

A substitution is a function from type variables to type expressions. We write
[alt...,cjn/t1, ...,tn] for the substitution mapping tt to at, for 1 ^ / < n, and mapping
every other type variable to itself. If a is a type expression and S is a substitution, then

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

262 John C. Mitchell

So is the type expression obtained by replacing each variable t in o with S{i). The
composition S° T of substitutions S and T denned by (S° T)o = S(To).

A substitution S applied to a type assignment A is the assignment SA with

SA = {x:So\x:oeA}.

Similarly, the application SC of substitution S to coercion set C is denned to be the
following set of subtype assertions:

SC = {Sa^Sx\aZxeC}.

An instance of a typing statement may be obtained by applying a substitution to all
of its type expressions, and possibly choosing a ' stronger' coercion hypothesis or type
assignment. More precisely, a typing statement C, A' => M:o' is an instance of C,
A => M: a if there exists a substitution S such that:

C" h- SC, X' 2 SA, and a' = So.

In this case we say C", .4' => M: a' is an instance ofC, A => M: a 6y substitution S. Note
that coercion sets are compared using the entailment relation, rather than
syntactically. One important fact about instances is that every instance of a provable
typing statement is provable.

Lemma 11
Suppose C',A' => M:o' is an instance of C,A => M:o. If C,A => M:o, then the
instance C',A' => M:cr' is provable also.

Proof
By Lemmas 1 and 3, it suffices to show that if \-C,A => M: a, then I— SC, SA => M:
So for any substitution S. An easy induction on coercion proofs shows that if C \-
o £ x, then SC I- So £ ST. Using this fact for the (coerce) case, a straightforward
induction on the derivation of C, A => M: o proves the lemma. The details are left to
the reader. •

A most general typing for term M is a provable typing statement which has every other
provable typing for M as an instance. More specifically, C,A => M: o is a most general
typing for M if I— C, 4̂ => Af: a and, whenever \- C',A' => M:o', the latter typing is an
instance of C, A => M:c. Consequently, if C, ̂ => M:a is a most general typing for
M, then I- C", ̂ ' => M: o' iff C, A' 3 Af: a' is an instance of C, A => M: a. Since the
instance relation is easily seen to be decidable, the decision problem for CC-typing is
effectively reducible to the problem of computing most general typings.

Without coercions, a most general Curry typing is unique except for the names of
type variables. In addition, since substitutions cannot decrease the size of expressions,
every most general Curry typing is a Curry typing of minimal length (when written
out symbolically). However, because coercion sets are compared using entailment,
there may be most general CC typings of differing lengths. For example, both

{s £ t, u £ v}, 0 z> Xx. x: u -+ v and {« £ v}, 0 => Xx. x: u -*• v

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

Type inference with simple subtypes 263

are most general CC typings for the identity function. The first is easily seen to be an
instance of the second (by the identity substitution), since

{s c ;, u c v} r- u £ v.

Conversely, the second may be obtained as an instance of the first by substituting 5
for t. This reduces j c n o an instance of the reflexivity axiom s ^ s.

5.3 Unification

A unifier is substitution which makes two expressions syntactically equal. More
generally, if £ is a set of pairs of expressions, then substitution S unifies E if Su =
Sx for every pair <a, x}eE. Since such a set of pairs may be regarded as set of
equations to be solved, we often write the pairs <CT, T> eEin the form a = T. As in ML
typing (Milner, 1978), we will use unification to combine typing statements about
subexpressions. Although we will see that the unification problems involved in
Algorithm G have very simple solutions, more difficult unification problems will
occur in the specialized versions of the algorithm considered in later sections of the
paper. Since we will need a general unification algorithm eventually, it makes sense
to start right off with one here.

The unification algorithm computes most general unifying substitutions, where we
say substitution S is more general than R, and write S ^ R, if there is a substitution
T with R=T°S.

Lemma 12 (Robinson, 1965)
Let E be any set of equations between type expressions. There is an algorithm UNIFY

such that if E is unifiable, then UNIFY(£) computes a most general unifier.
Furthermore, if E is not unifiable, then UNrFY(is) fails.

If Ax and A2 are type assignments, then unification can be used to find a most general
substitution 5 such that SA1 U SA2 is a well-formed type assignment. Generally
speaking, the union of two type assignments is a type assignment precisely when both
give each variable in common the same type. Therefore, to find a most general S with
SA1 U SA2 well-formed, we simply unify the set of all equations CT = T such that x:a
eA and x.xeB.

To facilitate comparisons between various containment theories, a proof of Lemma
12 is sketched in the Appendix. There are efficient, even linear, implementations of
unification (Paterson and Wegman, 1978). A parallel lower bound is given in Dwork
et al. (1984).

5.4 Algorithm G for most general typings

Given any term M, the algorithm G(M) produces a provable typing C, A => M: a for
M. The algorithm is written below in an applicative, pattern-matching style. There are
three mutually recursive clauses, one for each possible form of lambda term. In the

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

264 John C. Mitchell

abstraction clause, we use A — {x:o} to denote the set difference, i.e. the type
assignment defined by removing x:a from A.

G(x) = {s S: t},{x:s} => x:t

G(MN) =

let C1,A1 =)M: a = G(M)

with type variables renamed to be disjoint from those

in G(M)

S = UNIFY({a = PI x: a e ^ and x:$eA2} U {a = x^ /})

where t is a fresh type variable

in

SCl U SC2 U {St £ u), SAX U SA2 = MA ;̂ u

where u is a fresh type variable

G(Xx.M) =

\etC,A => M:x = G(M)

in if x: u e A for some a

then CU{tJ^T£ u},(A — {x:o}) =>Xx.M:u

else C U { ^ T C « } , ^ D Xx.M:u,

where s, u are fresh type variables.

The algorithm could conceivably fail in the application case if the call to UNIFY fails.
However, we will see that this does not happen. It is not to hard to prove that if G(M)
succeeds, then it produces a provable typing for M.

Theorem 13
If G(Af) = C, A => M: a, then 1- C, A => M: a.

It follows, by Lemma 11, that every instance of G(M) is a provable typing for M.
Conversely, every provable typing for M is an instance of G(M).

Theorem 14
Suppose I- C, A .3 Af: a. Then G(M) succeeds and produces a typing with C,A => M:
a as an instance.

Both theorems are proved below.
From Lemma 2, we know that every term has a provable CC typing. Therefore,

Theorem 14 implies G(M) always succeeds.

Corollary 15
For every untyped lambda term M, Algorithm G(M) succeeds in finding a most
general typing for M.

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

Type inference with simple subtypes 265

In contrast to the typing algorithm given in Milner (1978), Algorithm G takes a term,
but no type assignment, as input. This style of typing algorithm for lambda terms
seems to have originated with Leivant (1983 a). The advantage of Algorithm G over
Milner's Algorithm W is that the algorithm and the correctness condition are simpler
to state. In addition, since the type of a lambda term is determined without regard to
context, this style of algorithm facilitates the extension of ML let declarations, as
presented in section 7. The disadvantage is that in practice, Algorithm G may
compute rather large type assignments which must be unified. In contrast, Milner's
Algorithm W may be implemented so that entire type assignments need not be unified
or returned as results of function calls. However, it is not very difficult to use
Algorithm G to develop an algorithm for CC typing in the style of Milner's
Algorithm W.

Proof of Theorem 13
The proof is by induction On the structure of terms. It is easy to see that G(x) is always
a well-typing, so we move dn to application and abstraction.

Consider G(MN). Ety' the inductive' assumption, both

are provable. (We will assume that the type variables in G(N) have been renamed to
avoid duplicating type variables in G(M), as specified in Algorithm G.) Since S unifies
{a = P | x: aeA1 and x: fieA2}, the set SAX U SA2 is a well*formed type assignment. By
Lemma 11, it follows that the two typings

SCX U SC2 U {St s u}, SAX U SA2 => M: So

SC1 U SC2 U {St £ u), SAX U SA2 => N: ST

are both provable. Since S unifies a and x-+t, we have

SC1 U SC2 Cf {St s u), SA1 U SA2 => MN: St

by rule (app), and hence G(MN) is1 provable using (coerce).
The third case is an abstraction Xx.M. By the inductive assumption,

G(M) = C,A=>M:T

is provable. If x.aeA for sbrrie type CT^ then A = (A^{x:a})[x:c] and so by rule
(abs) we may derive

C, (A - {xi d}) =>kx.M-a^-x.

If x does not occur in A, then by Lemma 3, the typing C, A[x: t] r> M: x is provable,
for any type variable t, and so

C,A ^'kx.M.t^x

follows by rule (abs). In either case, augmenting the coercion set with a -> t £ u or
s^-t s u preserves provability (by Lemma 11), and so by rule (coerce) we may prove
that Xx.M has type u, as desired. This proves the theorem. •

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

266 John C. Mitchell

Proof of Theorem 14
An easy induction on the structure of terms shows that if G(M) succeeds, then it
produces a typing C, A => M: a in which A assigns a type to x iff x occurs free in M.
This will be useful later in the proof. The main argument now proceeds by induction
on the structure of terms.

For a variable x, suppose I— C, A => x: x. Without loss of generality, we may assume
the proof uses axiom (var) followed by rule (coerce). Since x must appear in A, we let
a be the type with x.ceA, and note that C must prove a £ T. Algorithm G returns
the typing

G(JC) = {s £ t}, {x:s} => x: t.

To show that C, A => x: x is an instance of G(x), let T be the substitution [a, x/s, t]. It
is easy to check that

A^T{x:s} and Tt = T.

Fur thermore , since C\- T{s £ f}, it follows that C, A => x:x is an instance of G(x).
Suppose I— C, A => MTV: p. This typing must follow from provable typings

C, A 3

by rules (app) and (coerce), where C h v g p. By the inductive hypothesis, G(M) and
G(iV) are most general typings for M and N. This means that there exist substitutions
Tx and T2 such that

where Cx, C2, etc., are as in the application case of Algorithm G. Because G renames
variables, no type variables in C,, A2 3 N:i appear in C1,A1 => M:a. This allows us
to combine substitutions T^ and T2. Anticipating the need for a substitution that
behaves properly on the fresh variables t and u introduced in Algorithm G, we let T
be any substitition such that

Ts = Txs if s appears in the typing of M,

Ts = T2 s if s appears in the typing of TV,

77 = v,

Tu = p.

Without considering the effect of T on t or u, it is easy to see that

C\- TCCX, A 2 TAV To = u^v ,

C\-TCC2, A=>TA2, 7T = U,

so that both instances are by the single substitution T. By Lemma 3, the assignment
A must give types to all free variables of M and N and, as noted earlier, an assignment
produced by G always contains exactly the variables that occur free. Therefore, T
must unify {a = P | x: a e A1 and JC: |3e A2}. In addition, since To = u -> v = Tx-+Tt,

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

Type inference with simple subtypes 267

the substitution T unifies a = T -»t. Since S is a most general unifier for these
equations, there is a substitution V with

T= V°S.

This implies that C,A => MJV: v is an instance of SCl U SC2, SAX u S/l2 => MN: St by
K. It remains to consider the fresh type variable u and coercion v £ p.

Since S is a most general unifier for a set of equations not containing u, we know
Su = u. Since we chose Tu = p, it follows that Vu = p. We have already seen that
V(St) = v, and so putting the pieces together gives us C h- V(St -> M). This shows that

C I-FISQuSCiUfSf-*«}],

which completes the proof that C, A => MW: p is an instance of G(MN) by
substitution K.

The final case to consider is an abstraction Xx.M. Suppose h- C',A' =>Xx.M: p.
This must follow from a provable typing C',A'[x:\i] => M:v by (abs) and (coerce),
where C I— u -> v £ p. By the inductive hypothesis, C", /i'[x: n] => M: v is an instance
of

G(M) = C,A ^ M : T .

This means that there is a substitution S such that

C" I- SC, A'[x: u] 2 SA and v = ST.

Without loss of generality we may assume Su = p. If x:a occurs in A, then So must
be u, and so C',A' => X.x.M:u^-v is an instance of C, A— {X:G} => Xx.M:G->-T by
substitution S. In addition, since C'l-u^-v £ p and Sw = p, the typing C',A' =>
X.X.M: p is an instance of G(Xx.M) by S.

If x does not occur in A, then we may further assume without loss of generality that
Ss = u, where s is the fresh type variable introduced in Algorithm G. It is easy to
check the definition and verify that C',A' =>Xx.M:\i^*v must be an instance of C,
A =>XX.M:S^>-T by substitution S. Furthermore, reasoning about coercions as
above, we again conclude C, A' => Xx. M: p is an instance of G(Xx. M) by substitution
S. This proves the theorem. •

6 Typing with atomic coercions

6.1 Introduction

In this section we will study CC typing with atomic coercions and give an algorithm
GA for finding the corresponding form of most general typing. An atomic coercion
is a containment s z t between type variables, or atomic type names if we were to
extend the syntax of type expressions to include constants. This class of containments
is practically interesting, since many common coercions like int £ real are atomic. It
also seems that, in light of Wand's treatment of labeled record types (Wand, 1987),
the kind of subtyping that arises in ' object-oriented' languages with class hierarchies
may be characterized by subtyping axioms about atomic type names. The reader may
wish to consult Jategaonkar and Mitchell (1988), which is based on the present paper.

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

268 John C. Mitchell

By concentrating on atomic types, we will eliminate coercions like

which allow terms without Curry typings to be given types. In fact, with atomic
coercions, we will see that every pure term that is typable with coercions is also
typable without. This means that when we extend Algorithm GA to ML let
declarations, we will have an algorithm for typing with subtypes and rejects precisely
the same pure terms (terms without constants) as the ML type checker. Of course, this
does not mean that atomic coercions have no effect; most typable terms will have
more typings when coercions are considered. For example, the application fx of/to
x has typing

{int £ real), {/: real-* real, x: int} => fx: real,

while the application of a real function to an integer argument would not be typable
without coercions.

Another interest in atomic coercions stems from the normalization theorem for
typing derivations given in section 6.2. This theorem (Lemma 20) shows that
whenever a typing statement C,A =>M:c with only atomic coercions is provable,
there is a typing derivation in which (coerce) is only applied to variables. This means
that coercions only enter into the base case of the typing algorithm, and so we may
optimize the remaining cases. In addition, the restriction to atomic coercions allows
various optimizations in the representation of coercion sets, and related algorithms
(which we will not go into in much detail). Before analyzing the structure of typing
derivations with atomic coercions, we will discuss some useful properties of
entailment with atomic coercions.

6.2 Atomic coercions and 'matching'

An atomic coercion set C is a set of coercions s £ / between type variables. Although
the phrase is slightly inaccurate, we will call a typing statement C,A=>M:o with C
atomic an atomic typing statement.

When coercion sets only contain atomic coercions, it is easy to see that C\-o £ x
only if these two expressions have essentially the same 'shape', or pattern of type
constructors (in our case, ->-'s). To be more precise, we define the matching relation
on type expressions by

(i) if a is a type variable, then a matches x iff T is a type variable
(ii) if a = ax -> CT2, then a matches x iff x = x1 -> x2 and a, matches x<(i = 1,2).

It is easy to verify that matching is an equivalence relation on types. In addition we
have

Lemma 16
If C\- a £ x, where C is an atomic coercion set, then a matches x.

This is easily proved by induction on the derivation of a £ x from C.

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

Type inference with simple subtypes 269

The following lemma about the structure of proofs from atomic coercion sets will
be useful for analyzing derivations of typing statements.

Lemma 17
Let a and x be type expressions with a = al-^-a2 and x = xx-»• x2. Then CI-CT £ T iff
C h ^ S o , and CI-o\> £ x2.

Proof
One direction is a direct consequence of rule (arrow) : if C I— xt £ o\ and C h- <r2 £ x2,
then C h a c i . It remains to prove the converse.

We show that if C \— a £ x for any a and x of the form a = ax -> a2 and x = Xj -»• x2,
then there is a proof o f a c x from C that ends with an application of rule (arrow).
We argue by induction on the length of the proof of a £ x from C. If the proof is one
step, then this is either an application of rule (arrow), in which case the lemma
obviously holds, or an instance of (ref). If cr and x are identical, then we can also prove
both ax £ Xj and o2 £ x2 by (ref)- This lets us prove a £ x by (arrow).

For the inductive step, assume that we have a proof whose final step is a use of rule
(trans) from antecedents a s p and p £ x. By Lemma 16, we know that p has the form
p = px -> p2. Since the proofs of cr £ p and p £ x are shorter, we may assume we have
proofs of these inclusions ending in applications of rule (arrow). Thus

C\- p1 £ al5 a2 £ p2, Xj £ pl5- p2 £ x2.

By rule (trans), we have C I— x1 £ o-j and C V- CT2 £ x2, which proves the lemma. •

Given any coercion o £ x between matching type expressions a and x, there is a
minimal atomic coercion set that implies a £ x.

Lemma 18
Let a and x be matching type expressions. There is an atomic coercion set C =
ATOMIC(O £ x) with Cf-CT £ x and such that if C" is any atomic coercion set with C
I— a £ x, then C'V-C. Furthermore, C may be calculated from a graph representation
of a and x in linear time.

Proof
It follows from Lemma 17 that we can compute ATOMIC(O £ x) recursively by

ATOMIC(.S £ t) = {S £ /}

ATOMIC(CT1 -> O\, £ Xx -> X2) = ATOMIC(X1 £ CTX) U ATOMIC(o2 £ X2).

This can be implemented efficiently using a graph representation of type expressions
simply by marking 'positive' and 'negative' occurrences of variables in a and x. Since
comparing corresponding positive and negative positions is entirely straightforward,
this can be programmed to run in linear time. (The notion of positive and negative

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

270 John C. Mitchell

occurrences is commonly used in logic. Putting an expression on the right of an ->
preserves sign, while putting an expression on the left reverses the signs of all
subexpressions.) •

Using much the same idea, it is also easy to decide whether an atomic coercion set C
implies a £ T.

Lemma 19
The predicate C \— x £ a is decidable in linear time, given a subroutine for the
transitive closure of C.

The proof is straightforward using Lemma 17. Since entailment from atomic coercion
sets is easily reduced to transitive closure, a reasonable representation for atomic
coercion sets might be directed graphs or adjacency matrices. This would allow
transitive closure, and hence entailment, to be computed by standard means (Aho et
al, 1983).

6.3 A normalization theorem for typing derivations

In general, a typing derivation may apply rule (coerce) to a term of any form. For this
reason, Algorithm G for unrestricted CC typing, includes coercions in every case.
However, with atomic coercions, we can show that every provable typing can be
transformed into a typing derivation in which coercions are only applied to variables.
This will be used to simplify Algorithm GA.

Lemma 20
For every provable atomic typing statement, C, A => M:o, there is a proof in which
rule (coerce) is only used immediately after the typing axiom (var).

The proof of this lemma appears below.
A simple example shows that Lemma 20 fails for unrestricted coercions. Consider

any derivation of the typing

{(s-^i1) s t},0 => Xx.x:t.

Since we must use (abs) to give a type to Xx.x, the typing derivation must use a
statement of the form

{(•J^s) £ t},0 => XX.X:G-+T,

possibly followed by (coerce). Since (coerce) is needed to remove the -» from the type
of Xx.x, we must use (coerce) after (abs). Thus the lemma fails.

Another class of counterexamples to Lemma 20 is illustrated by the typing
statement

where although the coercion set is not atomic, the only coercions assumed are
between matching type expressions. This typing statement may be derived by first

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

Type inference with simple subtypes 271

proving Xx. y: s -*• s, and then using (coerce). We cannot apply (coerce) to the variable
y earlier in the derivation since i c j j s not provable from the coercion hypothesis.
However, for typing with coercions between matching type expressions, we can
strengthen the coercion inference rules so that Lemma 20 holds. Specifically, it suffices
to add the inference rule

. . (J^-TCO,-*-!.

(arrow-inverse) i -.

Although this rule is not sound without further restrictions on our semantics, it does
seem fairly plausible. In addition, the algorithmic aspects of typing with coercions
between matching type expressions and rule (arrow-inverse) seem quite similar to
typing with atomic coercions.

Proof of Lemma 20
Note that (var) is the only axiom scheme and so every proof is essentially a tree with
an instance of (var) at each leaf. We think of each node as labeled by both the
statement proved at that node and the final rule used in that proof. Given a proof of
a statement C, A => M:a, define the degree of the proof to be the number of pairs of
internal tree nodes <oc, p> such that there is a path from a leaf through a to p, node
a is labeled with a rule different from (coerce), and node P is labeled with rule (coerce).
Note that a and P do not need to be adjacent. Intuitively, the degree gives us a
measure of how far the occurrences of (coerce) are from the leaves. We show by
induction on the degree of a proof that every provable statement has a proof of degree
zero.

We need a preliminary fact about proofs for the case in which a node labeled
(coerce) follows a node labeled (abs). Suppose we are given a proof of C,A[x: a] =>
M:x and that C l - p £ a . Then we can produce a proof of C,A[x:p] => M:x by
replacing every leaf labeled with the statement C,A[x: o] => x: a by a short proof of
this statement beginning with C, A[x: p] ̂ x: p and then using (coerce). Note that the
proof we produce has the same degree as the proof we start with.

It is now a simple matter to prove by induction on the degree of proofs that every
provable statement has a proof of degree zero. The three possibilities to consider are
that rule (coerce) may follow a use of rule (app), (abs) or another use of rule (coerce).
If we have a node labeled (coerce) following another node labeled (coerce), then we
can collapse these two proof steps into one using rule (trans) for inclusions. So it
remains to consider (abs) and (app).

For the (app) case, suppose C,A=>MN:x follows from C, A^>M:o^-x and
C, A =>N:a by rule (app) and then C, A =>MN:p follows by (coerce). We have
C l - t c p . Therefore, by rule (arrow),

C \- (a -> T) S (a -» p).

So we can derive C ,^DM:a -»p from C, A => M.a-yx by rule (coerce) and then
proceed to use rule (app) to derive C, A => MN: p. This reduces the degree of the proof
by one.

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

272 John C. Mitchell

The final case is a node labeled (coerce) following a node labeled (abs). Suppose the
proof has a path with nodes labeled

C,A[x:a^\ => M:o2

C,A => Xx.M:a1^-a2 (by rule abs)

C, A => Xx. M: pj -»• p2 (by rule coerce),

where we have used Lemma 16 to assume without loss of generality that the final type
has the form px -> p2.

We would like to move rule (coerce) above (abs). Note that since

we have C\- p1^ a1 and C\—a2^p1by Lemma 17. By the preliminary fact noted
above, there is a proof of C, A[x: px] => M:a2 with the same degree as the proof of C,
A[x: CTJ => M: cr2. Now, applying rule coerce, we can prove C, A[x: px] => M: p2 and so
by rule (abs) we have C, A => Xx.M: pl^- p2. This reduces the degree of the proof by
one and finishes the proof of the lemma. •

6.4 Substitutions, instances and most general atomic typings

We will apply substitutions to atomic coercion sets by computing the least atomic
coercion set that implies the substitution instance. A substitution S respects coercion
set C if, for every a £ x in C, the substitution instances Sa and Sx match. If S respects
C, then we define the action of S on C by

S- C = U ogiEC ATOMIC(SCT £ Sx).

The instance relation on typings with atomic coercions is defined just as with
unrestricted coercions, except that we interpret the application SC of substitution S
to coercion set C using ATOMIC, as above. More precisely, a typing statement C',A'
=> M: a' is an atomic instance ofC, A => M: a if there exists a substitution 5 respecting
C such that

C'Y-S-C, A'^SA, and a' = Sa.

Note that by Lemma 18, SC\-SC, and so by Lemma 1 any C with C'\-SC also
satisfies C \- SC. Therefore, it follows from Lemma 11 that every atomic instance of
a provable atomic typing is also a provable atomic typing.

Lemma 21
Suppose C',A' => M: a' is an atomic instance of C, A => M: a. If I- C,A => M.a, then

An interesting corollary is that every pure lambda term with an atomic typing also has
a Curry typing.

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

Type inference with simple subtypes 273

Corollary 22
Suppose C is atomic and M is a pure lambda term without constants. If I— C, A z> M:
CT, then M has a Curry typing.

This follows from the fact that if we instantiate C,A=> M:a using a substitution that
maps all type variables to a single variable t, then we have a typing for M with all
coercions following from reflexivity of containment. Therefore, the typing may be
proved without using rule (coerce). The details are left to the reader. For the reader
interested in type constants, it is worth pointing out that if M has a CC typing with
type constants, the constants may be replaced by type variables to yield a provable
typing without type constants. Then, by applying a substitution as above, we can
produce a Curry typing.

6.5 Matching substitutions for atomic coercion sets

In the typing algorithm for atomic coercions we will use an algorithm similar to
unification to maintain the ' atomicity' constraint. The need for this arises when we
have typings Cx, Al => M: a and C2, A2 => N: i for terms M and N, and wish to find a
typing for MN. Using unification, we can find common substitution instances of the
typing assumptions in Ax and A2 which could make MN well-typed (if, in fact, MN
is typable). However, the substitution giving us a typing of MN may not respect the
coercion sets C1 and C2. Therefore, given a set C derived from C1 and C2, we will need
to find the most general substitution S which, for every a ^xeC, produces matching
type expressions So and ST. We will say that S is a matching substitution for C if, for
every o ^xeC, the substitution instances So and St match.

Lemma 23
Let C be a set of containment expressions of the form u s t , where a and T may not
necessarily match. There is an algorithm MATCH such that whenever where is a
matching substitution for C, then MATCH(C) produces a most general matching
substitution. If C has no matching substitution, then MATCH(C) fails.

Algorithm MATCH, which is similar to unification, is discussed in the Appendix.

6.6 Algorithm GA for most general atomic typings

Given any term M, the algorithm GA(M) below produces an atomic typing C,An
M: a for M, or fails. The algorithm is written below in the same applicative, pattern-
matching style as algorithm G, using similar notation.

While Algorithm G always succeeds, Algorithm GA may fail in the application
case if the call to UNIFY or MATCH fails. This is to be expected since, by Corollary 22,
Algorithm GA must fail on every term that does not have a Curry type. In particular,
GA(Af) must fail if any subterm of M has no normal form. We can prove that if
GA(M) succeeds, then it produces a provable typing for M.

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

274 John C. Mitchell

Theorem 24
If GA(M) = C, A => M: a, then C, A => M: o is a provable atomic typing statement.

It follows, by Lemma 21, that every atomic instance of GA(M) is a provable typing
for M. Conversely, every provable atomic typing for M is an atomic instance of
GA(M).

GA(;c) = {s z t},{x:s} ^ x:t

GA(MN) =

let C1,A1 =>M: a = GA(M)

with type variables renamed to be disjoint from those

in GA(M)

R = UNIFY({a = p \x: aeA1 and x: $eA2} U {a = T-> t})

where t is a fresh type variable

S = MATCHC^C! U i?C2) o R

in

5-(Cx U C2), S^j U S^2 ^ MN-.St

in if x: o e A for some a

then C,(A — {x:(j}) 3 h . t f : o - > t

else C,A=> Xx.M: t-*-x,

where t is a new type variable.

Theorem 25
Suppose \-C,A=> M:a is a provable atomic typing. Then GA(M) succeeds and
produces an atomic typing with C,A => M:a as an atomic instance.

Both theorems are proved at the end of this section. One consequence of Theorem 25
is that if GA(M) succeeds, then we may compute a most general Curry typing from
GA(M). In stating and discussing this corollary, it is useful to introduce some
notation. If C is an atomic coercion set, let Ec be the set of equations

and for / appearing in C, let [t]c be the set of all s with s = t in the reflexive, symmetric
and transitive closure of Ec. In other words, we write [/]c for the equivalence class of
t with respect to the least equivalence relation containing Ec.

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

Type inference with simple subtypes 275

Corollary 26
Let GA(M) = C,A => M:a be a most general atomic typing for M. Let 5 be a
substitution that is a choice function on equivalence classes [t]c of type variables
appearing in C, so that whenever tx,t2e[t]c, we have Stx = St2e[t]c. Then 0,SA =>
M: 5a is a most general Curry typing for M.

Proof
It should be clear from the definition of S that 0 , SA => M: Sa is an atomic instance
of GA(M). By Theorem 25, every Curry typing is an atomic instance of GA(M), so
it suffices to show that every Curry instance of GA(M) is an instance of 0 , SA => M:
So.

If 0 , A' => M.a' is an instance of GA(M) = C, A => M:a by substitution T, then
0 must prove Ts = Tt for every s c (eC. Consequently, Tmust unify £c . But since
5 is a most general unifier for Ec, as is easily verified, there is some substitution R with
T=ROS. It follows that 0,A' => M:a' is an instance of 0,SA => M:5CT by R,
proving the corollary. •

Further discussion of the relationship between coercion sets and unification is given
in the Appendix. The remainder of this section is devoted to proving Theorems 24 and
25.

Proof of Theorem 24
It is easy to see that G(x) is always a well-typing, so we move on to application and
abstraction.

Consider GA(MN). By the inductive assumption, both

are provable. (As in the proof of Theorem 13, we assume that the type variables in
GA(N) have been renamed.) Since S is defined from the unifier R by composition, 5
must unify {a = P l x i a e ^ and x: P e ^ J , and a = T->/. This implies that SAt U SA2

is a well-formed type assignment. Since S is a matching substitution for Cl U C2, we
know that S{CX U C2) is a well-defined atomic coercion set. Therefore, arguing as in
the proof of Theorem 13, Lemma 11, implies that the two typings

S(C1 U C2) SAi USA2=>M:Sa

S-(C,U C2)SAt U SA2 => N: Sx

are both provable, and so

S-(Cl U C2) SAX U 5/42 =. MAT: St

follows by rule (app). Therefore GA(MN) is a provable atomic typing statement.
The abstraction case is similar to the case considered in the proof of Theorem 13,

except that no additional coercions are introduced. Since the details may be checked
quite easily, we leave this task to the reader. This proves the theorem. •

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

276 John C. Mitchell

Proof of Theorem 25
As in the proof of Theorem 14, an easy induction shows that when GA(M) succeeds,
it produces a typing which A assigns a type to x iff x occurs free in M. The main
argument proceeds by induction on the structure of terms, and is essentially similar
to the proof of Theorem 14 in the variable and lambda abstraction cases. For this
reason, we will only check the application case.

Suppose h- C, A => MN: v is a provable atomic typing statement. By Lemma 20,
this must follow from provable atomic typings

by rules (app). By the inductive hypothesis, GA(M) and GA(iV) are most general
atomic typings for M and N. This means that there exist substitutions Tx and T2 such
that

C\-T1C1 A^T1AX rxCT = u ^ v

C\-T2-C2 A^T2A2 r2T = u,

where Cx, C2, etc., are as in the application case of Algorithm GA. Because GA
renames type variables, no type variables in C2,A2 => N:x appear in Cl,A1 => M:a.
This allows us to combine substitutions TY and T2. Anticipating the need for a
substitution that behaves properly on the fresh variable t introduced in the algorithm,
we let T be any substitution such that

Ts = Tx s if 5 appears in the typing of M,

Ts = T2 s if s appears in the typing of N,

Tt = \.

Without considering the effect of T on t, it is easy to see that

C\-TCX A^.TAX 7a = n->v

C\-TC2 A^TA2 ^x = ^

so that both instances are by the single substitution T. By Lemma 3, the assignment
A must give types to all free variables of Mand iVand, as noted earlier, an assignment
produced by G always contains exactly the variables that occur free. Therefore, T
must unify {a = $\x:aeA1 and x: $eA2}. In addition, since To = |x-*v = 7r-> Tt,
the substitution T unifies a — x ->• t. Since R is a most general unifier for these
equations, there is a substitution V with

Since C is atomic, Fmust be a matching substitution for RC1 U RC2. But since MATCH

computes most general matching substitutions, this implies that

V = ^OMATCH^d U RC2)

for some W. It follows that C, A => MN: v is an instance of S- {C1 U C2), SAX U SA2 =>
MN:St by W. This proves the theorem. •

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

Type inference with simple subtypes 277

7 Variations and extensions of the typing algorithms

7.1 Inserting conversion functions

Algorithm G and GA calculate the set of subtyping assumptions needed to type a
given term, but do not insert any type conversion functions. This is consistent with
the view that whenever o is a subtype of x, every values of type a is also a value of
type T. In practice, however, it may be useful to represent elements of a is some way
that takes advantage of the particular features that distinguish a from x. For example,
even though the subrange of integers from 1 to 12 is most naturally regarded as a
subset of the integers, it may be useful to save space by allocating fewer bytes to the
representation of each element of the subtype. Then, when an element of the subtype
is used as an element of the supertype, it may be desirable to convert from one
representation to another. (Otherwise, it would be necessary to discriminate between
representations at run-time.) This may be accomplished by making relatively minor
changes in either typing algorithm, as sketched briefly below. To simplify the
discussion, we will only consider Algorithm GA. The modifications to Algorithm G
are similar and left to the interested reader.

We assume that whenever a £ x, we are given a conversion function ha T mapping
values of type a into type x. Given conversion functions for each subtyping assertion
in C, we may construct conversion functions for every a £ x provable from C.
Unfortunately, the only way to do this seems to depend on the way we prove a £ x
from C. This illustrates a general problem with user-supplied type conversion
functions.

If C I—a £ x, then we define the untyped lambda term ha T by induction on the
proof of a £ x from C, as follows. We use the standard abbreviation M° N for the
term \x.M(Nx).

(i) If a £ x follows from a £ p and p £ x, then ha T-= hp, ° ha p

(ii) If (c1->cs2) £ (x!->-x2) follows from xx £ ax and a2 £ x2, then ha ^=Xx.ha T
OvO/|

The conditions in Reynolds (1980) may be viewed as a natural way of guaranteeing
that the function ha T is determined by the coercions associated with the hypotheses
C, and independent of the proof used to construct ha %.

Two modifications to Algorithm GA are needed. The first is in the variable case,
where coercions are used. Instead of returning

GA(x) = {s £ t),{x:s} => x: t

the algorithm inserts a coercion

GA(x) = {s £ /}, {x: s) => h, t{x): /.

The second modification is in the use of substitutions in the application case.

While substitutions are only applied to types in Algorithm GA, we must now apply
substitutions to terms as well. The reason is that when the type of a variable is

11 FPR 1

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

278 John C. Mitchell

changed, we must also change the conversion function associated with it. Therefore,
we replace the last line of the application case of Algorithm GA by

S-(C1 U C2), SAl U SA2 ^ S(MN): St,

with S now applied to the term MN, and define the application of a type substitution
to an untyped term with conversion functions as follows.

The effect of applying a type substitution S to an untyped lambda term M with
conversion functions is to replace each conversion function ha t with hSa s r Recall
that the definition of ho T depends on the proof of a £ i from C. We will produce a
conversion function hSa Sx corresponding to a proof of Sa £ ST from S • C.
Specifically, we will use the proof of So £ Sz obtained by replacing each nonlogical
axiom a ^ be Cm the proof of o £ x with a proof of Sa £ Sb from S• C. (Lemma 18
and the definition of S- C guarantee that there is a proof of Sa £ Sb from S- C.) Now
that we have fixed hSa Sx, it is easy to see from the inductive definition of ha x that hSa 5t

may be obtained by substituting an untyped lambda term hSa Sb for each basic
conversion function ha b in ha T.

The inductive proof of Theorem 13 may be modified to show that if the modified
version of GA(M) succeeds, it produces a typing C,A => N:a such that A => N: o is
a Curry typing (i.e., provable from rules (var), (app) and (abs) only), provided we
assume ha T:a->x. Furthermore, if each hOiZ in AT is replaced by the identity function,
then N reduces to M. The proof of Theorem 14 may also be modified to show that
the new algorithm is also guaranteed to find a typing whenever there is a method for
inserting conversion functions.

7.2 ML polymorphism

Algorithms G and GA can also be extended to lambda calculus with a polymorphic
let construct as in ML (Gordon et ai, 1979; Milner, 1978). For notational simplicity,
we discuss only Algorithm G below. From a theoretical point of view, the simplest
way to extend the algorithm is to consider let an abbreviation in lambda terms. If we
define let by

let x = M in N---=[M/x]N,

then it follows immediately that our typing algorithms may be used to find most
general typings for terms with let. From a practical point of view, it is more useful to
extend G to type terms with let directly. However, we can use this fact that G(let x
= M'mN) should be equivalent to G([M/x] N) to provide some intuition for the
extension of G to let.

Since Algorithm G deduces a typing for each subterm independently, the algorithm
will type every occurrence of M in [M/x] N by precisely the same process. If we wish
to type an expression of the form

let x = M in iV

without substituting M for x in iV, then we may compute G(M) once and begin to

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

Type inference with simple subtypes 279

type TV as usual. When we see an x inside N, we then substitute the typing for M. More
specifically, if G(M) = C, A => M\ a is the typing for M, then we would like to use C,
A => x: a as the typing for x inside N. However, since substitution [M/x] N involves
some renaming of bound variables in N to avoid capture of free variables in M, there
are some minor complications regarding variables that occur free in M. These details
are easily resolved, as described in detail in Kanellakis and Mitchell (1989),
Kanellakis el al. (1991) and Mitchell (1990); see especially the appendix of Kanellakis
et al. (1991).

8 Conclusion and future directions

As with Curry typing without coercions, a relatively simple set of inference rules is
sufficient to deduce all semantically valid typing statements. However, semantic
completeness is achieved at the cost of making the set of types of a term undecidable.
Two type inference algorithms for the decidable set of inference rules (without term
equality) are presented, one using arbitrary subtyping assumptions, and the other
restricted to subtyping assumptions between atomic types. These algorithms could be
used to extend the programming language ML with simple forms of subtyping. We
have also addressed the algorithmic problem of inserting calls to type conversion
functions at compile time, but not the semantics of type conversion.

We have only considered one semantic interpretation for the type connective -*•.
Two additional possibilities are the quotient-set semantics (Hindley, 1983 a) and the
/"-semantics (Hindley, 19836). It seems likely that the techniques of Hindley
(1983 a, b) will suffice to prove completeness theorems for typing with coercions for
both of these semantics. Some discussion of the relationships between these
semantics, and further references, are given in Mitchell (1988).

Acknowledgements

Thanks to Ravi Sethi for originally suggesting the study of type inference with
coercions and to Lalita Jategaonkar for many helpful suggestions.

Appendix: Algorithms UNIFY and MATCH

8.1 Unification

Since matching is an extension of unification, we begin with a short review of a
unification algorithm. Unification may be programmed in the same functional,
pattern-matching style as the typing algorithms. In the clauses below, we assume that
any non-empty set matches a pattern consisting of the union of two sets. Although
the matching of a set to a pattern is non-deterministic, this does not affect the
correctness of the algorithm. We also assume a form of pattern-matching for
equations, which takes commutativity into account. For example, we assume that an
equation c^ ->- a2 = s matches the pattern / = x.

11-2

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

280 John C. Mitchell

Given a set of equations E and a substitution S, the algorithm UNIFY(£', S) attempts
to find the most general substitution T > S unifying E. While we are generally
interested in calling UNIFY with the identity substitution to begin with, the substitution
parameter is useful on recursive calls:

UNIFY(0,S) = S;

UNIFY(£ U {t = T}, S) =

if T is the variable / then UNIFY^, S)

else if t does not occur in x then UNIFY([T/<] E, [x/t] ° S)

else fail

U N I F Y ^ U {CTj -* CT2 = Xx -> X2}, 5) = UNIFY(£ U {<JX = X^ CT2 = X2}, S}.

Intuitively, if UNIFY(£', S) is computed using a recursive call UNIFY^, SX ° 5), then Sx

is a partial solution to is, with Ex the ' simpler' problem remaining. To prove more
rigorously that UNIFY is correct, we first show that the algorithm always terminates.

Lemma 27 '
For every finite set of equations E and substitution S, the algorithm UNIFY(£', 5)
terminates.

Proof
Termination is proved by associating a ' degree' with each set E of equations, and
showing that the degree decreases with each recursive call. Although several other
definitions will do equally well, we will say that the degree of set E of equations is the
pair of natural numbers

degree (is) = <# of occurrences of->, # of equations in E}.

We order degrees lexicographically, so that <w, «> is less than {i,j} if either m < i or
m = i and n < j . It is easy to check that each recursive cell involves a set E of lower
degree. Since there is no infinite decreasing sequence of pairs of natural numbers, it
follows that UNIFY(.E, S) always terminates. •

Lemma 28
Let E be a finite set of equations and S be any substitution. If any T^ S unifies E,
then UNIFYCE, S) computes a unifier R for E with T^ R^ S. Otherwise, UNiFY(ir, S)
fails.

Proof
We use induction on the degree of E, using the same degree function as in the proof
of Lemma 27. If £ is a set with degree <0,0> then E must be empty and so it is easy
to verify that the lemma holds.

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

Type inference with simple subtypes 281

Now suppose that E has degree <w, «> with at least one of these numbers greater
than 0. Since E cannot be empty, E must be of the form Ex U {a = x} for some
equation a = x. If one of these, say a, is a variable t, then the second clause of the
algorithm applies. It is easy to see that any unifier must map t to some substitution
instance of x (since the equation t = x must be satisfied), and must satisfy the
remaining equations [x/t] E. The remaining case, with E = E1 U {o1 -> CT2 = xx -> T2}, is
straightforward. •

8.2 Most general matching substitutions

Let C be a set of coercion expressions a ^x, where a and x may not match. Then S
is a matching substitution for C if, for every <j ^x in C, the expressions 5a and Sx
match. A matching substitution S is a mosf general matching substitution if every other
matching substitution R may be obtained as the composition of S with some
substitution T. Matching substitutions are related to unification by the following
lemma. A substitution is variable-to-variable if it is a function from variables to
variables.

Lemma 29
Let C be a set of possibly non-matching containment expressions a <= x and let E be
the set of equations

Then S is a matching substitution for C iff there is a variable-to-variable substitution
T such that T° S unifies £.

Suppose T is variable-to-variable and T° S unifies is. Since T is variable-to-variable,
So matches T(Sc) and Sr matches ^ S T) for every cr £ T in C. But since T(Sc) =
T(sx), S must be a matching substitution for C.

To prove the converse, suppose 5 is a matching substitution for C, and let T be the
substitution which maps all variables to some arbitrarily chosen variable t. Then, for
every a = T in E, we know that SG and Sx differ only in the names of variables, and
so T(Sc) = T(Sx). Thus T° S unifies E. •

We will use this lemma to design a matching algorithm. Essentially, algorithm MATCH

will first unify a set of equations, and then extract a most general matching
substitution from the most general unifier. While this may seem an unnecessarily
indirect way of computing a most general matching substitution, it is actually quite
efficient when we implement unification using the usual graph representation of terms
(Paterson and Wegman, 1978; Aho et al., 1986).

It is worth mentioning that Lemma 29 fails when constants are added to type
expressions. For example, C = {s ^ a,s ^ b} has a matching substitution (namely, the
identity substitution), but E = {s = a, s = b} cannot be unified since a and b are

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

282 John C. Mitchell

different constants. However, by treating constants as variables, we may still use
Lemma 29 to reduce matching with constants to unification with constants.

The reduction of matching to unification requires a few preliminary definitions and
lemmas. If a is any type expression, it is easy to construct a most general type
expression T matching a simply by replacing each variable occurrence in a by a
distinct fresh variable. By a similar process, we can 'factor' any substitution S into
the composition of a substitution St which produces a most general type matching St
for each / we choose, and a substitution S2 that replaces variables to make (S2 ° SJ
t = St.

Let V be a set of type variables. A substitution S chooses variables freely on V if
(i) for each v e V, no type variable appears twice in Sv
(ii) for distinct u,veV, no type variable in Su appears in Sv. Essentially, this means

that if v±, v2>...is an enumeration of V, then no type variable appears twice in the list
Svt, Sv%,... The following lemma is easy to prove.

Lemma 30
Suppose substitution S chooses variables freely on V and that T chooses variables
freely on the set of all type variables occurring in Sv, for veV. Then S°T chooses
variables freely on V.

The proof is straightforward and is omitted.
We will now show how to factor any substitution into the composition of one that

chooses variables freely and one that replaces the freely-chosen variables to produce
the original substitution. It will be useful to write S = v T if substitutions S and T
agree on all variables from V.

Lemma 31
Let S be any substitution and let V be a set of type variables such that there are
infinitely many type variables not in V. There are substitutions S1 and S2, computable
from a symbolic representation of S in linear time, such that Sx chooses variables
freely on V, substitution S2 is variable-to-variable, and S = VS2°S1. Furthermore, if
S = v T2 ° 3] for some variable-to-variable substitution T2, then there exists a variable-
to-variable substitution R with Tx =VR°S1.

Proof
To define 5X and S2, let vltv2,... be an enumeration V and let us partition the
complement of V into disjoint infinite sets Vx, V2,...This is a technical device for
associating a different set of type variables with each element of V. It will also be
convenient to choose some enumeration of each Vt, say Vt = {vtl,vi2,...}.

For each vt e V, let S1 vt be the type expression derived from Sv{ by replacing they'th
variable occurrence in Sv((reading the expression from left-to-right, say), with they'th
variable v%j from Vt. Let S2 map vt t back to the variable occurring in theyth position
in Svt. Since the V('s are disjoint, and each variable occurrence in Sxvt contains a
different vip substitution S1 chooses variables freely on V. It should be clear from the
definition that S2 is variable-to-variable and S = VS2°S1. Since S1 and S2 may be

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

Type inference with simple subtypes 283

constructed using a single left-to-right scan of a symbolic representation of S, both
may be computed in linear time.

For the second part of the lemma, suppose S = VT2°T1, with T, variable-to-
variable. Since 52 and T2 are both variable-to-variable substitutions, the three type
expressions Sv, Sx v and 7[v must match, for each v e V. Therefore, since Sl chooses
variables freely on V, there is a function (substitution) R mapping the variable
occurring in the y'-th position of Sx v to the variable occurring in the j-th position of
Ttv. Since Tt = VR° Sv this proves the lemma. •

We may now combine Lemmas 31 and 29 to reduce matching to unification.

Lemma 32
There is an algorithm MATCH which, given a finite set of coercion expressions C,
produces a most general matching substitution for C if any matching substitution
exists, and fails otherwise.

It will be clear from the proof that MATCH has the same complexity as unification,
provided that unification produces a representation of the most general unifier 5 that
allows us to read off St for each type variable t. This is actually a nontrivial
assumption, since many implementations of unification will produce a composition
S1°S2°...°Sk of several substitutions, and the number of operations involved in
simplifying such a result may be quadratic in the length of the input. However, when
terms are represented using graphs, the unifying substitution is generally represented
as an equivalence relation. Algorithm MATCH may then be implemented efficiently as
an algorithm for accessing the graph data structure.

Proof
Let £ = {a = T | a ^ T e C} be the set of equations determined by C and let V be the
set of type variables occurring in C. Given C, algorithm MATCH first computes a most
general unifier S for E. If there is no unifier, then MATCH fails. Otherwise, the
algorithm computes a substitution S1 choosing variables freely on V such that S = v

Si°Sl for some variable-to-variable substitution 52, and returns Sx as the result. By
Lemma 29 and the properties of unification, we know that MATCH succeeds with 5X

iff there is a matching substitution. It remains to be shown that when MATCH succeeds,
Sr is in fact a most general matching substitution for C.

Let R be any matching substitution for C. By Lemma 29, there exists a variable-
to-variable substitution T with T° R unifying E. Therefore, since S is a most general
unifier, there is a substitution U with

U°S= U°S2°S1 = TOR.

By Lemma 31 we can ' factor' U°S2 into U1 choosing variables freely, and a variable-
to-variable substitution U2. This gives us

U2°U1°S1 = T°R.

But by Lemma 30, we know that U1 ° S1 chooses variables freely on V. Therefore, by

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

284 John C. Mitchell

the second part of Lemma 31, we may conclude V° U1 ° Sx = R for some variable-to-
variable substitution V. This shows that Sx is a most general matching for C. •

References
Aho, A. V., Hopcroft, J. E. and Ullman, J. D. 1983. Data Structures and Algorithms. Addison-
Wesley.
Aho, A. V., Sethi, R. and Ullman, J. D. 1986. Compilers: principles, techniques, tools. Addison-
Wesley.
Barendregt, H. P. 1984. The Lambda Calculus: Its Syntax and Semantics. North-Holland.
Barendregt, H., Coppo, M. and Dezani-Ciancaglini, M. 1983. A Filter Lambda Model and the
Completeness of Type Assignment. J. Symbolic Logic, 48 (4): 931-940.
Cardelli, L. 1988. A Semantics of Multiple Inheritance. Information and Computation, 76:
138-164.
Cardelli, L. and Mitchell, J. C. Operations on records. To appear in Math. Foundations of Prog.
Lang. Semantics.
Coppo, M., Dezani-Ciancaglini, M. and Venneri, B. 1980. Principal type schemes and lambda
calculus semantics. In J. P. Seldin and J. Hindley (editors), To H. B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism, pp. 535-560. Academic Press.
Coppo, M. 1983. On the semantics of polymorphism. Ada Informatica 20: 159-170.
Curry, H. B. and Feys, R. 1958. Combinatory Logic I. North-Holland.
Damas, L. and Milner, R. 1982. Principal Type Schemes for Functional Programs. In 9th ACM
Symposium on Principles of Programming Languages, pp. 207—212.
Dwork, C, Kanellakis, P. and Mitchell, J. C. 1984. On the Sequential Nature of Unification.
/ . of Logic Programming, 1: 35-50.
Fuh, Y.-C. and Mishra, P. 1988. Type Inference with Subtypes. In ESOP-88, (Mar).
Gordon, M. J., Milner, R. and Wadsworth, C. P. 1979. Edinburgh LCF. Volume 78 of Lecture
Notes in Computer Science, Springer-Verlag.
Hindley, R. 1969. The Principal Type-Scheme of an Object in Combinatory Logic. Trans.
AMS, 146: 29-60.
Hindley, R. 1983 a. The Completeness Theorem for Typing Lambda Terms. Theor. Comp. Sci.,
22: 1-17.
Hindley, R. 1983 b. Curry's Type Rules Are Complete with Respect to the F-semantics Too.
Theor. Comp. Sci., 22: 127-133.
Jategaonkar, L. and Mitchell, J. C. 1988. ML with extended pattern matching and subtypes.
In Proc. ACM Symp. Lisp and Functional Programming Languages, pp. 198-212 (Jul).
Kanellakis, P. C. and Mitchell, J. C. 1989. Polymorphic unification and ML typing. In 16th
ACM Symposium on Principles of Programming Languages, pp. 105—115.
Kanellakis, P. C, Mairson, H. G. and Mitchell, J. C. Unification and ML type reconstruction.
To appear in Computational Logic, essays in honor of Alan Robinson. MIT Press.
Lambek, J. and Scott, P. J. 1986. Introduction to Higher-Order Categorical Logic. Cambridge
University Press.
Leivant, D. 1983. Polymorphic Type Inference. In Proc. 10th ACM Symp. on Principles of
Programming Languages, pp. 88-98.
Mac Lane, S. 1971. Categories for the Working Mathematician. Volume 5 of Graduate Texts
in Mathematics, Springer-Verlag.
MacQueen, D. and Sethi, R. 1982. A Semantic Model of Types for Applicative Languages. In
ACM Symp. on Lisp and Functional Programming, pp. 243-252.
MacQueen, D., Plotkin, G. and Sethi, R. 1986. An ideal model for recursive polymorphic
types. Information and Control, 71 (1/2): 95-130.
Meyer, A. R. 1982. What Is A Model of the Lambda Calculus? Information and Control, 52 (1):
87-122.
Milner, R. 1978. A Theory of Type Polymorphism in Programming. JCSS, 17: 348-375.

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

Type inference with simple subtypes 285

Mitchell, J. C. 1984. Coercion and Type Inference (Summary). In Proc. 11th ACM Symp. on
Principles of Programming Languages, pp. 175-185 (Jan).
Mitchell, J. C. 1988. Polymorphic type inference and containment. Information and
Computation, 76 (2/3).
Mitchell, J. C. 1990. Type systems for programming languages. In J. van Leeuwen (editor),
Handbook of Theoretical Computer Science, Volume B, pp. 365-458. North-Holland.
Paterson, M. S. and Wegman, M. N. 1978. Linear Unification. JCSS 16: 158-167.
Remy, D. 1989. Typechecking records and variants in a natural extension of ML. In 16th ACM
Symposium on Principles of Programming Languages, pp. 60-76.
Reynolds, J. C. 1980. Using Category Theory to Design Implicit Conversions and Generic
Operators. Volume 94 of Lecture Notes in Computer Science, Springer-Verlag, pp. 211-2580.
Robinson, J. A. 1965. A Machine Oriented Logic Based on the Resolution Principle. J. ACM
12(1): 23-41.
Scott, D. 1976. Data Types as Lattices. Siam J. Computing, 5 (3): 522-587.
Scott, D. S. 1980. Relating theories of the lambda calculus. In J. P. Seldin and J. Hindley
(editors), To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pp.
403^50. Academic Press.
Smyth, M. and Plotkin, G. D. 1982. The category-theoretic solution of recursive domain
equations. SIAM J. Computing, 11: 761-783.
Stroustrop, B. 1986. The SC"{+ +}$ Programming Language. Addison-Wesley.
Wand, M. 1987. Complete Type Inference for Simple Objects. In Proc. 2nd IEEE Symp. on
Logic in Computer Science, pp. 37-44. (Corrigendum in Proc. 3rd IEEE Symp. on Logic in
Computer Science, p. 132.)
Wand, M. and O'Keefe, P. 1989. On the complexity of type inference with coercion. In Proc.
ACM Conf. Functional Programming and Computer Architecture, pp. 293-298.

https://doi.org/10.1017/S0956796800000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000113

