
JFP 24 (1): 1–55, 2014. c© Cambridge University Press 2014

doi:10.1017/S0956796813000312 First published online 22 January 2014
1

Delimited control and computational effects

P A U L D O W N E N and Z E N A M. A R I O L A
University of Oregon, Eugene, OR, USA

(e-mail:){pdownen,ariola}@cs.uoregon.edu)

Abstract

We give a framework for delimited control with multiple prompts, in the style of Parigot’s λ μ-
calculus, through a series of incremental extensions by starting with the pure λ -calculus. Each
language inherits the semantics and reduction theory of its parent, giving a systematic way to describe
each level of control. For each language of interest, we fully characterize its semantics in terms
of a reduction semantics, operational semantics, continuation-passing style transform, and abstract
machine. Furthermore, the control operations are expressed in terms of fine-grained primitives that
can be used to build well-known, higher-level control operators. In order to illustrate the expressive
power provided by various languages, we show how other computational effects can be encoded in
terms of these control operators.

1 Introduction

Control operators have become an integral part of modern programming languages. In par-
ticular, the flexible abstraction of continuation-based control is becoming more mainstream
in high-level languages. The classic control operator is call-with-current-continuation, or
call/cc, which first appeared in the Scheme programming language as well as Smalltalk,
SML, and OCaml. Today call/cc style support for control effects is available in program-
ming languages such as Ruby, Stackless Python, and Squeak. The call/cc allows the pro-
grammer to capture the surrounding context of an expression, creating a continuation that
serves as a return point to ‘the rest of the program’ from where call/cc was called. This style
of control abstraction is called abortive, since invoking a continuation captured by call/cc
aborts the computation currently in progress, and immediately returns to the context stored
in the continuation. Even though call/cc is a very flexible control operator, it has limits. For
example, call/cc alone is not enough to simulate mutable state in an otherwise state-free
language.

Compared with abortive control, delimited control provides a more powerful abstraction.
The difference of delimited control is that the continuation behaves like a normal function
so that multiple continuations may be composed together. In addition, the scope of the
control operator can be managed by setting a prompt, limiting the context that can be
captured. There are several formulations of delimited control that differ in how the prompt
is managed, including the control and prompt operators presented by Felleisen and Sitaram
(1988, 1990a) and shift and reset presented by Danvy & Filinski (1989). Delimited control
is expressive enough to simulate mutable state. In fact, Filinski (1994, 1999) showed that

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

2 P. Downen and Z. M. Ariola

the combination of shift and reset is enough to give a direct style encoding for any effect
written in monadic style.

Extending delimited control with multiple prompts that can be referred to by name is
a key part to building modular control abstractions that do not interfere with one another.
Flatt et al. (2007) added delimited control to the PLT Scheme implementation, and in the
interest of reducing the number of primitives, they define exception handling control opera-
tors in terms of delimited control. However, using only a single prompt for delimiting both
primitive delimited control operators and scope of exception handlers leads to interference
between the two.

Example 1
In the following program from Flatt et al. (2007):

reset(raise0)handlen ⇒ n+1

The expression raise0 would be ‘caught’ by the reset, rather than by the exception handler,
giving the wrong result 0.

The solution used by Flatt et al. (2007) is to use multiple named prompts. When both reset

and handle set differently named prompts, and raise refers to the prompt set by handle,
the interference is avoided and we get the correct result 1. However, by using multiple
prompts, the interaction between different high-level control operators is more intricate.

Example 2
Consider a more complicated program that uses both exception handling and a short-
circuiting abort operator which jumps to the nearest reset:

(reset[(abort(raise0)∗5)handlen ⇒ n+1])

handlen ⇒ n+2

Does abort first evaluate raise0 before jumping to the reset, thus raising the exception
inside the innermost handler and returning the result 1? Or instead does abort first jump
to the reset and then evaluate raise0, thereby skipping the innermost handler and returning
the result 2? Or something in-between? The answer depends on fundamental choices made
during the definition of these operators. Therefore, to understand how these different effects
interact with one another, we need to understand the behavior of delimited control with
multiple named prompts.

Dybvig et al. (2007) define a general framework for delimited control in the presence
of multiple prompts in which higher-level control operators may be defined. They provide
an operational semantics and a monadic translation into a pure λ -calculus extended with
stacks, as well as an implementation of the monadic effect in Haskell. A direct implemen-
tation of delimited control with multiple prompts in OCaml is given by Kiselyov (2010).
In addition, Kiselyov et al. (2006) give a language that combines both delimited control
and dynamic variables, showing that the two effects interact in subtle ways.

The goal of this paper is to provide a framework for delimited control and its extensions.
In line with this goal, we develop a fine-grained reduction theory for delimited control
with multiple prompts. Ariola et al. (2009) have formalized abortive and delimited control
in the style of Parigot’s call-by-value λ μ , leading to a calculus called λ μ t̂p. We use λ μ t̂p

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

Delimited control and computational effects 3

as a reference point since it has a well-understood reduction theory that directly expresses
the operational semantics. By extending λ μ t̂p with multiple prompts, we clearly delineate
the reduction of delimited control with multiple prompts in a way that is not apparent in
the usual presentations based on operational semantics. Our approach is to build up to
the expressive power of delimited control with multiple dynamic prompts in incremental
steps while using intermediate languages as stepping stones. We start with the pure λ -
calculus and make small extensions to each language that are compatible with the previous
semantics. Separate concerns, such as binding and capture, are explicitly apparent in the
syntax of the language. The end result is a calculus that expresses delimited control with
multiple prompts, which arises naturally from the representation of the semantics. Our
contributions are as follows:

• A better understanding of the dynamic nature of the prompt in the context of de-
limited control with a single prompt. We express this in terms of an intermediate
language with one dynamic variable that avoids recursive bindings.

• A set of small, incremental extensions of λ μ t̂p, providing more expressive languages
that are compatible with the existing semantics, in the sense of Felleisen (1991).
Each extension enables direct encodings of additional, useful language constructs,
and arises as a natural extension of a less expressive or intermediate language.

• A reduction theory for control with multiple dynamic prompts that is sound with
respect to the continuation passing style (CPS) semantics and complete enough to
lead to the final answer. This reduction theory is compatible with the one of λ μ t̂p.

The overall strategy of the paper is as follows.1 In Sections 2, 3, 4, 6, 7, and 8, we define
our languages of interest. We start with the λ -calculus (in Section 2), and extend it with
control (λ μ in Section 3) and then with delimited control (λ μ t̂p in Section 4). Then we
branch out in two separate directions, extending λ μ t̂p with multiple static prompts (λ μ̂
in Section 6) and also a single dynamic prompt (λ μ t̂p0 in Section 7). Finally, we bring
λ μ̂ and λ μ t̂p0 together, giving us a language of delimited control with multiple dynamic
prompts (λ μ̂0 in Section 8).

We present the semantics of each language in four different ways: as a CPS transforma-
tion from the source language to a target calculus, such as the pure λ -calculus, then as a
set of reduction rules, and finally as an operational semantics and abstract machine. The
CPS transformation implements an evaluator for the language written in the λ -calculus,
and is used as our primary reference point for the definition of semantics. The reduction
rules are a set of local program transformations in the source language that correspond to
reductions performed in the CPS-transformed program. The operational semantics arise
as both restriction on the reduction rules and equivalent small-step evaluator for the CPS
transformation. The abstract machine captures the same essential steps as the CPS trans-
form, since it is derived by defunctionalizing the CPS transform (Reynolds 1972; Danvy
2004). We however present both, since some readers may find the abstract machine easier
to follow.

1 This is a revised and expanded version of ‘A Systematic Approach to Delimited Control with
Multiple Prompts,’ which appeared in the 21st European Symposium on Programming, Tallinn,
Estonia (Downen & Ariola 2012).

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

4 P. Downen and Z. M. Ariola

t ∈ Term ::= V | t1 t2 V ∈Value ::= x | λx.t

Fig. 1. The syntax of the pure λ -calculus.

βv : (λx.t) V → t{V/x}
Fig. 2. Call-by-value β reduction in the pure λ -calculus.

To motivate this development, we demonstrate the expressiveness of the various lan-
guages of control by encoding other well-known computational effects. In Section 3, we
give an encoding of Scheme’s call/cc in Parigot’s λ μ-calculus. In Section 9.1, we show
how the delimited control operators shift and reset can be encoded in λ μ t̂p, and further-
more, how delimited control acts as a ‘universal’ effect (Filinski 1994, 1999). Finally, we
demonstrate the utility of delimited control with multiple named prompts in Sections 9.2
and 9.4 by encoding exception handling of multiple exceptions and state with multiple
cells.

In Sections 5, 7, and 8, we present intermediate languages which are used as stepping
stones for defining CPS transformations of our primary languages, and provide a good
framework for designing extensions during the development to delimited control with
multiple named prompts.

2 Lambda calculus: λ

Syntax. The syntax of λ -calculus terms includes variables (x), function abstraction (λx.t),
and function application (t1 t2) as shown in Figure 1. Unless otherwise specified, we let the
set of Values be variables and function abstractions: V ::= x | λx.t.

Reduction. In this paper, we will focus on the call-by-value setting, which restricts sub-
stitution to values, as described by the βv reduction rule given in Figure 2. We allow this
reduction rule to be applied anywhere inside a λ -calculus term, giving us a reduction
semantics for the λ -calculus.

For presentational purposes, we also use let-bindings, which are defined as syntactic
sugar in terms of ordinary functions and application:

(letx = t inu) = (λx.u) t

Since we are using call-by-value function application, this standard notation captures the
sequencing behavior of the call-by-value λ -calculus. In the expression letx = t inu, first
we evaluate t since it has priority. Then, only once t has been reduced to a value V can we
substitute V for x and continue evaluation of u.

Operational semantics. In order to eliminate the non-deterministic choice of which re-
duction to perform, we can restrict reduction by selecting a specific, standard reduction
for every term, giving us an operational semantics. One way of defining which reduction
is the standard one is by giving an evaluation context which points out the location of the
standard reduction. For the call-by-value λ -calculus, we have the set of evaluation contexts

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

Delimited control and computational effects 5

E ∈ EvCxt ::=� | E t |V E

E[(λx.t) V] �→ E[t{V/x}]
Fig. 3. Call-by-value evaluation contexts and operational semantics for the pure λ -calculus.

Cλ �V � = λk.k Cλ �V �V

Cλ �t1 t2� = λk.Cλ �t1�λ f .Cλ �t2�λ s. f s k

Cλ �x�V = x

Cλ �λx.t�V = λx.Cλ �t�

Fig. 4. Call-by-value CPS transform of the pure λ -calculus.

given in Figure 3. The operational semantics for the λ -calculus then restricts evaluation so
that reduction, as described by the βv rule in Figure 2, is only allowed in an evaluation
context.

Notation: From now on, we use →→ and �→→ to denote the reflexive, transitive closure of
→ and �→, respectively.

CPS transform. An alternative way of presenting the semantics is to perform a translation
that hard-wires the evaluation strategy into the term itself. The translation is called a CPS
transform; it splits a term into the current work to be done and the rest of the computation,
which is called a continuation. In Figure 4 we give a transform based on Plotkin’s (1975)
call-by-value CPS transform of the λ -calculus. Variables and functions are both values, so
during evaluation they are just passed to the current continuation. The only non-value case,
where actual computation occurs, is in the function application step. First, the function
t1 is evaluated, and its value is bound to f . Second, the argument t2 is evaluated and its
value is bound to s. Finally, with values for both terms, the function value is applied to the
argument value, and the computation continues with the original continuation k.

In the output of this transformation, terms are maps from continuations, k, to final
answers. Continuations, then, are maps from values to final answers. This means that
the CPS translation of a term does not execute by itself, it must be given some initial
continuation in order to begin the process of evaluation. This initial continuation kι is
initialized as the identity function: kι = λx.x.

Explicit top-level. Following the sequent calculus tradition, we add the counterpart of this
initial continuation to the syntax, which explicitly marks the top-level, or final return point
of the whole program. We name this co-term ∗ and specify that running a term consists of
coupling that term with ∗, written as [∗]t, which we call a command. This can be done in
an initial phase that precedes evaluation similar to a final phase that turns the final state of
a program into a final answer. Operationally, the command [∗]t is interpreted as evaluating
the term t until a value is reached, which is taken as the final answer,

[∗]t initial program [∗]V final answer

For our purposes, a program in the λ -calculus may be any command and does not need
to be closed, but may contain free variables. We extend the syntax of the pure λ -calculus

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

6 P. Downen and Z. M. Ariola

t ∈ Term ::= V | t1 t2
V ∈Value ::= x | λx.t

c ∈Command ::= [q]t

q ∈CoTerm ::= ∗
Fig. 5. The λ -calculus with an explicit top-level.

Cλ �[q]t� = Cλ �t� Cλ �q�

Cλ �V � = λk.k Cλ �V �V

Cλ �t1 t2� = λk.Cλ �t1�λ f .Cλ �t2�λ s. f s k

Cλ �∗� = λx.x

Cλ �x�V = x

Cλ �λx.t�V = λx.Cλ �t�

Fig. 6. Call-by-value CPS transform for the λ -calculus with an explicit top-level.

in Figure 1 with two new syntactic categories, giving us the syntax shown in Figure 5.
We also extend our CPS transform Cλ from Figure 4 with clauses for commands and the
constant ∗ as shown in Figure 6. The interpretation of the command [q]t is to evaluate the
term t with the co-term q, which means to pass the continuation represented by q to the
term. The co-term ∗ stands for the initial continuation that just returns the value it is given
without modifying it.

Abstract machine. To give a complete account of the various ways of describing the
semantics of the λ -calculus, we also present an abstract machine, which is in between the
operational semantics and CPS transform in the sense of Danvy’s (2004) inter-derivation
of evaluators. The states of the abstract machine for the λ -calculus are described in Figure
7. Rather than using a top-down style for evaluation contexts, the machine keeps track of
a stack of frames, ending with a co-term q, where each frame is a single step of a call-by-
value evaluation context E. The notation F∗[F] evokes the connection with the operation
that plugs a frame into a top-down evaluation context, [∗](E[F]), except that here it is
syntax for pushing the frame F on top of the stack F∗. For presentational purposes, we
will avoid explicitly handling the bindings of static variables, and instead use substitution
during execution of the machine.

The steps of the abstract machine are given in Figure 8. The purpose of the refocus

phase in the machine is to find the next reduction to perform, the apply phase fills a context
with a value, and the reduce phase performs the reduction step. Also note how this abstract
machine can be viewed as a defunctionalized form of the Cλ transform, using Danvy’s
(2004) technique of deriving abstract machines from CPS transforms (Reynolds 1972).
The refocus steps implement the definition of Cλ �c� and β -reductions of the form Cλ �t�k,
and the apply steps implement β -reduction of a continuation applied to a value. Finally,
the reduce step is a representation of the CPS program (λx.Cλ �t�) Cλ �V �V k that results
from the translation of Cλ �(λx.t) V �k.

Correctness. Having seen several presentations of the semantics of the call-by-value λ -
calculus, we would like some assurance that they are compatible so that they all agree on
the meaning of the λ -calculus terms. The operational semantics was derived as a restriction
on the reduction theory, where reduction may only occur in one specific place. Likewise,
the abstract machine can be derived as the defunctionalized version of the CPS transform

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

Delimited control and computational effects 7

S ::= 〈c〉refocus | 〈t,F
∗〉refocus | 〈F

∗,V 〉apply | 〈t,F
∗〉reduce | 〈V 〉done

F ∈ Frame ::=� t |V � F∗ ∈ Stack ::= q | F∗[F]

Fig. 7. States and evaluation stacks of the call-by-value λ -calculus abstract machine.

〈[∗]t〉refocus� 〈t,∗〉refocus

〈t t ′,F∗〉refocus� 〈t,F∗[� t ′]〉refocus

〈V,F∗〉refocus� 〈F∗,V 〉apply

〈F∗[� t],V 〉apply� 〈t,F∗[V �]〉refocus

〈F∗[V ′ �],V 〉apply� 〈V ′ V,F∗〉reduce

〈∗,V 〉apply� 〈V 〉done

〈(λx.t) V,F∗〉reduce� 〈t{V/x},F∗〉refocus

Fig. 8. Call-by-value abstract machine for the λ -calculus.

(Reynolds 1972; Danvy 2004) so that the continuations are represented as concrete data
structures and their behavior is implemented by the apply steps. Therefore, we connect
these two separate worlds by relating the reduction theory to the CPS transform. The
first check of correctness is soundness of the call-by-value λ -calculus reduction theory
with respect to the Cλ transform, establishing that the reductions are not too strong. This
means that every reduction in the source language is translated to an equality in the target
language.

Theorem 2.1 (Soundness)
If M→→ M′, then Cλ �M� =β Cλ �M′�.

We would also like some guarantee that the opposite property holds, and that the reductions
are strong enough. Therefore, we also consider the notion of operational completeness,
meaning that if the CPS transform is capable of finding a final answer (a value in the CPS
λ -calculus), then the operational semantics reaches the same final answer (up to β -equality
in the CPS λ -calculus).

Theorem 2.2 (Evaluation)
If Cλ �c� =β V , then there is a final answer c′ such that c �→→ c′ and Cλ �c′� =β V .

A final answer in the call-by-value λ -calculus, as defined in Figure 5, is a command of the
form [∗]V . Furthermore, the operational semantics is a restriction on the reduction theory.

Theorem 2.3
If c �→→ c′, then c→→ c′.

Therefore, the reduction theory is also strong enough to find the same final answer as
the operational semantics and the CPS transform. This property holds for all the lan-
guages of control to follow. For further discussion and proofs of these theorems, see
Section A in the appendix (online only), available as supplementary material at
http://dx.doi.org/10.1017/S0956796813000312.

3 Lambda calculus with control: Parigot’s λ μ

Felleisen et al. (1987; 1992) extended the call-by-value lambda calculus with continuation
abstraction. This allows a term to store its evaluation context as a special function and to

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

8 P. Downen and Z. M. Ariola

t ∈ Term ::= V | t1 t2 | μα .c

V ∈Value ::= x | λx.t

c ∈Command ::= [q]t

q ∈CoTerm ::= α | ∗
Fig. 9. The syntax of the λ μ-calculus.

(λx.t) V → t{V/x}
F [μα .c] → μα .c{[α](F[t])/[α]t}
[q]μα .c → c{q/α}

Fig. 10. Call-by-value reduction theory of the λ μ-calculus.

reinstall this context by invoking that function. The function representing a continuation
never returns to the call site. Here we instead follow Parigot’s (1992) approach because
it provides a reduction theory which more accurately simulates the operational semantics
(Ariola & Herbelin 2008). Unlike the continuations constructed by call/cc in Scheme, in
Parigot’s λ μ , continuations are not functions. Similar to the top-level, continuations belong
to a separate syntactic category of co-terms, and the invocation of a continuation is a
command. Intuitively, terms are producers of values, whereas continuations are consumers
of values.

Syntax. The syntax of λ μ extends the λ -calculus terms and co-terms from Figure 5 as
shown in Figure 9. In addition to pure λ -calculus terms, we also have a μ-abstraction,
which captures the evaluation context of a term and binds it to a co-variable α in a com-
mand c. The syntax of co-terms is also extended to include co-variables α , which allow us
to plug a term into the evaluation context bound to α .

Reduction. The reduction semantics of λ μ is given by the rules shown in Figure 10.
Reduction depends on the notion of evaluation context, which is shown by the presence
of the call-by-value frame F , as previously defined in Figure 7, in the reduction rules.
These rules are fine-grained due to the fact that only a single evaluation context frame is
manipulated at a time rather than a large, unbounded context. The term μα.c propagates
its evaluation context piece-by-piece to each invocation of α in c until it reaches the top
of its surrounding command. The rule makes use of a new notion of substitution, called
structural substitution; c{[α](F [t])/[α]t} should be read as: substitute each occurrence of
[α]t in command c with [α](F[t]).

Operational semantics. When iterated, these two reductions for μ-abstractions perform
the big-step capturing reduction that substitutes the entire evaluation context up to the top
of the command, giving us an operational semantics for λ μ shown in Figure 11. Since
computation in the λ μ-calculus operates on commands, the operational rules are given in
terms of D, complete evaluation contexts that are terminated by a co-term q. These contexts
are ‘complete’ in the sense that they represent the entire future of the program. Unlike
ordinary evaluation contexts, a complete evaluation context cannot be extended from the
outside. For example, given E and a term t to plug into it, we can observe the result of a

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

Delimited control and computational effects 9

E ::=� | E t |V E D ::= [q]E

D[(λx.t) V] �→ D[t{V/x}]
D[μα .c] �→ c{D[t]/[α]t}

Fig. 11. Call-by-value evaluation contexts and operational semantics for the λ μ-calculus.

Cλ μ�[q]t� = Cλ μ�t� Cλ μ�q�

Cλ μ�V � = λk.k Cλ μ�V �V

Cλ μ�t1 t2� = λk.Cλ μ�t1�λ f .Cλ μ�t2�λ s. f s k

Cλ μ�μα .c� = λk.(λα .Cλ μ�c�) k

Cλ μ�∗� = λx.x

Cλ μ�α� = α

Cλ μ�x�V = x

Cλ μ�λx.t�V = λx.Cλ μ�t�

Fig. 12. Call-by-value CPS transform for the λ μ-calculus.

function call (E[t] u). However, with a D, D[t] forms a complete command which does not
return a value to a calling context.

CPS transform. We define the CPS transform of λ μ by extending Cλ for definitions
of the new syntax, giving us the Cλ μ transform in Figure 12. The only change from
the Cλ transform from Figure 6 is the translation of a μ-abstraction as a function that
binds its current continuation and the translation of a co-variable α as an ordinary λ -
calculus variable in the target program. Note that complete evaluation contexts D from a
source program correspond exactly with continuations in the CPS transform, represented
as functions in the λ -calculus.

Abstract machine. Extending the λ -calculus abstract machine only requires that we add
additional refocus step and reduce step that implement the μ-abstraction. The steps of the
machine are given in Figure 13. As before, F∗ is a sequence of frames ending with a co-
term: either a co-variable α or ∗. Note that during execution, this machine steps outside
the syntax of λ μ in the step that substitutes a stack F∗ for a co-variable α . Therefore,
during execution and in final answers, the set of co-terms q is extended to also include F∗

in addition to co-variables α .

Correctness. As an extension of the pure, call-by-value λ -calculus, we have the same
notion of correctness of the λ μ reduction theory with respect to the Cλ μ CPS transform.

Theorem 3.1 (Soundness)
If M→→ M′, then Cλ μ�M� =β Cλ μ�M′�.

Theorem 3.2 (Evaluation)
If Cλ μ�c� =β V , then there is a final answer c′ such that c �→→ c′ and Cλ μ�c′� =β V .

Note that since the λ μ-calculus allows for control effects, terms may return a result to
the same location more than once. Therefore, we emphasize that the answers given by the
λ μ-calculus must be final, meaning that there can be no possible use of control effects to

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

10 P. Downen and Z. M. Ariola

〈[q]t〉refocus� 〈t,q〉refocus

〈t t ′,F∗〉refocus� 〈t,F∗[� t ′]〉refocus

〈μα .c,F∗〉refocus� 〈μα .c,F∗〉reduce

〈V,F∗〉refocus� 〈F∗,V 〉apply

〈F∗[� t],V 〉apply� 〈t,F∗[V �]〉refocus

〈F∗[V ′ �],V 〉apply� 〈V ′ V,F∗〉reduce

〈∗,V 〉apply� 〈V 〉done

〈(λx.t) V,F∗〉reduce� 〈t{V/x},F∗〉refocus

〈μα .c,F∗〉reduce� 〈c{F∗/α}〉refocus

Fig. 13. Abstract machine for call-by-value Parigot’s λ μ calculus.

K = λh.μα .[α]h (λx.μ .[α]x)

A t = μ .[∗]t
C = λh.K (λk.A (h k))

= λh.μα .[∗]h (λx.μ .[α]x)

Fig. 14. Encodings of the K , A , and C operators in λ μ .

change the result of the program. A final answer of the λ μ-calculus is still a command of
the form [∗]V . For further discussion and proofs of these theorems, see Sections A.1 and
A.2 in the appendix.

Expressiveness. Even though we have a CPS transform that relates all λ μ terms to pure
λ -calculus terms, intuitively the λ μ-calculus is more expressive than the λ -calculus. When
speaking of ‘expressiveness,’ we refer to the ability to encode operations or computational
behavior as a local, compositional macro-expansion, without the need for a global transfor-
mation of the entire program, as described by Felleisen (1991). Parigot’s λ μ gives us the
ability to express the call/cc (K) control operator from the Scheme programming language
as shown in Figure 14. In addition, equipping λ μ with the top-level constant ∗ allows us
to express the abort (A) operator and Felleisen’s C operator, which is definable in terms
of call/cc and abort.

4 Delimited control: λ μ t̂p

Delimiting control means temporarily redefining the top-level in a program, limiting the ex-
tent to which the evaluation context may be captured. Examples of delimited control opera-
tors are Felleisen’s F and prompt operators (Felleisen & Friedman 1987; Felleisen 1988)
as well as the shift and reset operators given in the seminal paper of Danvy & Filinski
(1989). The prompt operator is shown to be necessary in providing a fully abstract model
of λ -calculus by Sitaram & Felleisen (1990b).

Syntax. From Ariola et al. (2009), it is shown that delimited control can be explained by
replacing the top-level constant ∗ with the re-bindable dynamic continuation variable t̂p.
The syntax of λ μ t̂p is given in Figure 15. The only change from the λ μ-calculus presented
in Figure 9 is that the top-level constant ∗ is replaced with t̂p, and the new μ-abstraction
μ t̂p.c is added, which binds t̂p in c.

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

Delimited control and computational effects 11

t ∈ Term ::= V | t1 t2 | μq.c

V ∈Value ::= x | λx.t

c ∈Command ::= [q]t

q ∈CoTerm ::= α | t̂p

Fig. 15. The syntax of the λ μ t̂p-calculus.

(λx.t) V → t{V/x}
F [μα .c] → μα .c{[α](F[t])/[α]t}
[q]μα .c → c{q/α}

μ t̂p.[t̂p]V →V

Fig. 16. Call-by-value reduction theory of the λ μ t̂p-calculus.

Reduction. The dynamic nature of t̂p is due to the fact that in a function like λx.μ .[t̂p]x,
the binding of t̂p is taken from the environment active at the call site and not in the envi-
ronment active when the function is defined. This dynamic nature is captured in Figure 16
by adding the following reduction rule to the reduction theory of λ μ given in Figure 10:

μ t̂p.[t̂p]V →V

Note that the renaming rule

[q]μα.c → c{q/α}

allows a μ-abstraction to bind α to the dynamic t̂p in addition to other static co-variables.
When t̂p is substituted for α in a command, it may be captured by nearer bindings for t̂p,
as in the following example:

[t̂p]μα.[α](1+ μ t̂p.[α]2) → [t̂p](1+ μ t̂p.[t̂p]2) → [t̂p](1+2) → [t̂p]3

CPS transform. We extend the Cλ μ transform from Figure 12 to give Cλ μ t̂p
, the CPS

transform for λ μ t̂p shown in Figure 17. Here t̂p takes the place of the old constant ∗.
However, now we also have a binding form for t̂p. When t̂p is bound over a command,
the current continuation is set aside and that command is run to completion. Then, when
the command has produced an answer value, the value is fed to the original continua-
tion and that context is restored. Unfortunately, the above translation of μ t̂p.c is not in
CPS, since the term Cλ μ t̂p

�c� is an application instead of a value. One can remedy the
situation by taking the output from Cλ μ t̂p

and running it through the CPS transform Cλ
(Danvy & Filinski 1989). The composition of the two CPS transforms gives us C 2

λ μ t̂p
, a

double CPS transform. There is no change to the clauses inherited from Cλ μ since they

were already in full CPS form. The only difference is in the translation of t̂p as shown in
Figure 18. The CPS transform of a term is now a function requiring both a continuation
k and a meta-continuation γ . In addition, continuations now take both value and meta-
continuation as parameters. Here the initial values for the continuation, kι , and meta-
continuation, γι , are:

kι = λx.λγ.γ x γι = λx.x

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

12 P. Downen and Z. M. Ariola

Cλ μ t̂p
�[q]t� = Cλ μ t̂p

�t� Cλ μ t̂p
�q�

Cλ μ t̂p
�V � = λk.k Cλ μ t̂p

�V �V

Cλ μ t̂p
�t1 t2� = λk.Cλ μ t̂p

�t1�λ f .Cλ μ t̂p
�t2�λ s. f s k

Cλ μ t̂p
�μα .c� = λk.(λα .Cλ μ t̂p

�c�) k

Cλ μ t̂p
�μ t̂p.c� = λk.k Cλ μ t̂p

�c�

Cλ μ t̂p
�α� = α

Cλ μ t̂p
�t̂p� = λx.x

Cλ μ t̂p
�x�V = x

Cλ μ t̂p
�λx.t�V = λx.Cλ μ t̂p

�t�

Fig. 17. Call-by-value pseudo-CPS transform of the λ μ t̂p-calculus.

C 2
λ μ t̂p

�μ t̂p.c� = λk.λγ.C 2
λ μ t̂p

�c�λx.k x γ C 2
λ μ t̂p

�t̂p� = λx.λγ.γ x

Fig. 18. Double CPS transform of t̂p.

So the standard way to evaluate the CPS form of a term t in this system is to apply the
transform of t to kι and γι .

Explicit initial conditions. Note that we are now in the same situation as we were with
the pure λ -calculus. The CPS translation of both terms and commands takes an extra
argument, but this fact is not reflected in the syntax of λ μ t̂p. To reconcile the difference
between the CPS transform and the source language, we extend the syntax of λ μ t̂p in
the same way as we extended the pure λ -calculus. We add a second-order command, or
meta-command, which explicitly names the meta-continuation of the underlying first-order
command. Since we can only mark the initial meta-continuation of a command, we add
the constant �, which is the meta-top-level of the program. Thus, we extend the syntax of
λ μ t̂p given in Figure 15 with meta-commands as shown in Figure 19. This gives us two
special continuation labels in our syntax: t̂p represents kι in the CPS transform whereas
� represents γι . The double CPS translation of meta-commands and the meta-top-level �
follow the same pattern as commands and the top-level in the pure λ -calculus as shown in
Figure 19. The standard way to run a term t in this system is to evaluate the meta-command
[�][t̂p]t. If the meta-command is reduced to [�][t̂p]V , then the value V is the final answer.

[�][t̂p]t initial program [�][t̂p]V final answer

Similar to the λ -calculus and the λ μ-calculus, a program of the λ μ t̂p-calculus is any
meta-command, including ones containing free variables.

Operational semantics. The fact that our double CPS translation is parametrized by two
continuations (the ordinary continuation and the meta-continuation) is reflected in the
operational semantics for λ μ t̂p. This can be derived from defunctionalization (Reynolds
1972; Danvy 2004) of the continuation and meta-continuation used in the C 2

λ μ t̂p
transform.

We now have two levels of evaluation contexts: ordinary evaluation contexts from the λ -
calculus, and contexts dynamically bound to t̂p, as shown in Figure 20. The context E
is just the standard call-by-value evaluation context for the pure λ -calculus. The meta-
context E2 drills down through any number of dynamic bindings for continuation variables.

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

Delimited control and computational effects 13

c2 ∈Command2 ::= [q2]c q2 ∈CoTerm2 ::=�

C 2
λ μ t̂p

�[q2]c� = C 2
λ μ t̂p

�c� C 2
λ μ t̂p

�q2� C 2
λ μ t̂p

��� = λx.x

Fig. 19. The λ μ t̂p-calculus and C 2
λ μ t̂p

extended with meta-commands.

E ::=� | E t |V E D ::= [q]E

E2 ::=� | D[μ t̂p.E2] D2 ::= [q2]E2

D2[D[(λx.t) V]] �→ D2[D[t{V/x}]]
D2[D[μα .c]] �→ D2[c{D[t]/[α]t}]

D2[D[μ t̂p.[t̂p]V]] �→ D2[D[V]]

Fig. 20. Call-by-value evaluation contexts and operational semantics for the λ μ t̂p-calculus.

As with the λ μ-calculus (Figure 11), the (meta-)contexts D and D2 represent complete
evaluation (meta-)contexts, which are terminated by a (meta-)co-term.

Abstract machine. We extend our previous abstract machine for λ μ to λ μ t̂p. Note that
by including the dynamic t̂p, our machine also gains an additional meta-context in order
to match the CPS transform and operational semantics. The states of the λ μ t̂p abstract
machine are shown in Figure 21. In the machine, the meta-context is represented as a
meta-stack, or dynamic environment, which is a sequence of bindings of t̂p, ending in a
meta-co-term q2. The notation F2∗[t̂p �→ F∗] is chosen to re-enforce the intuition that t̂p

is bound to some context, and corresponds with a top-down meta-context D2[D[μ t̂p.�]].
The steps of the abstract machine are given in Figure 22. This machine is an extension to
the abstract machine for λ μ from Figure 13, where the steps explicitly mentioning t̂p are
new and the others are obtained by extending the states of the λ μ machine with a generic
meta-stack F2∗.

Correctness. We have the same notion of correctness of the reduction theory with respect
to the CPS transform for the λ μ t̂p-calculus as we had with the λ μ-calculus.

Theorem 4.1 (Soundness)
If M→→ M′, then C 2

λ μ t̂p
�M� =βη C 2

λ μ t̂p
�M′�.

Theorem 4.2 (Evaluation)
If C 2

λ μ t̂p
�c2� =β V , then there is a final answer c′2 such that c2 �→→ c′2 and C 2

λ μ t̂p
�c′2� =β V .

A final answer of the λ μ t̂p-calculus is a meta-command of the form [�][t̂p]V (or D2[[∗]V]
using the alternate initial conditions described in Section 4.1. Note that soundness now re-
quires the use of η equivalence, which is needed to equate the transformations of programs
that use t̂p in a trivial way to simpler programs from the transformation of the λ μ-calculus.
For further discussion and proofs of these theorems, see Section A.3 in the appendix.

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

14 P. Downen and Z. M. Ariola

S ::= 〈c2〉refocus | 〈c,F
2∗〉refocus | 〈t,F

∗,F2∗〉refocus | 〈F
∗,V,F2∗〉apply

| 〈t,F∗,F2∗〉reduce | 〈F
2∗, t̂p,V 〉reduce | 〈V 〉done

F2∗ ∈ DynEnv ::= q2 | F2∗[t̂p �→ F∗]

Fig. 21. States and evaluation meta-frames of the call-by-value λ μ t̂p abstract machine.

〈[q2]c〉refocus� 〈c,q2〉refocus

〈[q]t,F2∗〉refocus� 〈t,q,F2∗〉refocus

〈t t ′,F∗,F2∗〉refocus� 〈t,F∗[� t ′],F2∗〉refocus

〈μα .c,F∗,F2∗〉refocus� 〈μα .c,F∗,F2∗〉reduce

〈μ t̂p.c,F∗,F2∗〉refocus� 〈c,F2∗[t̂p �→ F∗]〉refocus

〈V,F∗,F2∗〉refocus� 〈F∗,V,F2∗〉apply

〈F∗[� t],V,F2∗〉apply� 〈t,F∗[V �],F2∗〉refocus

〈F∗[V ′ �],V,F2∗〉apply� 〈V ′ V,F∗,F2∗〉reduce

〈t̂p,V,F2∗〉apply� 〈F2∗, t̂p,V 〉reduce

〈(λx.t) V,F∗,F2∗〉reduce� 〈t{V/x},F∗,F2∗〉refocus

〈μα .c,F∗,F2∗〉reduce� 〈c{F∗/α},F2∗〉refocus

〈F2∗[t̂p �→ F∗], t̂p,V 〉reduce� 〈F∗,V,F2∗〉apply

〈�, t̂p,V 〉reduce� 〈V 〉done

Fig. 22. Abstract machine for the call-by-value λ μ t̂p calculus.

Expressiveness. The rebindable top-level is the additional power that allows us to encode
the shift (S) and reset (#) control operators in λ μ t̂p, using the encodings in Figure 23.
These encodings resemble Filinski’s (1994) encoding of S and # in terms of Felleisen’s
(1991) C and # operators. We can also encode a different abort operator, A t̂p, which aborts
up to the nearest binding of t̂p. This operator is expressible in terms of shift alone, as shown
in Figure 23. The behavior of this operator is different from the original abort operator
given for the λ μ-calculus in Figure 14, in that it does not exit the program completely, but
only removes the context up to the nearest binding of t̂p.

We can derive an operational semantics for shift and reset by their encoding into λ μ t̂p,
shown in Figure 24. Since the operational semantics of λ μ t̂p has two levels of evalua-
tion contexts, so too does the semantics for shift and reset. The reset operator hides a
binding of the dynamic t̂p. Therefore, the evaluation meta-contexts D, which are a chain
of ordinary evaluation contexts E separated by resets, correspond to the λ μ t̂p evaluation
meta-contexts E2. The operational rules for the two control operators are given in Figure
24. This operational semantics for shift and reset corresponds to the semantics given by
Biernacka et al. (2005) (therein referred to as the reduction semantics). The definition of

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

Delimited control and computational effects 15

#t = μ t̂p.[t̂p]t

S = λh.μα .[t̂p]h (λx.μ t̂p.[α]x)

A t̂p t = S λ .t = μ .[t̂p]t

Fig. 23. Encodings of the S and # control operators in λ μ t̂p.

E ::=� | E t |V E D ::=� | E[#D]

D[E[(λx.t) V]] �→ D[E[t{V/x}]]
D[E[S V]] �→ D[V (λx.#(E[x]))]

D[E[#V]] �→ D[E[V]]

Fig. 24. Call-by-value evaluation contexts and operational semantics for the S and # operators.

two-tiered evaluation contexts is shared. The largest difference between the two semantics
is that here the context captured by the shift operator is represented as a λ -abstraction,
whereas in Biernacka et al. (2005) the context is a first-class object distinct from the class
of ordinary functions. Therefore, ordinary βv reduction for functions subsumes the step
that plugs a value into a captured continuation object. Otherwise the rules in Figure 24 and
in Biernacka et al. (2005), written �→BBD, are the same.

Theorem 4.3

t �→ t ′ if and only if t �→BBD t ′.

Consider how this operational semantics behaves for ‘naked’ shifts, that is, a shift that
occurs without a surrounding reset. Since D may be empty in the second rule, a naked
shift is able to capture its current context E. However, using an alternate presentation of
the operational semantics by Ariola et al. (2009), a program with a naked shift is stuck. It
has been shown by Kameyama & Hasegawa (2003) that the CPS transform for shift and
reset2 validates the axiom S (λk.k t) = t in every (meta-)context. Therefore, according to
the CPS transform, naked shifts of the form S (λk.k t) should not get stuck, indicating
that the alternate operational semantics given by Ariola et al. (2009) does not correspond
exactly with the CPS transform for shift and reset.

4.1 Interpreting the top-level

We now understand the behavior of naked shifts that occur without a surrounding reset.
Let’s look more in depth at how this behavior is simulated in the λ μ t̂p calculus.

2 The encodings of shift and reset given here result in the same CPS transform for shift and reset as given by
Danvy & Filinski (1990).

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

16 P. Downen and Z. M. Ariola

Example 3
Consider the evaluation of the λ μ t̂p representation of S (λ .9) in the default initial con-
figuration

[�][t̂p]μα.[t̂p]((λ .9) (λx.μ t̂p.[α]x))→→ [�][t̂p]9

The question is, what does the final result of [�][t̂p]9 actually mean? Does it successfully
produce 9 as an answer, or is it stuck because the continuation t̂p is not bound?

If we look at the CPS transform of the final result, we see which interpretation is correct,

C 2
λ μ t̂p

�[�][t̂p]9� = C 2
λ μ t̂p

�t̂p� 9 C 2
λ μ t̂p

��� = C 2
λ μ t̂p

��� 9 = 9

So the final meta-command is not stuck after all, but 9 is successfully returned as the
answer.

It is important to note that in the above definition of λ μ t̂p, the t̂p variable is always
bound throughout the entire execution of the program. In a sense, the meta-continuation,
which is responsible for giving the current binding for t̂p, already comes with t̂p bound to
the true top-level of the program.

The choice to have the initial program state begin with t̂p already bound can be prob-
lematic in some situations. When we extend the language with arbitrarily many dynamic
co-variables in Section 6, it is less clear what it means to begin execution with an arbitrary
number of dynamic bindings. In addition, if delimited control is defined as an SML module,
as in Ariola et al. (2011), which does not have access to the true top-level continuation, it
may not be possible to implement this choice of initial conditions when the module is first
instantiated. For these reasons, we consider an alternate choice of initial conditions for the
top-level in which t̂p is unbound.

Alternative initial conditions. What does it mean for t̂p to be unbound? Operationally,
when t̂p is not bound to a context, attempting to look up t̂p in the command [t̂p]V causes
the program to get stuck. To replicate this behavior in the CPS transform, we can represent
the empty meta-context as a free variable, γ0. That way, when there is an attempted lookup
of t̂p (by applying γ0 to a value), the CPS transformed program gets stuck.

Now we run into a different problem. If we provide kι and γ0 as the initial continuation
and meta-continuation to our CPS transformed program, respectively, then there is no way
for evaluation to terminate normally with an answer instead of getting stuck. Since kι
and every other closed continuation eventually finish by providing a value to the meta-
continuation, and since every meta-continuation eventually ends with the free variable γ0,
then there is no way to end with a final value. What we need is an initial continuation, k0,
that ignores its meta-continuation, and terminates evaluation with a value as the final result.
This gives us an alternate set of initial conditions of the continuation and meta-continuation
for CPS transformed terms:

k0 = λx.λγ.x γ0 free

We can now specify this alternate choice of initial conditions in the syntax of our
language as a pair of constants: one for the initial continuation and another for the initial
meta-continuation as shown in Figure 25. Here, • represents the empty meta-context, and
∗ represents the true top-level of the program, which ends evaluation with an answer. Note

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

Delimited control and computational effects 17

c2 ∈Command2 ::= [q2]c

c ∈Command ::= [q]t

t ∈ Term ::= V | t1 t2 | μα .c | μ t̂p.c

V ∈Value ::= x | λx.t

q2 ∈CoTerm2 ::= •
q ∈CoTerm ::= α | t̂p | ∗

Fig. 25. The syntax of the λ μ t̂p-calculus with empty initial conditions.

C 2
λ μ t̂p

�∗� = λx.λγ.x C 2
λ μ t̂p

�•� = γ0 whereγ0 free

Fig. 26. Call-by-value CPS transform of the empty initial conditions for λ μ t̂p.

that we now have both notions of abort as defined in Figures 14 and 23. A t̂p removes
the context up to the nearest binding of t̂p, whereas A removes the context of the entire
rest of the program. Therefore, when we find the command [∗]V in the eye of an evaluation
meta-context D2, we know that V must be the final answer since the rest of D2 is irrelevant,

[•][∗]t initial program D2[[∗]V] final answer

The C 2
λ μ t̂p

transform is extended with clauses for the new top-level and meta-top-level.
In Figure 26, ∗ is mapped to k0 and • is mapped to γ0. When ∗ is invoked with a value,
the program immediately exits with that value as a final answer. The meta-continuation is
thrown away because the current binding of t̂p is not needed. If the t̂p continuation is given
a value without being bound, then the program gets stuck; since t̂p was not defined, there
is not enough information to continue.

The reduction semantics of λ μ t̂p from Figure 16 is extended with one more rule to
reduce an invocation of ∗ under a binding for t̂p.

μ t̂p.[∗]V → μ .[∗]V

The meaning of [∗]V is to throw away the bindings of t̂p and return with the value V as the
final answer. Therefore, we can throw away an adjacent binding of t̂p by turning it into an
abort.

Example 4
Let’s revisit the previous example using ∗ and • to initialize execution instead of t̂p and �.

[•][∗]μα.[t̂p]((λ .9) (λx.μ t̂p.[α]x))→→ [•][t̂p]9

C 2
λ μ t̂p

�[•][t̂p]9� = C 2
λ μ t̂p

�t̂p� 9 C 2
λ μ t̂p

�•� = C 2
λ μ t̂p

�•� 9 = γ0 9

Since t̂p was not initialized, we get an error represented by the stuck term γ0 9.

Example 5
Consider what happens when a naked shift occurs under these alternate initial conditions.
When we evaluate the expression E[S V], we get:

[•][∗]E[μα.[t̂p]V (λx.μ t̂p.[α]x)]→→ [•][t̂p]V (λx.μ t̂p.[∗](E[x]))

→ [•][t̂p]V (λx.μ .[∗](E[x]))

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

18 P. Downen and Z. M. Ariola

Usually the continuation captured by shift behaves like a function and returns a value to
its caller. However, in this case the continuation is abortive, more like the style of call/cc.
This shows how changing the initial conditions impacts the behavior of shift.

Let’s consider the behavior of the term S (λk.k 9) under the two initial conditions. First,
when we evaluate [�][t̂p]S (λk.k 9), we get:

[�][t̂p]μα.[t̂p]μ t̂p.[α]9 → [�][t̂p]μ t̂p.[t̂p]9

→ [�][t̂p]9

which returns the answer 9. Instead, when we evaluate [•][∗]S (λk.k 9), we get:

[•][∗]μα.[t̂p]μ t̂p.[α]9 → [•][t̂p]μ t̂p.[∗]9
→ [•][t̂p]μ .[∗]9
→ [•][∗]9

which returns the answer 9 after aborting its meta-context.

Even though we replaced � with • in our language, we haven’t actually lost anything.
We can regain the original initial conditions by providing a binding for t̂p at the top of the
program.

Theorem 4.4
C 2

λ μ t̂p
�[•][∗]μ t̂p.c�→→C 2

λ μ t̂p
�[�]c�

Proof

C 2
λ μ t̂p

�[•][∗]μ t̂p.c� = C 2
λ μ t̂p

�μ t̂p.c� C 2
λ μ t̂p

�∗� C 2
λ μ t̂p

�•�

→→C 2
λ μ t̂p

�c�λx.C 2
λ μ t̂p

�∗� x C 2
λ μ t̂p

�•�

→→C 2
λ μ t̂p

�c�λx.x

= C 2
λ μ t̂p

�c� C 2
λ μ t̂p

���

= C 2
λ μ t̂p

�[�]c�

�

In order to run the abstract machine from Figure 22 with these alternate initial con-
ditions, we need an additional step that finishes the computation when we encounter the
co-constant ∗:

〈∗,V,F2∗〉apply� 〈V 〉done

Note that in this step, the meta-stack F2∗ may be anything, including delayed evaluation
stacks that are bound by t̂p, and will be discarded since V is the final result of the program.
Additionally, we also say that the new machine state 〈•, t̂p,V 〉reduce is stuck, and cannot
produce a final result.

5 Intermediate language of dynamic binding: λ t̂p

Ariola et al. (2009) showed how the CPS of λ μ t̂p can be factored into a state-passing
transformation to λ μ extended with subtraction combined with a translation to λ -calculus

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

Delimited control and computational effects 19

c ∈Closure ::= [e]t

t ∈ Term ::= V | t1 t2 | t̂p
V ∈Value ::= x | λ x̃.t

e ∈ Environment ::= •
x̃ ∈Var ::= x | t̂p

Fig. 27. The syntax of the λ -calculus with one dynamic variable t̂p.

with pairs. In order to better understand the dynamic nature of the prompt binding, we
investigate an alternative decomposition which uses dynamic binding as a tool for under-
standing languages with delimited control. We start by translating away the control effects
from λ μ t̂p (Cλ μ t̂p

), leaving behind the dynamic binding of t̂p. We then translate away the
dynamic binding by first adopting a typical environment passing translation. This however
leads to an incorrect interpretation of the dynamic nature of t̂p. We thus propose another
way of translating the dynamic binding that models the behavior of the prompt (Dλ t̂p

).
It is not surprising to find such a close connection between dynamic binding and delim-

ited control. Kiselyov et al. (2006) showed that dynamic binding can be encoded in terms
of delimited control with multiple prompts. In a way, they exposed the inherent dynamic
binding that naturally occurs in delimited control. However, we are taking the opposite
approach: building delimited control on top of a suitable definition of dynamic binding.
An advantage of taking this course is that dynamic binding is a much weaker effect; it
can express far fewer programs than expressed by delimited control. This makes dynamic
binding easier to understand in isolation of any control operators, and we can use this
understanding as a foothold for more complicated effects.

5.1 Translating control

We start with a CPS transform from λ μ t̂p to an intermediate language with one dynamic
variable t̂p, with the syntax given in Figure 27. We introduce the concept of an explicit
dynamic environment, •, and closure under an environment, [e]t, to correspond with meta-
co-terms and meta-commands in the λ μ t̂p-calculus, respectively. Intuitively, the environ-
ment • signifies the empty set of dynamic bindings, and provides an explicit notation in the
language for the initial conditions for the program. To emphasize the dynamic behavior of
t̂p, we also use a ‘dynamic let’ binding, dlet, in the style of Moreau (1998). The dynamic
let can be understood as syntactic sugar in terms of the dynamic function, λ t̂p.t, much in
the same way that static let bindings are defined in terms of static functions:

(dlet t̂p = t inu) = (λ t̂p.u) t

The Ĉλ μ t̂p
transform shown in Figure 28 defines the call-by-value application and the

context capturing behavior of μα̃.c while using the dynamic variable in λ t̂p to manage the
binding of t̂p. Note that the presence of dynamic variables in the target language lets us
give a uniform translation of μ-abstractions, where μα.c and μ t̂p.c introduce a static and
dynamic variable in the CPS program, respectively.

Note that Ĉλ μ t̂p
�t̂p� is η-expanded. Otherwise in the translation of [t̂p]μα.c one would

obtain (λα.Ĉλ μ t̂p
�c�) t̂p. Since t̂p is not a value, the dynamic binding would be looked up

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

20 P. Downen and Z. M. Ariola

Ĉλ μ t̂p
�[q2]c� = [Ĉλ μ t̂p

�q2�]Ĉλ μ t̂p
�c�

Ĉλ μ t̂p
�[q]t� = Ĉλ μ t̂p

�t� Ĉλ μ t̂p
�q�

Ĉλ μ t̂p
�V � = λk.k Ĉλ μ t̂p

�V �V

Ĉλ μ t̂p
�t1 t2� = λk.Ĉλ μ t̂p

�t1�λ f .Ĉλ μ t̂p
�t2�λ s. f s k

Ĉλ μ t̂p
�μα̃.c� = λk.(λα̃.Ĉλ μ t̂p

�c�) k

Ĉλ μ t̂p
�α� = α

Ĉλ μ t̂p
�t̂p� = λx.t̂p x

Ĉλ μ t̂p
�∗� = λx.x

Ĉλ μ t̂p
�•� = •

Ĉλ μ t̂p
�x�V = x

Ĉλ μ t̂p
�λx.t�V = λx.Ĉλ μ t̂p

�t�

Fig. 28. Call-by-value CPS transform of λ μ t̂p using one dynamic variable.

when α is defined, instead of when it is called. To better understand the reason, consider
the following example.

Example 6
In [∗]μ t̂p.[t̂p]μα.[α]((μ t̂p.[α]I) z), notice that α is invoked with a value under a rebinding
of t̂p. After replacing α with t̂p, the t̂p is captured by the more recent binding, as shown
by the reduction:

[∗]μ t̂p.[t̂p]μα.[α]((μ t̂p.[α]I) z) → [∗]μ t̂p.[t̂p]((μ t̂p.[t̂p]I) z)

In terms of the CPS transformed program, we have the following reduction:

Cλ μ t̂p
�[∗]μ t̂p.[t̂p]μα.[α]((μ t̂p.[α]I) z)�

= dlet t̂p = (λx.x) in letα = (λy.t̂p y) in dlet t̂p = (λ f . f z α) inα Cλ μ t̂p
�I�V

→→ dlet t̂p = (λx.x) in dlet t̂p = (λ f . f z (λy.t̂p y)) in t̂p Cλ μ t̂p
�I�V

If we instead adopt the transform Ĉλ μ t̂p
�t̂p� = t̂p, then we would have to bind α to the

current value of t̂p, which is ∗.

5.2 Simple dynamic binding

For a first attempt at defining the dynamic binding of t̂p, we try a simple environment-
passing style transform, Dλ t̂p

, where the environment is just the value currently bound to

t̂p. In the case that t̂p is not bound, as in the initial environment •, we use the free variable
γ0. That is, we have D�•� = γ0. The full transform is given in Figure 29. This transform
is equivalent to a simplified version of Moreau’s (1998) calculus of dynamic binding with
only one dynamic variable.

We would now like to give a transform of the λ μ t̂p-calculus in terms of Ĉλ μ t̂p
and

D , giving us the composed transform DĈλ μ t̂p
. Unfortunately, this definition of dynamic

binding does not properly capture the meaning of the re-bindable top-level since it creates
vicious cycles, as shown in the reduction of DĈλ μ t̂p

�[t̂p]μ t̂p.[t̂p]x�γ:

(λv.λγ ′.v x v) (λy.λγ ′.γ ′ y γ ′) γ → (λy.λγ ′.γ ′ y γ ′) x (λy.λγ ′.γ ′ y γ ′) → . . .

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

Delimited control and computational effects 21

D�[e]t� = D�t� D�e�

D�V � = λγ.D�V �V

D�t̂p� = λγ.γ
D�t1 t2� = λγ.(D�t1�γ) (D�t2�γ) γ

D�•� = γ0

D�x�V = x

D�λx.t�V = λx.D�t�

D�λ t̂p.t�V = λv.λγ.D�t�v

Fig. 29. Simple environment-passing style transform of the λ -calculus with one dynamic variable.

c ∈Closure ::= [e]t

t ∈ Term ::= V | t1 t2 | t̂p t

V ∈Value ::= x | λ x̃.t

e ∈ Environment ::= •
x̃ ∈Var ::= x | t̂p

Fig. 30. The restricted syntax of the λ t̂p-calculus with one dynamic variable.

This does not match the reductions of λ μ t̂p, since one has: [t̂p]μ t̂p.[t̂p]x → [t̂p]x. In
Moreau’s (1998) framework, this corresponds to the reduction:

dlet t̂p = (λy.t̂p y) in t̂p x→→dlet t̂p = (λy.t̂p y) in(λy.t̂p y) x→→ . . .

Remark 1
Additionally, we can translate the dynamic let binding as:

D�dlet t̂p = t inu� = λγ.D�u� (D�t�γ)

Note that dynamic functions and dynamic let bindings are equivalent to one another.

D�λ t̂p.t� = D�λv.dlet t̂p = v in t�

D�dlet t̂p = t inu� = D�(λ t̂p.u) t�

5.3 Backtracking the environment

We see vicious cycles arise because dynamic binding allows for self-reference. In order to
evaluate the application t̂p V , we (1) look up the value f most recently bound to t̂p, and
(2) evaluate f V in the current environment where f is still bound. The root of our problem
is in step (2). Instead, we want to evaluate f V in a different environment where that same
f is not bound. In particular, we want to backtrack to the environment that was active just
before f was bound to t̂p. To do this, we restrict the grammar of the dynamic language,
as shown in Figure 30, so that t̂p can only be used if it is immediately being applied to
something, giving us λ t̂p. We then modify the environment-passing style transform in
Figure 29 to match the restricted grammar. In particular, we change the dynamic binding
and application of t̂p to backtrack to a previous environment as shown in Figure 31. Here
the notation γ[t̂p �→ v] means that γ , as representation of the dynamic environment, is
extended so that t̂p is bound to v, and γ(t̂p) signifies looking up the most recent binding
of t̂p in γ . In the environment-passing style transform, the environment is represented

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

22 P. Downen and Z. M. Ariola

Dλ t̂p
�λ t̂p.t�V = λv.λγ.Dλ t̂p

�t� (γ[t̂p �→ v])

Dλ t̂p
�t̂p t� = λγ.γ(t̂p) (Dλ t̂p

�t�γ)

γ[t̂p �→ v] = λx.v x γ

γ(t̂p) = γ

Fig. 31. Backtracking environment-passing style transform of the λ t̂p-calculus.

abstractly as a function that, when invoked, will access the most recent binding of t̂p.
Therefore, looking up the binding of t̂p in an environment and applying the value to
an argument is defined as just applying the environment to the argument. To extend an
existing environment with a new binding of a value v to t̂p, we create a function that,
when applied, will call the function v to the argument in the previous environment. Since
values bound to t̂p are equipped with their own environment, we do not need to pass
the current dynamic environment to the application t̂p V . Compare the new translation
of t̂p x in Figure 31, Dλ t̂p

�t̂p x�γ = γ x, with the original translation from Figure 29,

D�t̂p x�γ = γ x γ . Note that the restriction on how t̂p is used allows us to eliminate the
self-application of the environment γ . With the new backtracking definition of dynamic
binding, the composed transform Dλ t̂p

Ĉλ μ t̂p
no longer creates the same cycle as before in

the reduction of Dλ t̂p
Ĉλ μ t̂p

�[t̂p]μ t̂p.[t̂p]x�γ:

(λv.λγ ′.v x γ ′) (λy.λγ ′.γ ′ y) γ → (λy.λγ ′.γ ′ y) x γ → γ x = Dλ t̂p
�t̂p x�γ

When we compose the two phases together, we get the derived translation Dλ t̂p
Ĉλ μ t̂p

,

which is the same as our original translation C 2
λ μ t̂p

from Figure 18, up to βη-equivalence

in the λ -calculus.

Theorem 5.1
Dλ t̂p

Ĉλ μ t̂p
�M� =βη C 2

λ μ t̂p
�M�

Remark 2
Note that the definition of ∗ in C 2

λ μ t̂p
is exactly the environment-passing style translation

of the initial continuation λx.x. The backtracking behavior that we present here is also
necessary to express exceptions with dynamic variables. A similar encoding was given by
Moreau (1998) using an abort operator to reinstall the right environment.

6 Delimited control with multiple prompts: λ μ̂

We want to extend λ μ t̂p with multiple dynamic co-variables, written by convention with a
hat like α̂ , so that binding α̂ does not interfere with β̂ and vice versa. This is different
from the nested definition of resets in the CPS hierarchy by Danvy & Filinski (1990).
Unfortunately, this means that we cannot use the iterated layered CPS approach to define
our prompts. However, now that we have factored the transform for λ μ t̂p into two passes
that flow through an intermediate language with dynamic binding, it is easy to extend the
calculus to have multiple prompts by simply using an intermediate language with multiple
dynamic variables.

Syntax. The language of control with multiple prompts, λ μ̂ shown in Figure 32, is a
simple extension of λ μ t̂p with multiple dynamic top-level binders.

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

Delimited control and computational effects 23

c2 ∈Command2 ::= [q2]c

c ∈Command ::= [q]t

t ∈ Term ::= V | t1 t2 | μα̃.c

V ∈Value ::= x | λx.t

q2 ∈CoTerm2 ::= •
q ∈CoTerm ::= α̃ | ∗
α̃ ∈CoVar ::= α | α̂

Fig. 32. The syntax of the λ μ̂-calculus.

μα̂.[α̂]V →V

μα̂.[β̂]V → μ .[β̂]V where α̂ �= β̂
μα̂.[∗]V → μ .[∗]V

Fig. 33. Call-by-value reduction theory for dynamic co-variables in the λ μ̂-calculus.

Reduction. The reduction rules for multiple prompts are a generalization of the reduction
rules for single prompt t̂p. The reduction theory for the λ μ̂-calculus is based on the λ μ-
calculus theory given in Figure 10 and extended with the additional rules for dynamic
co-variables given in Figure 33. Just like how invocation of ∗ throws away the dynamic
environment, invocation of β̂ will throw away portions of its dynamic environment until
the correct binding is found. Then the usual reduction of μα̂.[α̂]V is available to plug V
into the correct context.

Operational semantics. To define the operational semantics for λ μ̂ , we extend the eval-
uation meta-contexts from Figure 20 to allow for bindings of many dynamic co-variables.
The set of evaluation (meta-)contexts and operational rules for λ μ̂ is given in Figure 34.
Note that in the third rule, the context E2

α̂ does not bind the dynamic co-variable α̂ , and is
defined as:

E2
α̂ ::=� | D[μβ̂ .E2

α̂], where β̂ �≡ α̂

CPS transform. The intermediate language of dynamic binding, λ̂ , is extended with the
syntax shown in Figure 35. The definition of λ̂ uses the same backtracking environment-
passing style translation as λ t̂p from Figure 31. The only thing that needs to change from
λ t̂p to λ̂ is dynamic binding and lookup. Now that there is more than one variable, we
may have to search through the environment for the variable that we want. The translation
of dynamic environments with bindings of more than one dynamic variable is given in
Figure 36. As in Figure 31, γ(x̂) and γ[x̂ �→ v] are notations for looking up bindings and
extending the environment γ , which is represented in a functionalized form. Additionally,
the quotation brackets, �̂x�, reify the dynamic variables of the source language as values in
the target language. The details of how dynamic co-variables of λ μ̂ are mapped to values
in the λ -calculus are not critical to the transform, except that they must all be distinct and
have decidable equality, written as p ≡ q.

The CPS transform of λ μ̂ is just the composed transform D
λ̂
Ĉλ μ̂ , where Ĉλ μ̂ is the

same as Ĉλ μ t̂p
from Figure 28 except that multiple dynamic variables are used by Ĉλ μ̂ ,

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

24 P. Downen and Z. M. Ariola

E2 ::=� | D[μα̂.E2]

E ::=� | E t |V E

D2 ::= [q2]E2

D ::= [q]E

D2[D[(λx.t) V]] �→ D2[D[t{V/x}]]
D2[D[μα .c]] �→ D2[c{D[t]/[α]t}]

D2[D[μα̂.E2
α̂ [[α̂]V]]] �→ D2[D[V]]

Fig. 34. Call-by-value evaluation contexts and operational semantics of the λ μ̂-calculus.

c ∈Closure ::= [e]t

t ∈ Term ::= V | t1 t2 | x̂ t

V ∈Value ::= x | λ x̃.t

e ∈ Environment ::= •
x̃ ∈Var ::= x | x̂

Fig. 35. The syntax of the λ̂ -calculus.

with one unique dynamic variable for each different dynamic co-variable in the source
program.

Abstract machine. We extend the abstract machine for λ μ t̂p to include multiple dynamic
co-variables. The states of the λ μ̂ abstract machine are given in Figure 37 and the steps
are given in Figure 38.

Correctness. As before, we have the same notion of correctness of the reduction theory
with respect to the CPS transform for λ μ̂ as we had with λ μ and λ μ t̂p.

Theorem 6.1 (Soundness)
If M→→ M′, then D

λ̂
Ĉλ μ̂�M� =βη D

λ̂
Ĉλ μ̂�M′�.

Theorem 6.2 (Evaluation)
If D

λ̂
Ĉλ μ̂�c2� =β V , then there is a final answer c′2 such that c2 �→→ c′2 and D

λ̂
Ĉλ μ̂�c′2� =β

V .

A final answer of the λ μ̂-calculus is a meta-command of the form D2[[∗]V]. For further
discussion and proofs of these theorems, see Section A.4 in the appendix.

Expressiveness. With multiple prompts, we get the ability to set multiple points in the
program that we can abort to at will, giving us the multi-prompt reset (#α̂) and abort (A α̂)
operators in Figure 39.

7 Delimited control with a dynamic prompt: λ μ t̂p0

We now take a break from λ μ̂ and multiple prompts, and return to λ μ t̂p in order to
examine an alternate extension. Another important delimited control operator to consider
is shift0 (S0) (Materzok & Biernacki 2011). The difference between shift and shift0 is that
when shift captures its immediate context, it leaves the nearest delimiting reset in place,
whereas shift0 removes the nearest reset after capturing its context.

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

Delimited control and computational effects 25

γ(x̂) = γ �̂x� γ[x̂ �→ v] = λ p. if p ≡ �̂x� then(λx.v x γ)elseγ p

Fig. 36. The translation of environments in λ̂ with multiple dynamic variables.

S ::= 〈c2〉refocus | 〈c,F
2∗〉refocus | 〈t,F

∗,F2∗〉refocus

| 〈F∗,V,F2∗〉apply | 〈t,F
∗,F2∗〉reduce | 〈F

2∗, α̂,V 〉reduce | 〈F
2∗, α̂,V 〉lookup

Fig. 37. States of the call-by-value λ μ̂ machine.

Example 7

Consider the behavior of the following program which uses the shift operator twice in a
row:

#(1+(#(S λk.S λq.2)))→→ #(1+(#(S λq.2)))→→ #(1+(#2))→→ 3

Each time the shift is reduced, its body is evaluated underneath the innermost reset. Instead,
consider what happens when we replace shift and reset with shift0 and reset0.

#0(1+(#0(S0λk.S0λq.2)))→→ #0(1+(S0λq.2))→→ 2

Note how after the first shift0 is reduced, its body is evaluated outside the innermost reset0,
exposing the context that was previously hidden by the reset0.

As discussed previously in Section 4, shift and reset have encodings in λ μ t̂p. However,
to capture the additional behavior of shift0 we need to extend λ μ t̂p with the ability to
render the binding of a prompt transparent, making it immediately disappear and letting
underlying terms see through their surrounding context. To that end, we introduce a new
form of command, [t̂p]0t, in which the dynamic co-term t̂p has priority over the term t,
rather than the other way around. In a sense, this is a ‘non-strict’ variant of the command
[t̂p]t, where invoking the dynamic top-level happens without first evaluating the term t, as
is the case in the expression S0λk.t. In order to represent the semantics of reset0, we need
to impose the usual order of evaluation, where the underlying term is first reduced to a
value before clearing the prompt. As we will see, we can regain this behavior due to the
sequentializing behavior of strict let-bindings in the language.

Syntax. The syntax of λ μ t̂p0 is given in Figure 40. The new command [t̂p]0t represents
lifting the unevaluated term t through the most recent binding of t̂p and embedding the
term in that context. Correspondingly, the binding of t̂p, μ0t̂p.c, has been given a different
notation to signify that it is waiting for an unevaluated term, rather than a value, to be
returned by its underlying command.

Reduction. Reduction of the new command is similar to [t̂p]t from λ μ t̂p, but with differ-
ent priorities between the continuation and the term. In the λ μ t̂p-calculus term μ t̂p.[t̂p]t,
t̂p is reduced only when t is a value. The opposite occurs with μ0t̂p.[t̂p]0t, where t̂p is
reduced immediately without considering t, as shown in Figure 41. Note that due to the
reversed priorities in the command [t̂p]0t, the usual renaming rule for μ does not apply to

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

26 P. Downen and Z. M. Ariola

〈[q2]c〉refocus� 〈c,q2〉refocus

〈[q]t,F2∗〉refocus� 〈t,q,F2∗〉refocus

〈t t ′,F∗,F2∗〉refocus� 〈t,F∗[� t ′],F2∗〉refocus

〈μα .c,F∗,F2∗〉refocus� 〈μα .c,F∗,F2∗〉reduce

〈μα̂.c,F∗,F2∗〉refocus� 〈c,F2∗[α̂ �→ F∗]〉refocus

〈V,F∗,F2∗〉refocus� 〈F∗,V,F2∗〉apply

〈F∗[� t],V,F2∗〉apply� 〈t,F∗[V �],F2∗〉refocus

〈F∗[V ′ �],V,F2∗〉apply� 〈V ′ V,F∗,F2∗〉reduce

〈α̂,V,F2∗〉apply� 〈F2∗, α̂,V 〉lookup

〈∗,V,F2∗〉apply� 〈V 〉done

〈(λx.t) V,F∗,F2∗〉reduce� 〈t{V/x},F∗,F2∗〉refocus

〈μα .c,F∗,F2∗〉reduce� 〈c{F∗/α},F2∗〉refocus

〈F2∗[α̂ �→ F∗], α̂,V 〉reduce� 〈V,F∗,F2∗〉apply

〈F2∗[α̂ �→ F∗], α̂,V 〉lookup� 〈F2∗[α̂ �→ F∗], α̂,V 〉reduce

〈F2∗[β̂ �→ F∗], α̂,V 〉lookup� 〈F2∗, α̂,V 〉lookup where α̂ �= β̂

Fig. 38. Abstract machine for the call-by-value λ μ̂ calculus.

#α̂ t = μα̂.[α̂]t

A α̂ t = μ .[α̂]t

Fig. 39. The multi-prompt #α̂ and A α̂ control operators.

this use of t̂p:

[t̂p]0μα.c �→ c{t̂p/α}

Operational semantics. The operational semantics of λ μ t̂p0 is a slight variation of the
one for λ μ t̂p. As before, two levels of evaluation contexts are used, where the second
level meta-evaluation context is a sequence of complete evaluation contexts D separated by
dynamic μ0-abstractions of t̂p, as shown in Figure 42. Note that this definition of complete
evaluation contexts, D, in λ μ t̂p0 differs from the complete evaluation contexts in λ μ t̂p.
In particular, whereas [t̂p]� is an evaluation context in λ μ t̂p, the variant [t̂p]0� is not an
evaluation context in λ μ t̂p0. This expresses the fact that in the command [t̂p]0t, looking
up the binding for t̂p has priority over evaluating the term t. With this one difference in
mind, the operational rules for λ μ t̂p0 are given in Figure 42.

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

Delimited control and computational effects 27

c2 ∈Command2 ::= [q2]c

c ∈Command ::= [q]t | [t̂p]0t

t ∈ Term ::= V | t1 t2 | μα .c | μ0 t̂p.c

V ∈Value ::= x | λx.t

q2 ∈CoTerm2 ::= •
q ∈CoTerm ::= α | ∗

Fig. 40. The syntax of the λ μ t̂p0-calculus.

μ0 t̂p.[t̂p]0t → t μ0 t̂p.[∗]V → μ .[∗]V

Fig. 41. Call-by-value reduction theory for the dynamic t̂p in the λ μ t̂p0-calculus.

CPS transform. We define a CPS for λ μ t̂p0 in the style of Materzok & Biernacki’s (2011)
definition of shift0 as shown in Figure 43. This is an extension of the basic Cλ μ transform

from Figure 12. Note how the translation of μ0t̂p.c in Cλ μ t̂p0
is different from the transla-

tion of μ t̂p.c in Cλ μ t̂p
. Rather than running the command to completion and then passing

the result to the continuation k, we pass k as an extra continuation to the command c. If
the command c has the form [q]t, we end up evaluating t with an extra continuation instead
of just the one. Contrarily, in the translation of [t̂p]0t, the term t is missing a continuation,
thus taking one of the extra continuations as its own.

However, we have a problem with this choice of CPS transform when it comes to
translating ∗. In particular, because all the continuations bound by μ0t̂p.c are given extra
arguments to the root command, we cannot translate ∗ as a simple function in the λ -
calculus since ∗ needs to discard an arbitrary number of arguments. Therefore, we consider
an alternate CPS transform that uses a fixed number of continuations.

In general, the CPS translation in Figure 43 produces programs which have a dynam-
ically growing and shrinking stack of continuations. To make this intuition explicit, we
give an alternate CPS transform in Figure 44, where the rest of the transform is the same
as Cλ μ from Figure 12. This transform reifies all the extra continuations as a literal stack,
similar to transforms given by Shan (2007) and Materzok & Biernacki (2011), giving us
the meta-continuation stack γ . Here binding an evaluation context with μ0t̂p.c corresponds
to pushing a continuation onto the meta-continuation stack, whereas accessing the most
recent binding of t̂p with [t̂p]0t corresponds to popping the top continuation off the stack
and evaluating the term t in that continuation.

As with the transform for λ μ t̂p from Figure 28, we can express the CPS transform
in terms of a language of dynamic binding as shown in Figure 45. Note that in order to
accommodate the new command [t̂p]0t, we need to relax the restrictions on when we can
look up the dynamic t̂p. In λ μ t̂p, we only ever need to look up t̂p when we are applying
it to a value. However, in λ μ t̂p0 we need to look up the continuation bound to t̂p before
we are ready to apply the continuation to a value. As before with λ t̂p, looking up the
dynamic t̂p backtracks the dynamic environment to its previous state before t̂p was bound.
The syntax of this dynamic language, λ t̂p0, is given in Figure 46. This is an extension of
the previous dynamic language λ t̂p since we can still apply t̂p to a term by first explicitly

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

28 P. Downen and Z. M. Ariola

E2 ::=� | D[μ0t̂p.E2]

E ::=� | E t |V E

D2 ::= [q2]E2

D ::= [q]E

D2[D[(λx.t) V]] �→ D2[D[t{V/x}]]
D2[D[μα .c]] �→ D2[c{D[t]/[α]t}]

D2[D[μ0t̂p.[t̂p]0t]]] �→ D2[D[t]]

Fig. 42. Call-by-value evaluation contexts and operational semantics for the λ μ t̂p0-calculus.

Cλ μ t̂p0
�μ0 t̂p.c� = λk.Cλ μ t̂p0

�c� k Cλ μ t̂p0
�[t̂p]0t� = Cλ μ t̂p0

�t�

Fig. 43. Call-by-value CPS transform of the dynamic t̂p in the λ μ t̂p0-calculus.

looking up the value of t̂p and binding it to a variable:

t̂p t = (λx.(λ f . f x) t̂p) t

We can extend the environment-passing style transform Dλ t̂p
from Figure 31 for the

generalized dynamic operations. If we represent the dynamic environment concretely using
pairs, we get the transform given in Figure 47. Composing the Ĉλ μ t̂p0

transform from

Figure 45 with the D×
λ t̂p0

environment-passing style transform is the same as the C×
λ μ t̂p0

transform from Figure 44, up to βη-equivalence in the λ -calculus, using a concrete stack
for the meta-continuation. Alternatively, we can refunctionalize the concrete pairs in the
above transform, giving us an environment-passing style transform into the pure λ -calculus
shown in Figure 48, where the rest of the transform is the same as in Figure 31. Binding
a value to t̂p in a dynamic environment corresponds to constructing a function that passes
the new value and the old environment to a continuation. In order to access the most recent
dynamic binding, the environment is applied to a continuation that binds the value to a
variable and evaluates a term in the previous environment.

The functional representation of dynamic environments gives us an alternate transform
of λ μ t̂p0, taken as the composition of the Ĉλ μ t̂p0

and Dλ t̂p0
transforms. This transform

makes it explicit that unevaluated terms are passed to the meta-continuation. Also, note
that the Dλ t̂p0

Ĉλ μ t̂p0
transform is the same as the double CPS transform C 2

λ μ t̂p0
, defined as

the composition of Cλ μ t̂p0
and Cλ up to βη-equivalence in the λ -calculus. The composed

transform is shown in Figure 49, where the rest of the transform is the same as Cλ μ from
Figure 12.

Theorem 7.1

D×
λ t̂p0

Ĉλ μ t̂p0
�M� =βη C×

λ μ t̂p0
�M� and Dλ t̂p0

Ĉλ μ t̂p0
�M� =βη C 2

λ μ t̂p0
�M�

Abstract machine. The λ μ t̂p0 abstract machine generalizes the reduce state of the λ μ t̂p

machine from Figure 21, as shown in Figure 50. Extending the λ μ t̂p abstract machine for
λ μ t̂p0 only requires one additional clause to interpret the new form of commands and the

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

Delimited control and computational effects 29

C×
λ μ t̂p0

�μ0t̂p.c� = λk.λγ.C×
λ μ t̂p0

�c� 〈k,γ〉

C×
λ μ t̂p0

�[t̂p]0t� = λ 〈k,γ〉.C×
λ μ t̂p0

�t�k γ

C×
λ μ t̂p0

�∗� = λx.λγ.x

Fig. 44. Stack-based call-by-value CPS transform of the λ μ t̂p0-calculus.

Ĉλ μ t̂p0
�μ0 t̂p.c� = λk.(λ t̂p.Ĉλ μ t̂p0

�c�) k

Ĉλ μ t̂p0
�[t̂p]0t� = Ĉλ μ t̂p0

�t� t̂p

Ĉλ μ t̂p0
�∗� = λx.x

Fig. 45. Call-by-value CPS transform of t̂p in the λ μ t̂p0-calculus using one dynamic variable.

generalization of one reduce step. The complete set of steps for the λ μ t̂p0 machine are
given in Figure 51.

Correctness. Again, we have the same notion of correctness of the reduction theory with
respect to the CPS transform for λ μ t̂p0 as we had with λ μ , λ μ t̂p, and λ μ̂ .

Theorem 7.2 (Soundness)
If M→→ M′ then C 2

λ μ t̂p0
�M� =βη C 2

λ μ t̂p0
�M′�.

Theorem 7.3 (Evaluation)
If C 2

λ μ t̂p0
�c2� =β V then there is a final answer c′2 such that c2 �→→ c′2 and C 2

λ μ t̂p0
�c′2� =β V .

A final answer of the λ μ t̂p0-calculus is a meta-command of the form D2[[∗]V]. For further
discussion and proofs of these theorems, see Section A.5 in the appendix.

Expressiveness. In order to give an encoding of reset0, we need to recover the command
[t̂p]t which evaluates its term first before accessing t̂p. This command can be encoded in
λ μ t̂p0 as:

[t̂p]t = [∗]letx = t in μ .[t̂p]0x

We can derive the following reductions in λ μ t̂p0, including the usual renaming rule for μ :

[t̂p]V →→ [t̂p]0V

[t̂p]μα.c→→ c{[t̂p]t/[α]t}

With this command, the encoding of shift0 (S0) and reset0 (#0) in λ μ t̂p0 shown in Figure
52 mirrors the encoding from Figure 23 of shift and reset in λ μ t̂p.

We can derive the operational rules for the two control operators from the operational
semantics of λ μ t̂p0 using the encodings in Figure 52. The two-part definition of evaluation
contexts mirrors Materzok & Biernacki’s (2011) presentation of S0 using contexts and
trails. The derived operational semantics for shift0 and reset0 are shown in Figure 53.

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

30 P. Downen and Z. M. Ariola

c ∈Closure ::= [e]t

t ∈ Term ::= V | t1 t2 | t t̂p

V ∈Value ::= x | λ x̃.t

e ∈ Environment ::= •
x̃ ∈Var ::= x | t̂p

Fig. 46. The syntax of the λ t̂p0-calculus of dynamic binding.

D×
λ t̂p0

�λ t̂p.t�V = λv.λγ.D×
λ t̂p0

�t� (γ[t̂p �→ v])

D×
λ t̂p0

�t t̂p� = λγ. let〈x,γ ′〉 = γ(t̂p) in(D×
λ t̂p0

�t�γ) x γ ′

γ[t̂p �→ v] = 〈v,γ〉 γ(t̂p) = γ

Fig. 47. Environment-passing style transform of the λ t̂p0-calculus using an environment.

These rules demonstrate that the fundamental difference between shift and shift0 is the
presence or absence of the nearest delimiter, reset or reset0, respectively, after capturing
their context.

Example 8
Consider the following folklore encoding of shift and reset in terms of shift0 and reset0,
which simply replaces the surrounding delimiter removed by shift0:

#′t = #0t

S ′ = λh.S0 λk.#0(h k)

→→ λh.μα.[t̂p]0μ0t̂p.[t̂p](h (λx.μ0t̂p.[α]x))

As pointed out by Materzok & Biernacki (2011), this encoding of shift and reset allows
for the usual, coarse-grained reductions:

#′V →→V

#′E[S ′ V]→→ #′(V (λx.#′E[x]))

However, shift′ and reset′ admit a different equational theory than the original encoding of
shift and reset. For example, we do not have that reset′ is idempotent:

#′#′t �= #′t

As another example, we can test the following axiom from Kameyama & Hasegawa (2003)
involving shift:

S λk.k V = V

In contrast with shift, in an empty meta-context, shift′ gets stuck, and does not produce a
final answer:

[•][∗]S ′λk.k V →→ [•][∗]μα.[t̂p]0μ0t̂p.[t̂p]μ0t̂p.[α]V

→ [•][t̂p]0μ0t̂p.[t̂p]μ0t̂p.[∗]V
→ [•][t̂p]0μ0t̂p.[t̂p]μ .[∗]V
→ [•][t̂p]0μ t̂p.[∗]V
→ [•][t̂p]0μ .[∗]V

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

Delimited control and computational effects 31

Dλ t̂p0
�λ t̂p.t�V = λv.λγ.Dλ t̂p0

�t� (γ[t̂p �→ v])

Dλ t̂p0
�t t̂p�γ = γ(t̂p) (Dλ t̂p0

�t�γ)

γ[t̂p �→ v] = λg.g v γ γ(t̂p) = γ

Fig. 48. Refunctionalized environment-passing style transform of the λ t̂p0-calculus.

C 2
λ μ t̂p0

�μ0 t̂p.c� = λk.λγ.C 2
λ μ t̂p0

�c�λu.u k γ

C 2
λ μ t̂p0

�[t̂p]0t� = λγ.γ C 2
λ μ t̂p0

�t�

C 2
λ μ t̂p0

�∗� = λx.λγ.x

Fig. 49. Call-by-value double CPS transform of the λ μ t̂p0-calculus.

Likewise, the CPS transform of this final program state is also stuck,

C 2
λ μ t̂p0

�[•][t̂p]0μ .[∗]V �→→C 2
λ μ t̂p0

�•� C 2
λ μ t̂p0

�μ .[∗]V �→→ γ0 (λ .λ .V)

8 Delimited control with multiple dynamic prompts: λ μ̂0

With just the simple addition of multiple static prompts, we still don’t have enough ex-
pressive power in λ μ̂ to encode operators with dynamic prompts like shift0 and reset0, or
similar previous control operators given by Gunter et al. (1995), Dybvig et al. (2007), and
Flatt et al. (2007). The dilemma is that in the presence of multiple prompts, a shift0 up
to a reset0 for α̂ not only captures its immediate context up to the nearest reset0 but also
captures all the contexts found behind non-matching reset0s. Then the continuation that
shift0 captures will restore the captured context as well as seamlessly inserting a partial
meta-context in place. For example, we want to be able to express the following reduction:

#α̂
0 (E[#β̂

0 (E ′[S α̂
0 V])])→→V (λx.#α̂

0 (E[#β̂
0 (E ′[x])]))

However, the term μα.c only captures its immediate evaluation context up to its surround-
ing command, stopping at the nearest binding of any dynamic co-variable. In order to
express shift0 with multiple prompts, we will need some way of directly manipulating
the meta-context. This is reminiscent of the way single-prompt shift0 removes the most
recent binding of t̂p and exposes that context to an underlying term. Therefore, we need
to incorporate both multiple prompt binding from Section 6 and dynamic prompts from
Section 7.

Syntax. λ μ̂0 extends λ μ̂ with the ability to capture a prefix of the meta-context up to a
prompt, and then later extend the current meta-context with that prefix, as given in Figure
54. In the language of delimited control λ μ̂0, the new class of variables, Δ, stands in for a
segment of a meta-context E2, as in Figure 34, which represents zero or more evaluation
contexts, E, bound to dynamic co-variables. The command [α̂]0Δ.t captures the segment
of its meta-context as Δ, up to the nearest binding of α̂ . Then that segment of the meta-

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

32 P. Downen and Z. M. Ariola

S ::= 〈c2〉refocus | 〈c,F
2∗〉refocus | 〈t,F

∗,F2∗〉refocus | 〈F
∗,V,F2∗〉apply

| 〈t,F∗,F2∗〉reduce | 〈F
2∗, t̂p, t〉reduce | 〈V 〉done

Fig. 50. States of the call-by-value λ μ t̂p0 machine.

〈[q2]c〉refocus� 〈c,q2〉refocus

〈[q]t,F2∗〉refocus� 〈t,q,F2∗〉refocus

〈[t̂p]0t,F2∗〉refocus� 〈F2∗, t̂p, t〉reduce

〈t t ′,F∗,F2∗〉refocus� 〈t,F∗[� t ′],F2∗〉refocus

〈μα .c,F∗,F2∗〉refocus� 〈μα .c,F∗,F2∗〉reduce

〈μ0t̂p.c,F∗,F2∗〉refocus� 〈c,F2∗[t̂p �→ F∗]〉refocus

〈V,F∗,F2∗〉refocus� 〈F∗,V,F2∗〉apply

〈F∗[� t],V,F2∗〉apply� 〈t,F∗[V �],F2∗〉refocus

〈F∗[V ′ �],V,F2∗〉apply� 〈V ′ V,F∗,F2∗〉reduce

〈∗,V,F2∗〉apply� 〈V 〉done

〈(λx.t) V,F∗,F2∗〉reduce� 〈t{V/x},F∗,F2∗〉refocus

〈μα .c,F∗,F2∗〉reduce� 〈c{F∗/α},F2∗〉refocus

〈F2∗[t̂p �→ F∗], t̂p, t〉reduce� 〈t,F∗,F2∗〉refocus

Fig. 51. Abstract machine for call-by-value λ μ t̂p0.

context is removed and the most recent binding of α̂ becomes unbound. The term t is then
evaluated in the context formerly bound to α̂ and the remaining meta-context.

Reduction. The reduction rules for commands [α̂]0Δ.t must incrementally move a prefix
of the meta-context into the underlying term. Rather than move the complete context bound
to a prompt all at once, we can use the ordinary μ-abstraction to capture that context and
move it inward to where it is needed. By using an ordinary μ-abstraction, we can capture
the context formerly bound to β̂ one step at a time, keeping the reduction rules fine-grained,
as shown in Figure 55. When under a non-matching prompt β̂ , the command [α̂]0Δ.t must

take the context currently bound to β̂ and rebind it to β̂ wherever Δ is invoked in t. This can
be done by giving the context a fresh static name with a static μ-abstraction, and binding
β̂ to that continuation variable inside Δ. The static μ-abstraction is then able to reduce
further, incrementally absorbing its context and filling in the renewed bindings for β̂ inside
Δ. If instead the command [α̂]0Δ.t is under a binding of the prompt α̂ , then t is placed
in the context bound to α̂ and Δ is eliminated in t, since there is no more prefix for it to
capture. The rest of the reduction theory of the λ μ̂0-calculus is taken from the λ μ theory
in Figure 10.

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

Delimited control and computational effects 33

#0t = μ0t̂p.[t̂p]t

S0 = λh.μα .[t̂p]0h (λx.μ0t̂p.[α]x)

Fig. 52. Encodings of the S0 and #0 control operators in the λ μ t̂p0-calculus.

E ::=� | E t |V E D ::=� | D[E[#0�]]

D[E[(λx.t) V]] �→ D[E[t{V/x}]]
D[E[#0V]] �→ D[E[V]]

D[E ′[#0E[S0 V]]] �→ D[E ′[V (λx.#0E[x])]]

Fig. 53. Call-by-value evaluation contexts and operational semantics for the S0 and #0 operators.

Similar to λ μ t̂p0, we can encode the λ μ̂ command [α̂]t in λ μ̂0:

[α̂]t = [∗]letx = t in μ .[α̂]0 .x

With this encoding for [α̂]t, we also have the following derived reductions:

[α̂]V →→ [α̂]0 .V

[α̂]μβ .c→→ c{[α̂]t/[β]t}

This allows us to derive the usual reduction rules for dynamic co-variables in the λ μ̂-
calculus shown in Figure 33.

Example 9

The command [β̂]0Δ.t removes dynamically bound contexts from its meta-context term,
and can escape dynamic co-variables in t,

μ0α̂.[β]μ0β̂ .[α]μ0α̂.[β̂]0Δ.μ .[α̂]x

→ μ0α̂ .[β]μ0β̂ .[α]μα ′.[β̂]0Δ.μ .[α̂]x where α̂ �= β̂

→ μ0α̂ .[β]μ0β̂ .[β̂]0Δ.μ .[α̂]x

→ μ0α̂ .[β]μ .[α̂]x

→ μ0α̂ .[α̂]x

→→ x

Example 10

Capturing and reinstalling a prefix of the evaluation meta-context, as performed by the
command c0 = [α̂1]0Δ.μ0α̂1.[Δ]c, preserves its order so that μ0α̂1.E

2[c0]→→ μ0α̂1.E
2[c]

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

34 P. Downen and Z. M. Ariola

c2 ∈Command2 ::= [q2]c

c ∈Command ::= [q]t | [α̂]0Δ.t | [Δ]c

t ∈ Term ::= V | t1 t2 | μα .c | μ0α̂.c

V ∈Value ::= x | λx.t

q2 ∈CoTerm2 ::= •
q ∈CoTerm ::= α | ∗

Fig. 54. The syntax of the λ μ̂0-calculus.

μ0α̂ .[α̂]0Δ.t → t{c/[Δ]c}

μ0α̂.[β̂]0Δ.t → μα .[β̂]0Δ.t{[Δ][α](μ0α̂ .c)/[Δ]c} where α̂ �= β̂
μ0α̂ .[∗]V → μ .[∗]V

Fig. 55. Call-by-value reduction theory of dynamic co-variables in the λ μ̂0-calculus.

when E2 does not bind α̂1,

[β1]μ0α̂1.[β2]μ0α̂2.[β3]μ0α̂3.[α̂1]0Δ.μ0α̂1.[Δ]c

→ [β1]μ0α̂1.[β2]μ0α̂2.[β3]μγ.[α̂1]0Δ.μ0α̂1.[Δ][γ]μ0α̂3.c

→ [β1]μ0α̂1.[β2]μ0α̂2.[α̂1]0Δ.μ0α̂1.[Δ][β3]μ0α̂3.c

→ [β1]μ0α̂1.[β2]μγ.[α̂1]0Δ.μ0α̂1.[Δ][γ]μ0α̂2.[β3]μ0α̂3.c

→ [β1]μ0α̂1.[α̂1]0Δ.μα̂1.[Δ][β2]μ0α̂2.[β3]μ0α̂3.c

→ [β1]μ0α̂1.[β2]μ0α̂2.[β3]μ0α̂3.c

Operational semantics. The operational semantics for λ μ̂0 is a variation of the semantics
for λ μ̂ from Figure 34, similar to the relationship between the operational semantics of
λ μ t̂p0 and λ μ t̂p. The modified (meta-)evaluation contexts and operational semantics are
given in Figure 56. Similar to the evaluation meta-contexts of λ μ̂ from Figure 34, contexts
E2

α̂ , i.e. prefixes of the evaluation meta-context up to the binding of α̂ , are defined as:

E2
α̂ ::=� | D[μ0β̂ .E2

α̂] where β̂ �≡ α̂

CPS transform. The shift0 operator with multiple prompts only captures a prefix of the
meta-context up to the binding of a specific prompt. What we need is a way to roll back the
dynamic environment up to a given binding, while also remembering all the information
that would otherwise be discarded. That is, we need to extend the dynamic unbinding effect
from V x̂ to give us both the value that was stored in x̂ and a trace of all the changes to the
environment after x̂ was bound. This trace is just a prefix of the current environment, and
can be used later to replay the changes over a future state of the environment, extending it
with all the dynamic bindings that were removed.

We merge both λ̂ and λ t̂p0 by combining both multiple dynamic variables and reversal

of dynamic binding, giving us λ̂0 in Figure 57. In the language of dynamic binding λ̂0, the
new class of variables, Δ, ranges over dynamic environment prefixes. Intuitively, the term

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

Delimited control and computational effects 35

E2 ::=� | D[μ0α̂.E2] | [Δ]E2

E ::=� | E t |V E

D2 ::= [q2]E2

D ::= [q]E

D2[D[(λx.t) V]] �→ D2[D[t{V/x}]]
D2[D[μα .c]] �→ D2[c{D[t]/[α]t}]

D2[D[μ0α̂.E2
α̂ [[α̂]0Δ.t]]] �→ D2[D[t{E2

α̂ [c]/[Δ]c}]]

Fig. 56. Call-by-value evaluation contexts and operational semantics for the λ μ̂0-calculus.

c ∈Closure ::= [e]t

t ∈ Term ::= V | t1 t2 | t x̂ | [Δ]t

V ∈Value ::= x | λ x̃.t | λ 〈Δ,x〉.t
e ∈ Environment ::= •

x̃ ∈Var ::= x | x̂

Fig. 57. The syntax of the λ̂0-calculus of dynamic binding.

(λ 〈Δ,x〉.t) x̂ looks up the most recent binding of x̂, substituting the value bound to x̂ for x
while also capturing the prefix of the environment more recent than x̂ and substituting it for
Δ. Then the term t is evaluated in the dynamic environment that was in place immediately
before x̂ was bound. Closure under the prefix, [Δ]t, extends the surrounding environment
with all the dynamic bindings stored in Δ. Therefore, in a program such as:

[•]dlet x̂ = V1 in dlet ŷ = V2 in dlet ẑ = V3 in(λ 〈Δ,x〉.t) x̂

the static variable x will be instantiated with V1 and Δ will be instantiated with the dynamic
bindings of V2 to ŷ and V3 to ẑ. This means that every free occurrence of the closure [Δ]u in
the underlying term t will be substituted with: dlet ŷ = V2 in dlet ẑ = V3 inu.

The semantics of λ̂0, such as λ t̂p0, requires a redefinition of the dynamic environment.
When we query the environment, we now must remember the previously active environ-
ment as well as the prefix of bindings that were skipped over in order to find the requested
variable. Like in Section 7, we first define the new environment concretely, using lists
to implement environments and prefixes and tuples to return multiple values as shown in
Figure 58. Dynamic variable lookup now builds up the prefix of bindings that are skipped
over in order to find the correct variable. This prefix of bindings can then be used elsewhere
to extend term’s dynamic environment. Note that when a prefix extends a term, the bindings
in that prefix are more recent than the surrounding dynamic environment and are bound in
exactly the same order in which they occurred originally.

Taking the concrete implementation, we can derive the pure λ -calculus encoding by
refunctionalizing the data structures. The environment prefix is now a function mapping
terms to terms which implements the extension operation from before. Multiple return
values are emulated by taking a continuation that accepts each of the three return values
separately. The environment-passing style transform D

λ̂0

is given in Figure 59.

The CPS translation from λ μ̂0 to λ̂0 is a merging of Ĉλ μ̂ and Ĉλ μ t̂p0
. The new syntactic

forms in λ μ̂0 can be defined in terms of the intermediate language λ̂0. Capturing a portion
of the meta-context up to α̂ translates to capturing a prefix of the dynamic environment

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

36 P. Downen and Z. M. Ariola

D×
λ̂0

�λ 〈Δ,x〉.t�V = λΔ.λx.D×
λ̂0

�t�

D×
λ̂0

�t x̂� = λγ. let〈Δ,v,γ ′〉 = γ(x̂) in(D×
λ̂0

�t�γ) Δ v γ ′

D×
λ̂0

�[Δ]t� = λγ.D×
λ̂0

�t� (γ@Δ)

γ[x̂ �→ v](x̂) = 〈[],v,γ〉
γ[ŷ �→ v](x̂) = let〈Δ,v′,γ ′〉 = γ(x̂)

in〈Δ[ŷ �→ v],v′,γ ′〉

γ@[] = γ
γ@(Δ[x̂ �→ v]) = (γ@Δ)[x̂ �→ v]

Fig. 58. Environment-passing style transform of the λ̂0-calculus using an environment.

D
λ̂0

�t x̂� = λγ.γ(x̂) (D
λ̂0

�t�γ)

D
λ̂0

�[Δ]t� = λγ.D
λ̂0

�t� (Δ γ)

γ(x̂) = γ �̂x�
γ[x̂ �→ v] = λ p. if p ≡ �̂x�

then(λg.g (λγ ′.γ ′) v γ)

else(λg.γ p (λΔ.g (λγ ′.(Δ γ ′)[x̂ �→ v])))

Fig. 59. Refunctionalized environment-passing style transform of the λ̂0-calculus.

while unbinding α̂ , and extending the meta-context becomes extending the dynamic envi-
ronment. As in Ĉλ μ t̂p0

, the invocation of a prompt is changed due to the change in the way

dynamic variable lookup is performed. The CPS transform for λ μ̂0 is an extension of the
basic Cλ μ transform from Figure 12, and is given in Figure 60.

The final derived transform shares a resemblance with the one given by Dybvig et al.
(2007), which lies in-between the meta-continuation approach of Danvy & Filinski (1989)
and the abstract continuation approach of Felleisen et al. (1988). However, there is a subtle
difference in the stack-like structure of the meta-continuation. Since the meta-continuation
in the composed D

λ̂0

Ĉλ μ̂0
transform is derived from an environment of bindings, its shape

is always a list of co-variable, continuation pairs. In other words, the only way to push
a continuation into the meta-continuation is to label it with some dynamic co-variable as
is syntactically required in E[μα̂.c]. Conversely, when a dynamic co-variable is removed
from the meta-continuation through the lookup process, [α̂]0Δ.t, the continuation bound to
it is also extracted from the meta-continuation and is used as the immediate continuation
for t.

These restrictions on the evaluation contexts and meta-contexts allow us to fully interpret
the meaning of the meta-context statically at transformation time, rather than describe it as
a data structure that must be interpreted dynamically during evaluation of the CPS program.

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

Delimited control and computational effects 37

Ĉλ μ̂0
�x�V = x

Ĉλ μ̂0
�λx.t�V = λx.Ĉλ μ̂0

�t�

Ĉλ μ̂0
�α� = α

Ĉλ μ̂0
�∗� = λx.x

Ĉλ μ̂0
�•� = •

Ĉλ μ̂0
�V � = λk.k Ĉλ μ̂0

�V �V

Ĉλ μ̂0
�t1 t2� = λk.Ĉλ μ̂0

�t1�λ f .Ĉλ μ̂0
�t2�λ s. f s k

Ĉλ μ̂0
�μα .c� = λk.(λα .Ĉλ μ̂0

�c�) k

Ĉλ μ̂0
�μ0α̂ .c� = λk.(λα̂.Ĉλ μ̂0

�c�) k

Ĉλ μ̂0
�[q2]c� = [Ĉλ μ̂0

�q2�]Ĉλ μ̂0
�c�

Ĉλ μ̂0
�[q]t� = Ĉλ μ̂0

�t� Ĉλ μ̂0
�q�

Ĉλ μ̂0
�[α̂]0Δ.t� = (λ 〈Δ,k〉.Ĉλ μ̂0

�t�k) α̂

Ĉλ μ̂0
�[Δ]c� = [Δ]Ĉλ μ̂0

�c�

Fig. 60. Call-by-value CPS transform of λ̂0 using dynamic binding.

S ::= 〈c2〉refocus | 〈c,F
2∗〉refocus | 〈t,F

∗,F2∗〉refocus

| 〈F∗,V,F2∗〉apply | 〈t,F
∗,F2∗〉reduce | 〈Δ.t,E2,F∗,F2∗〉reduce

| 〈F2∗, α̂,L〉lookup | 〈L,E2,F∗,F2∗〉collect | 〈V 〉done

L ::= Δ.t | L[α̂ �→ F∗]

Fig. 61. States of the call-by-value λ μ̂0 machine.

In the D
λ̂0

Ĉλ μ̂0
transform, there are no ‘partial’ continuations; every continuation ends by

determining what to do next. This is reflected in the syntax of the language, where an
evaluation context is made complete by terminating it in a command. Every complete
evaluation context finishes by explicitly returning a value to another context ([α]E), in-
voking a dynamically bound context ([α̂]E), or exiting the program completely ([∗]E).
Additionally, both context and meta-context have exactly one operation: plug in a value
and continue evaluation, or look up a dynamically bound context, respectively. Therefore,
the continuation and meta-continuation may be transformed into functions that implement
their respective single operation. Contrarily, the continuations from Felleisen et al. (1988)
and the meta-continuations from Dybvig et al. (2007) effectively support several opera-
tions, i.e. plug in a value and search for a prompt, which prevents the transformation from
concrete data structures to functions.

Abstract machine. Our final abstract machine for λ μ̂0 has the states shown in Figure 61,
where L is a context that is formed during dynamic lookup, storing all the bindings that
were skipped while searching for a specific dynamic co-variable. The steps of this machine
are given in Figure 62.

Correctness. Finally, we have the same notion of correctness of the reduction theory with
respect to the CPS transform for λ μ̂0 as we had with λ μ , λ μ t̂p, λ μ̂ , and λ μ t̂p0.

Theorem 8.1 (Soundness)

If M→→ M′ then D
λ̂0

Ĉλ μ̂0
�M� =βη D

λ̂0

Ĉλ μ̂0
�M′�.

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

38 P. Downen and Z. M. Ariola

〈[q2]c〉refocus� 〈c,q2〉refocus

〈[q]t,F2∗〉refocus� 〈t,q,F2∗〉refocus

〈[Δ]c,F2∗〉refocus� 〈c,F2∗@Δ〉refocus

〈[α̂]0Δ.t,F2∗〉refocus� 〈F2∗, α̂,Δ.t〉lookup

〈t t ′,F∗,F2∗〉refocus� 〈t,F∗[� t ′],F2∗〉refocus

〈μα .c,F∗,F2∗〉refocus� 〈μα .c,F∗,F2∗〉reduce

〈μ0α̂.c,F∗,F2∗〉refocus� 〈c,F2∗[α̂ �→ F∗]〉refocus

〈V,F∗,F2∗〉refocus� 〈F∗,V,F2∗〉apply

〈F∗[� t],V,F2∗〉apply� 〈t,F∗[V �],F2∗〉refocus

〈F∗[V ′ �],V,F2∗〉apply� 〈V ′ V,F∗,F2∗〉reduce

〈∗,V,F2∗〉apply� 〈V 〉done

〈(λx.t) V,F∗,F2∗〉reduce� 〈t{V/x},F∗,F2∗〉refocus

〈μα .c,F∗,F2∗〉reduce� 〈c{F∗/α},F2∗〉refocus

〈Δ.t,E2,F∗,F2∗〉reduce� 〈t{E2/Δ},F∗,F2∗〉refocus

〈F2∗[α̂ �→ F∗], α̂,L〉lookup� 〈L, [],F∗,F2∗〉collect

〈F2∗[β̂ �→ F∗], α̂,L〉lookup� 〈F2∗, α̂,L[β̂ �→ F∗]〉lookup

〈F2∗@E ′2, α̂,L〉lookup� 〈F2∗E ′2, α̂,L〉lookup

〈Δ.t,E2,F∗,F2∗〉collect� 〈Δ.t,E2,F∗,F2∗〉reduce

〈L[α̂ �→ F ′∗],E2,F∗,F2∗〉collect� 〈L,E2[α̂ �→ F ′∗],F∗,F2∗〉collect

Fig. 62. Abstract machine for the call-by-value λ μ̂0 calculus.

Theorem 8.2 (Evaluation)
If D

λ̂0

Ĉλ μ̂0
�c2� =β V then there is a final answer c′2 such that c2 �→→ c′2 and D

λ̂0

Ĉλ μ̂0
�c′2�

=β V .

A final answer of the λ μ̂0-calculus is a meta-command of the form D2[[∗]V], the same as
for λ μ̂ and λ μ t̂p0. For further discussion and proofs of these theorems, see Section A.6 in
the appendix.

Expressiveness. With the ability to capture the dynamic environment up to a given prompt,
we can encode the behavior of shift0 and reset0 with multiple prompts as given in Figure
63. The term #α̂

0 t binds its current context to the dynamic co-variable α and then evaluates
t under that binding. If t evaluates to a value V , then V is returned as the result of the
expression. Otherwise, if the term S α̂

0 V ′ is encountered while evaluating t, then the S α̂
0

captures the current context as well as the dynamic prefix up to the most recent binding

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

Delimited control and computational effects 39

#α̂
0 t = μ0α̂.[α̂]t

S α̂
0 = λh.μβ .[α̂]0Δ.(h (λx.μ0α̂ .[Δ][β]x))

Fig. 63. Encodings of the S α̂
0 and #α̂

0 control operators in the λ μ̂0-calculus.

E ::=� | E t |V E

D ::=� | E[#α̂
0 D]

D[E[(λx.t) V]] �→ D[E[t{V/x}]]

D[E[#α̂
0 V]] �→ D[E[V]]

D[E[#α̂
0 D′

α̂ [E ′[S α̂
0 V]]]] �→ D[E[V (λx.#α̂

0 D′
α̂ [E ′[x]])]]

Fig. 64. Call-by-value evaluation contexts and operational semantics of the S α̂
0 and #α̂

0 control
operators.

of α̂ , removing the prompt #α̂
0 binding in the process. Then V ′ is given a function which,

when applied, will evaluate its argument in the captured context and dynamic prefix under
a new binding of α̂ .

Using the operational semantics for λ μ̂0, we derive the operational semantics for our
encoding of the #α̂

0 and S α̂
0 control operators as shown in Figure 64. Note that in the third

rule, the context D′
α̂ does not contain a visible reset of α̂ .

Example 11
To illustrate how the reduction theory of λ μ̂0 can simulate the S α̂

0 and #α̂
0 control opera-

tors, consider the following step according to the operational semantics from Figure 64:

#α̂
0 E[#β̂

0 E ′[S α̂
0 V]] �→ V (λx.#α̂

0 E[#β̂
0 E ′[x]])

Using the encoding of these control operators from Figure 63, we have the following
reduction sequence:

#α̂
0 E[#β̂

0 E ′[S α̂
0 V]]

→ μ0α̂.[α̂]E[μ0β̂ .[β̂]E ′[μγ.[α̂]0Δ.V (λx.μ0α̂.[Δ][γ]x)]

→→ μ0α̂ .[α̂]E[μ0β̂ .[β̂]μγ.[α̂]0Δ.V (λx.μ0α̂.[Δ][γ]E ′[x])]

→ μ0α̂.[α̂]E[μ0β̂ .[α̂]0Δ.V (λx.μ0α̂.[Δ][β̂]E ′[x])]

→ μ0α̂.[α̂]E[μγ.[α̂]0Δ.V (λx.μ0α̂.[Δ][γ]μ0β̂ .[β̂]E ′[x])]

→→ μ0α̂ .[α̂]μγ.[α̂]0Δ.V (λx.μ0α̂ .[Δ][γ]E[μ0β̂ .[β̂]E ′[x]])

→→ μ0α̂ .[α̂]0Δ.V (λx.μ0α̂ .[Δ][α̂]E[μ0β̂ .[β̂]E ′[x]])

→ V (λx.μ0α̂.[α̂]E[μ0β̂ .[β̂]E ′[x]])

= V (λx.#α̂
0 E[#β̂

0 E ′[x]])

The first step is a βv-reduction passing in the value V to the encoding of S α̂
0 . The next two

reductions capture the evaluation context immediately surrounding the call site of shift0,

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

40 P. Downen and Z. M. Ariola

represented as an ordinary μ-abstraction of the λ μ-calculus. The remaining reductions
perform the search through the dynamic meta-context, capturing the prefix until the reset0
of α̂ is found.

9 Computational effects

Part of the interest in delimited control is its ability to simulate many other computational
effects in direct style. This means that definitions of effectful operations can be defined
locally using delimited control, e.g. as functions, without the need of transforming the en-
tire program as in a CPS transform. We first show this technique of defining computational
effects in the λ μ t̂p-calculus by monadic encodings in the style of Filinski (1994, 1999). We
use exceptions and mutable state as toy examples of the technique. We then show how the
extended languages of delimited control, λ μ̂ , λ μ t̂p0, and λ μ̂0, allow us to model richer,
more full-fledged versions of these effects through the use of multiple delimiters and more
control over an expression’s dynamic context.

9.1 Delimited control as a universal effect

Pure functional programming languages, such as Haskell in particular, can simulate ef-
fectful programming through the use of monads. The general idea is to encode the effect
as some type constructor T so that values of type T a represent computations that return
results of type a while also using effects allowed in T . The operations common to all
monads form the glue blocks that allow programmers to assemble larger computations out
of the primitives. In Haskell, these monadic operations are returnT and >>=T

3, with the
types:

returnT : a → T a >>=T : T a → (a → T b) → T b

The returnT function turns a value into a trivial T -computation that returns the value
without performing any effects. The >>=T operator (often pronounced ‘bind’) chains
two T -computations together, running the first computation to extract its return value
and passing that value along to the given function to produce the next computation to
be executed.

As noted by Moggi (1989, 1991), the connection between computations and values
of the monad can be officially supported in a language through monadic reflection. In
other words, a programmer can reflect a value of T a, promoting it to an actual effectful
computation of type a. Conversely, a computation producing a result of type a can be reified
into a value of type T a, freezing any effects that would occur during the execution of the
computation. Although not ordinary functions, these special operations for a particular
monad T have the types:

reifyT : a → T a reflectT : T a → a

In order to give the correct result, reflect acts as an ordinary call-by-value function and
evaluates its argument first, whereas reify t is a special form that first creates a barrier

3 Here the monadic operations are annotated with the type of the specific monad to which they belong.

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

Delimited control and computational effects 41

around t to isolate its effects before evaluating it. Furthermore, reflect and reify represent
inverse operations from one another, and so they ought to obey the following laws for any
monad:

reflectT (reifyT t) = t reifyT (reflectT V) = V

In his seminal work, Filinski (1994, 1999) observed that a call-by-value functional
language with delimited control has all the tools necessary to support monadic reflection.
In particular, the reflect and reify operations can be encoded in terms of the shift and reset

operators,

reifyT t = #(returnT t)

reflectT t = S λk.(t >>=T k)

This can be equivalently encoded in λ μ t̂p, using our previous definitions of shift and reset,

reifyT t = μ t̂p.[t̂p](returnT t)

reflectT t = μα.[t̂p](t >>=T λx.μ t̂p.[α]x)

Although we are working in an untyped setting, in order to understand how reflect and
reify interact with one another, it may help to first understand the types involved on an
informal level.4 First, suppose that reflectT is used on some value V in a context where it
has a surrounding reset.

. . .#E[reflectT V] . . .

Expanding the definition in terms of S , we have:

. . .#E[S λk.(V >>=T k)] . . .

Now according to the definition of the >>=T operator, V must have type T a and the
function k must have the type a → T b. Since k is a functional representation of the
evaluation context E, this means that E is expecting a value of type a, and so the entire
expression reflectT V must have type a. Furthermore, E must produce an output of type
T b, and so the nearest reset must be expecting a value of type T b. Finally, the S delivers
the result of V >>=T k to the nearest reset, which also has the type T b, as is expected. On
the other hand, for a term t of type a, reifyT t surrounds the term with a reset expecting a
value of type T a. If t produces a value without using any control effects, then that value is
injected into the type T a with a returnT . Otherwise any control effect in t, like reflectT , is
expected to give a monadic value.

The general strategy to defining an effect through monadic reflection is as follows:

1. Define the type5 T and the corresponding monadic operations for the particular
effect.

2. Simulate the primitive operations of the effect as pure functional programs in the
monadic type.

4 For a more formal discussion on type and effect systems for delimited control, see Danvy & Filinski (1989);
Filinski (1999); and Ariola et al. (2009) .

5 Because we are in the untyped setting, the monadic type is for illustrative purposes, and we do not statically
check for type-safety of the following programs.

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

42 P. Downen and Z. M. Ariola

3. Promote the pure primitives to their effectful counterparts using reflect and reify, as
appropriate.

We will follow this exercise for simplistic versions of two basic effects in programming
languages: exceptions and mutable state.

9.1.1 Exceptions

Simple exceptions can be represented monadically as a sum type, tagging the result as
either a successful return value, or some exception of type e. Whenever an exception
is encountered, the rest of the current computation is abandoned and the exception is
raised,

Errore a = Exne | OKa

returnErrore
x = OKx

m >>=Errore
f = casemofOKx ⇒ f x | Exnz ⇒ Exnz

Raising an exception just requires marking an appropriate value with the Exn tag,

raise′ = λ z.Exnz

This pure version of exception raising is promoted to the effectful version of the operation
by using reflect for the Errore monad.

raise = λ z.reflectErrore
(raise′ z)

raise = λ z.μ .[t̂p]Exnz

However, in a practical setting, we are also interested in handling exceptions. This cor-
responds exactly with using reify to freeze the computation as a value of the sum type
Errore a and checking for whether or not an exception was raised. An SML-like exception
handling mechanism can be defined as:

t handlez ⇒ u = case (reifyErrore
t)of

| OKx ⇒ x

| Exnz ⇒ u

t handlez ⇒ u = case(μ t̂p.[t̂p]OK t)of

| OKx ⇒ x

| Exnz ⇒ u

Using the reduction semantics of λ μ t̂p, we can show that our encoding of exceptions
behaves as expected. When the body reduces to a value without raising an exception, then
that value is returned as the result. However, if an exception is raised during execution, then
the rest of the computation is aborted, and that value is provided to the exception handler.

V handlez ⇒ t →→V

E[raiseV]handlez ⇒ t →→ t{V/z}

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

Delimited control and computational effects 43

Example 12
Stepping through the derivation of the above reductions gives an idea of how this encoding
captures the behavior of exceptions. In general, there are only two possibilities: execution
of the body successfully produces a value, or execution of the body is interrupted by some
raised exception. These two cases are handled as follows:

V handlez ⇒ t = case(μ t̂p.[t̂p]OKV)ofOKx ⇒ x | Exnz ⇒ t

→ caseOKV ofOKx ⇒ x | Exnz ⇒ t

→ V

E[raiseV]handlez ⇒ t = case(μ t̂p.[t̂p]OKE[μ .[t̂p]ExnV])ofOKx ⇒ x | Exnz ⇒ t

→→ case(μ t̂p.[t̂p]ExnV)ofOKx ⇒ x | Exnz ⇒ t

→ caseExnV ofOKx ⇒ x | Exnz ⇒ t

→ t{V/z}

We also have an operational semantics for exceptions that is derived from our encoding,

E ::=� | E t |V E

D ::=� | E[Dhandlez ⇒ t]

D[E[(λx.t) V]] �→ D[E[t{V/x}]]
D[E[V handlez ⇒ t]] �→ D[E[V]]

D[E[(E ′[raiseV])handlez ⇒ t]] �→ D[E[t{V/z}]]

In the last rule, E ′ does not contain a handler, by definition.

9.1.2 State

Mutable state can be represented monadically as a function transforming an initial state
into a return value and an updated state. This models the simplified case when there is
exactly one mutable cell,

States a = s → (a,s)

returnStates
x = λ z.(x,z)

m >>=States
f = λ z. let(x,z′) = m z in f x z′

The primitive operations for getting the current value of the state and putting a new value
for the state are defined as:

get′ = λ z.(z,z) put′ = λ z′.λ .((),z′)

The pure functional primitives are promoted to their effectful counterparts using reflect
for the States monad,

get = reflectStates
get′

get = μα.[t̂p](λ z.(μ t̂p.[α]z) z)

put = λ z′.reflectStates
(put′ z′)

put = λ z′.μα.[t̂p](λ .(μ t̂p.[α]()) z′)

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

44 P. Downen and Z. M. Ariola

However, in order for these operations to work, they must be used in a context in which
there is a delimiter, i.e. reify, that is prepared to handle stateful operations. This is similar to
the requirement that the mutable cell must first be allocated before it is used. The allocation
delimiter can be defined as:

allocV in t = (reifyStates
t) V

allocV in t = (μ t̂p.[t̂p]returnStates
t) V

The expression allocV in t allocates the value V as the value of the single mutable cell.
When t is interrupted by a get or put operation, the current execution is paused, and V
is provided as the value of the state. Using the reduction semantics of λ μ t̂p, we get the
following rules for mutable state:

allocV inV ′ →→ (V ′,V)

allocV inE[get]→→ allocV inE[V]

allocV inE[putV ′]→→ allocV ′ inE[()]

Example 13

As before, we can look to the derivation of the above reductions to understand how stateful
computation takes place. The first case to consider is how values are returned from an
allocation expression,

allocV inV ′ = (μ t̂p.[t̂p]returnStates
V ′) V

→ (μ t̂p.[t̂p](λ z.(V ′,z))) V

→ (λ z.(V ′,z)) V

→ (V ′,V)

Next, we can see how the two basic stateful primitives, get and put, reach out to the
surrounding allocation delimiter in order to check the current value of the state,

allocV inE[get] = (μ t̂p.[t̂p]returnStates
E[μα.[t̂p]λ z.(μ t̂p.[α]z) z]) V

→→ (μ t̂p.[t̂p](λ z.(μ t̂p.[t̂p]returnStates
E[z]) z)) V

→ (λ z.(μ t̂p.[t̂p]returnStates
E[z]) z) V

→ (μ t̂p.[t̂p]returnStates
E[V]) V

= allocV inE[V]

allocV inE[putV ′] → (μ t̂p.[t̂p]returnStates
E[μα.[t̂p]λ z.(μ t̂p.[α]()) V ′]) V

→→ (μ t̂p.[t̂p]λ z.(μ t̂p.[t̂p]returnStates
E[()]) V ′) V

→ (λ z.(μ t̂p.[t̂p]returnStates
E[()]) V ′) V

→ (μ t̂p.[t̂p]returnStates
E[()]) V ′

= allocV ′ inE[()]

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

Delimited control and computational effects 45

We can further derive an operational semantics for this style of delimited mutable state
from our encoding into λ μ t̂p

E ::=� | E t |V E

D ::=� | E[allocV inD]

D[E[(λx.t) V]] �→ D[E[t{V/x}]]
D[E[allocV inV ′]] �→ D[E[(V,V ′)]]

D[E[allocV inE ′[get]]] �→ D[E[allocV inE ′[V]]]

D[E[allocV inE ′[putV ′]]] �→ D[E[allocV ′ inE ′[()]]]

9.2 Delimited control as exceptions

In our previous encoding of exceptions, a handler caught every exception that was raised
in its body. However, a more useful model of exceptions allows for only certain exceptions
to be caught by a handler. The previous encoding can be extended with this extra feature
by using the many different dynamic co-variables available in λ μ̂ . The key difference is
to extend the raise and handle primitives from using only t̂p to instead allow any dynamic
co-variable,

raise α̂ = λ z.μ .[α̂]Exnz

t handle α̂ z ⇒ u = case μα̂.[α̂]OK t ofOKx ⇒ x | Exnz ⇒ u

The expression raise α̂ t evaluates t and then aborts to the dynamically nearest handler for
α̂ with an exceptional value. The handling expression t handle α̂ z⇒ u attempts to evaluate
t. If t successfully results in a value (represented as OKV), then value V is returned.
Otherwise, if an exception for α̂ is raised (with the exceptional value represented as ExnV),
then u is evaluated with V bound to z.

Using the reduction semantics of λ μ̂ , we find the behavior for this extended encoding
of named exception handling

V handle α̂ z ⇒ t →→V

E[raise α̂ V]handle α̂ z ⇒ t →→ t{V/z}

E[raise α̂ V]handle β̂ z ⇒ t →→ raise α̂ V where α̂ �= β̂

Example 14
The derivation of the first reduction, when the body of a handler successfully produces a
value, is essentially the same as the previous encoding in λ μ t̂p. When an α̂ exception is
raised inside a handler for α̂ , the handler stops the exception and takes its recovery branch,

E[raise α̂ V]handle α̂ z ⇒ t

→ case(μα̂.[α̂]OKE[μ .[α̂]ExnV])ofOKx ⇒ x | Exnz ⇒ t

→→ case(μα̂.[α̂]ExnV)ofOKx ⇒ x | Exnz ⇒ t

→ caseExnV ofOKx ⇒ x | Exnz ⇒ t

→ t{V/z}

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

46 P. Downen and Z. M. Ariola

However, if an α̂ exception is raised inside a handler for some other kind of exception, the
handler is discarded and the exception continues to propagate,

E[raise α̂ V]handle β̂ z ⇒ t

→ case(μβ̂ .[β̂]OKE[μ .[α̂]ExnV])ofOKx ⇒ x | Exnz ⇒ t

→→ case(μβ̂ .[α̂]ExnV)ofOKx ⇒ x | Exnz ⇒ t

→ case(μ .[α̂]ExnV)ofOKx ⇒ x | Exnz ⇒ t

→ μ .[α̂]ExnV

= raise α̂ V

As before, we can derive an operational semantics of named exceptions from this en-
coding into λ μ̂ , where a meta-context Dα̂ does not contain a handler for α̂

E ::=� | E t |V E | raise α̂ E D ::=� | E[Dhandle α̂ x ⇒ u]

D[E[(λx.t) V]] �→ D[E[t{V/x}]]
D[E[V handle α̂ z ⇒ u]] �→ D[E[V]]

D[E[(D′
α̂ [E ′[raise α̂ V]])handle α̂ z ⇒ u]] �→ D[E[u{V/z}]]

9.3 Delimited control and the CPS hierarchy

As we saw in Section 9.1, delimited control, and specifically shift and reset, can be used
to encode any monadic effect in direct style. However, having only one delimiter makes it
awkward to layer multiple independent effects on top of one another in this fashion. For
instance, when implementing an efficient, direct-style backtracking search with delimited
control, it is useful to distinguish the following two kinds of delimiters:

1. A delimiter that marks a decision point so that when searching the current branch
fails, the program backtracks to the most recent decision and tries an alternate choice.

2. A delimiter that marks the beginning of the entire search process so that when a valid
solution is found, the program jumps all the way back to the start (skipping all the
intermediate decision delimiters) and returns the answer, effectively cutting off all
other potential branches that have not yet been considered.

Extending our basic language of delimited control by nesting delimiters in this way gives
us a hierarchy of control operators. In essence, each shift and reset is given an index
indicating its place in the hierarchy so that calling shifti may capture any reset less than
i and is delimited by the nearest reset of i or greater. For instance, we have the following
operational step:

#3E ′′[#2E ′[#1E[S2V]]] �→ #3E ′′[#2V (λx.#2E ′[#1E[x]])]

This concept of a hierarchy of nested delimiters and control operators was first intro-
duced by Danvy & Filinski (1990) as the CPS hierarchy as well as by Sitaram & Felleisen
(1990a). The essential insight is that instead of limiting the CPS transform of delimited

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

Delimited control and computational effects 47

control to only one meta-continuation, we can iterate the CPS transform further to allow
for two, three, or more nested meta-continuations. This way a program that uses at most
shiftn and resetn will be transformed to a CPS program with n meta-continuations. Then
in the resulting CPS program, shifti captures the first i (meta-)continuations, while reseti
pushes the first i (meta-)continuations into the next one.

Approaching the semantics of hierarchical delimited control as an iterated CPS trans-
form requires us to know how many meta-continuations are necessary to determine a bound
on the iteration. Or, in other words, we must know a priori the highest index for shifti and
reseti that a program uses in order to translate it. Materzok & Biernacki (2012) showed that
there is an alternate approach to translating hierarchical delimited control which does not
need such a bound. Instead, the family of indexed control operators is all compiled down
to shift0 and reset0, which can access arbitrarily deep into the stack of meta-continuations.

In their encoding, Materzok & Biernacki (2012) use the standard shift0 operator, but
introduce a revised version of the delimiter as the $ operator. This revision is equally as
expressive as shift0 and reset0, but allows for more readable terms. This operator can be
encoded using shift0 and reset0, which we can then encode into λ μ t̂p0 from Section 7:

t $u = letk = t in#0(letx = u inS0(λ .k x))

= letk = t in(μ0t̂p.[t̂p](letx = u in μ .[t̂p]0k x))

The expression t $u first evaluates t and binds the resulting value to k. Then u is evaluated
in a new context and the resulting value is bound to x. Finally the delimiter is removed and
the function k is applied to the result x. We can recover the operator by using the identity
function, which is the functional representation of an empty context,

#0t = (λx.x)$ t

This alternate encoding of reset0 reduces to the same CPS transform as the encoding from
Figure 23, using either the simple single-pass CPS transform Cλ μ t̂p0

(Figure 43) or the

double CPS transforms using environments or functions, C×
λ μ t̂p0

(Figure 44) or C 2
λ μ t̂p0

(Figure 49), respectively,

(λx.x)$ t →→ μ0t̂p.[t̂p]letx = t in μ .[t̂p]0x

Cλ μ t̂p0
�μ0t̂p.[t̂p]letx = t in μ .[t̂p]0x�→→Cλ μ t̂p0

�μ0t̂p.[t̂p]t�

= λk.Cλ μ t̂p0
�t� (λx.λk′.k′ x) k

When evaluating a term of the form V $ t, one of the two things may happen. If t reduces
to a value, then we just plug this value into the continuation V through function application

V $V ′ = letk = V in μ0t̂p.[t̂p]letx = V ′ in μ .[t̂p]0k x

→→ μ0t̂p.[t̂p]μ .[t̂p]0V V ′

→ μ0t̂p.[t̂p]0V V ′

→ V V ′

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

48 P. Downen and Z. M. Ariola

Otherwise, if evaluating t leads to a shift0, then the context up to and including V is
captured,

V $E[S0V ′]→→ μ0t̂p.[t̂p]letx = E[μα.[t̂p]0V ′ (λy.μ0t̂p.[α]y)] in μ .[t̂p]0V x

→→ μ0t̂p.[t̂p]0V ′ (λy.μ0t̂p.[t̂p]letx = E[y] in μ .[t̂p]0V x)

→ V ′ (λy.μ0t̂p.[t̂p]letx = E[y] in μ .[t̂p]0V x)

= V ′ (λy.V $E[y])

With the above encodings of S0 and $, we can give an encoding of the hierarchical
family of delimited control operators Si and #i in λ μ t̂p0.

Si = λh.S0λk1. . . .S0λki.#0
i. . .#0(h k′)

wherek′ = λx.S0λq1. . . .S0λqi+1.(λw.qi+1 $. . .$q1 $w)$ki $. . .$k1 $x

#it = S0λq1.S0λqi+1.(λw.qi+1 $. . .$q1 $w)$#0
i. . .#0t

In the expression SiV , the Si operator captures i of its surrounding contexts and replaces
them with i empty contexts. The captured contexts are all bundled together in a single
function that, when applied to a value, pushes the current i contexts into the next i + 1
meta-context and then replaces them with the captured contexts. On the other hand, #it
pushes i of its surrounding contexts into the i + 1 meta-context and replaces them with
empty contexts.

It is also informative to consider the simplest form of this encoding when i is 1. In this
case, we get back encodings for the basic, non-hierarchical shift and reset operators.

S = λh.S0λk.#0(h k′)

wherek′ = λx.S0λq1.S0λq2.(λw.q2 $q1 $w)$k $x

#t = S0λq1.S0λq2.(λw.q2 $q1 $w)$#0t

While this encoding of shift and reset operators in terms of shift0 appears more compli-
cated than the folklore encoding, it does exhibit some desirable properties. For instance,
using this encoding of reset, the idempotence of reset holds in the transform C 2

λ μ t̂p0
:

C 2
λ μ t̂p0

�##t� =βη C 2
λ μ t̂p0

�#t�

Whereas reset0 is not idempotent, since repeated calls to shift0 are able to observe the
number of surrounding reset0s. Additionally, this encoding of reset in λ μ t̂p0 suggests a
way to encode μ t̂p.c from λ μ t̂p.

μ t̂p.c = μα.[t̂p]0(letx = μ0t̂p.c in μ0t̂p.[α]x)

Note that in order to evaluate a term t using this encoding, it is important to provide
the appropriate number of bindings for t̂p. That is, if a term t uses hierarchical delimited
control operators up to shiftn and resetn, then execution should be initialized with the
following meta-command, with n repetitions of μ0t̂p.[t̂p]�:

[�][t̂p](μ0t̂p.[t̂p] n. . .(t))

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

Delimited control and computational effects 49

This is necessary because even the simple term #1V uses shift0, and thus will get stuck if
there are too few bindings of t̂p in its context. Initializing the program this way corresponds
to providing the correct number of (meta-)continuations to the n-fold CPS
program.

9.4 Delimited control as state

With multiple dynamic co-variables, we can extend our encoding of state with multiple
mutable cells. Generalizing the delimited alloc region to allocate a named mutable cell is
achieved by binding the appropriate dynamic co-variable rather than t̂p.

alloc α̂ := V in t = (μ0α̂.[α̂](λx.λ s.(x,s)) t) V

Extending get and put to handle multiple cells, however, is a more delicate operation.
Not only does the cell with the matching name has to be found, we also need to be
careful to not disrupt any other mutable cells that may have been allocated more recently.
Therefore, in the encoding of get α̂ and put α̂ , we have to remember any cells we skipped
over when searching for the α cell, and then put them back in place after manipulating
the α cell. This ability to manipulate bindings stored in the meta-context is provided by
Dybvig et al.’s (2007) monadic framework for delimited control, and can be expressed in
the λ μ̂0-calculus,

get α̂ = μβ .[α̂]0Δ.(λ s.(μ0α̂ .[Δ][β]s) s)

put α̂ = λ s′.μβ .[α̂]0Δ.(λ .(μ0α̂ .[Δ][β]()) s′)

With a bit of calculation, we can show that alloc, get, and put still behave as expected
in the one-cell case,

alloc α̂ := V inE[get α̂]

= (μ0α̂ .[α̂](λx.λ s.(x,s)) E[(μβ .[α̂]0Δ.(λ s.(μ0α̂.[Δ][β]s) s))]) V

→→ (μ0α̂.[α̂]0Δ.(λ s.(μ0α̂.[Δ][α̂](λx.λ s.(x,s)) E[s]) s)) V

→→ (λ s.(μ0α̂.[Δ][α̂](λx.λ s.(x,s)) E[s]) s) V

→→ μ0α̂.[Δ][α̂](λx.λ s.(x,s)) E[V]) V

= alloc α̂ := V inE[V]

In this case, where the state cell we are looking for is the most recently allocated one, we
don’t need the full generality of λ μ̂0, the simpler λ μ̂ would do. However, when we are
looking for an older state cell that is not the most recently allocated one, the simple lookup
of λ μ̂ is insufficient to represent state, since it would forget all the intermediate allocations.
While looking for a particular state cell, we are obligated to remember all other allocations,
which requires us to re-bind the more recent allocations found during lookup. For instance,

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

50 P. Downen and Z. M. Ariola

we have the following reduction with multi-cell state:

alloc β̂ := V inE[get α̂]

= (μ0β̂ .[β̂](λx.λ s′.(x,s′)) (E[μα.[α̂]0Δ.(λ s.(μ0α̂.[Δ][α]s) s)])) V

→→ (μ0β̂ .[α̂]0Δ.(λ s.(μ0α̂.[Δ][β̂](λx.λ s′.(x,s′)) E[s]) s)) V

→→ μβ .[α̂]0Δ.(λ s.(μ0α̂.[Δ][β](μ0β̂ .[β̂](λx.λ s′.(x,s′)) E[s]) V) s)

= μβ .[α̂]0Δ.(λ s.(μ0α̂.[Δ][β]alloc β̂ := V inE[s]) s))

which demonstrates how the intermediate allocation of the β̂ state cell is remembered
during access to the α̂ cell. Once the value V allocated in the cell α̂ is found, the β̂
cell will be restored before continuing on with the evaluation of E[V]. Finally, we use a
sequentialization operation, t1; t2, as a convenience for working with stateful operations.
This operation is defined as syntactic sugar by using the sequentializing behavior of call-
by-value function application:

t1; t2 = (λ .t2) t1
In general, we can derive a reduction semantics for delimited, multi-cell state. The

(meta-)evaluation contexts are defined as:

E ::=� | E t |V E | put α̂ E | E; t D ::=� | E[alloc α̂ := V inD]

In terms of these (meta-)evaluation contexts, the coarse-grained reduction rules for state
are:

alloc α̂ := V inV ′ →→ (V ′,V)

alloc α̂ := V inDα̂ [E[get α̂]]→→ alloc α̂ := V inDα̂ [E[V]]

alloc α̂ := V inDα̂ [E[put α̂ V ′]]→→ alloc α̂ := V ′ inDα̂ [E[()]]

V ; t →→ t

where Dα̂ does not contain an allocation of α̂ . Additionally, the complete operational
semantics is given by only applying reduction rules in the evaluation contexts described
by D[E]:

D[E[(λx.t) V]] �→ D[E[t{V/x}]]
D[E[alloc α̂ := V inV ′]] �→ D[E[(V ′,V)]]

D[E[alloc α̂ := V inD′
α̂ [E ′[get α̂]]]] �→ D[E[alloc α̂ := V inD′

α̂ [E ′[V]]]]

D[E[alloc α̂ := V inD′
α̂ [E ′[put α̂ V ′]]]] �→ D[E[alloc α̂ := V ′ inD′

α̂ [E ′[()]]]]

D[E[V ; t]] �→ D[E[t]]

Example 15
To illustrate how these encoded effects interact with one another, we show the behavior of
a program that uses both mutable state and exceptions, as defined in Sections 9.4 and 9.2,
respectively. The reduction theory and operational semantics for the combination of these
two effects are given as the simple union of independent semantics, which is validated by
the encodings of state and exceptions into the λ μ̂0-calculus. First, we show the typical

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

Delimited control and computational effects 51

alloc α̂ := 10 in alloc β̂ := 2 in((
put α̂ (get α̂ ∗get β̂); raise ε̂ (get α̂)

)
handle ε̂ x ⇒ x+get α̂

)
�→→ alloc α̂ := 10 in alloc β̂ := 2 in

((put α̂ (10∗2); raise ε̂ (get α̂))handle ε̂ x ⇒ x+get α̂)

�→→ alloc α̂ := 20 in alloc β̂ := 2 in

((raise ε̂ (get α̂))handle ε̂ x ⇒ x+get α̂)

�→ alloc α̂ := 20 in alloc β̂ := 2 in

((raise ε̂ 20)handle ε̂ x ⇒ x+get α̂)

�→ alloc α̂ := 20 in alloc β̂ := 2 in (20+get α̂)

�→ alloc α̂ := 20 in alloc β̂ := 2 in (20+20)

�→ alloc α̂ := 20 in alloc β̂ := 2 in40

Fig. 65. Evaluation of a program using both mutable state and exceptions.

case, where the mutable cells are stored globally, ‘outside’ the program, and are unaffected
by the flow of control. We model this behavior by listing all of the allocations of mutable
cells in the outermost part of the program. The example given in Figure 65 shows that
the values in the mutable cells are not affected by raising an exception. However, the
notion of delimited mutable state given here is more flexible, and allows for the allocation
of mutable cells to exist within the program itself. In this case, internal allocations are
subject to alterations of control flow in the program. Example in Figure 66 shows the same
program with an internal re-allocation of the α̂ mutable cell. In this program the internal
allocation of α̂ overrides the external one until an exception is raised. At that point the
internal allocation of α̂ is discarded, and the external one is used. This back-tracking of
mutable cells on an exception gives a result of 210 instead of 400. The difference between
allocations that are external or internal to an exception is similar to the different layerings
of the StateT and ErrorT monad transformers in Haskell. An allocated cell outside the
bounds of an exception behaves like the usual notion of global state, and corresponds to
the Haskell monad given by ErrorTe (StateTs m) a. On the other hand, an allocated cell
inside the bounds of an exception is discarded, and corresponds to the monad given by
StateTs (ErrorTe m) a.

10 Conclusions

By now we have explored a series of increasingly expressive languages, and demonstrated
some computational effects expressible in each language. We started with the pure, call-
by-value λ -calculus as our foundation and extended it to Parigot’s λ μ calculus, giving
us classical control and the call/cc control operator. We then added a re-bindable top-
level to the λ μ calculus, giving us the λ μ t̂p calculus of delimited control and allowing
us to represent any monadic effect as a first-class computational effect (Filinski 1994)
such as exceptions and mutable state. From there we extended the language with multiple,
named, re-bindable top-levels as a simple extension, λ μ̂ , which allowed us to express
exception handling with more than one named exception. We also considered a variant of

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

52 P. Downen and Z. M. Ariola

alloc α̂ := 10 in alloc β̂ := 2 in((
alloc α̂ := 100 in

put α̂ (get α̂ ∗get β̂); raise ε̂ (get α̂)

)
handle ε̂ x ⇒ x+get α̂

)

�→→
alloc α̂ := 10 in alloc β̂ := 2 in((

alloc α̂ := 100 in

put α̂ (100∗2); raise ε̂ (get α̂)

)
handle ε̂ x ⇒ x+get α̂

)

�→→
alloc α̂ := 10 in alloc β̂ := 2 in((

alloc α̂ := 200 in

raise ε̂ (get α̂)

)
handle ε̂ x ⇒ x+get α̂

)

�→
alloc α̂ := 10 in alloc β̂ := 2 in((

alloc α̂ := 200 in

raise ε̂ 200

)
handle ε̂ x ⇒ x+get α̂

)

�→ alloc α̂ := 10 in alloc β̂ := 2 in (200+get α̂)

�→ alloc α̂ := 10 in alloc β̂ := 2 in (200+10)

�→ alloc α̂ := 10 in alloc β̂ := 2 in210

Fig. 66. Interaction between delimiters for mutable state and exceptions.

delimited control with dynamic access to prompts, λ μ t̂p0, which allowed us to express an
unbounded hierarchy of nested control operators (Materzok & Biernacki 2012). Finally, we
brought the two back together to achieve a more powerful language of delimited control
with multiple prompts, λ μ̂0, where we can remember and restore the state of different
prompts. This allowed us to implement mutable state with multiple stateful cells in a way
that preserves the heap while accessing an allocated cell.

For each of the languages of control, we have described their semantics in a variety
of ways, and each semantic artifact highlights a crucial aspect of the behavior of the lan-
guages. The reduction semantics can be applied anywhere in a program, such as underneath
a λ -abstraction, and only analyzes a small portion of the program at a time. These reduction
rules capture optimizations that a compiler may perform, since the rules are applied to
small fragments of the source program and are valid outside the normal evaluation order.
The operational semantics provides an intuitive description of standard evaluation in terms
of the source language, and shows the complete behavior of each language construct in
its evaluation context. At a more low-level, the CPS transform gives a compilation from
the source language to some target language such as the pure λ -calculus or one of the
languages of dynamic binding. With the compositional transforms presented here, this lets
us use the target language as a tool for reasoning about the source language independent of

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

Delimited control and computational effects 53

context. Alternatively, an abstract machine gives a tail-recursive interpreter for the source
language and forms a bridge for more practical implementations of the language.

We have provided a calculus that allows us to study delimited control with multiple
prompts. To do this, we used an intermediate language of dynamic binding in order to
define the semantics of multiple prompts. Kiselyov et al. (2006) have also investigated
the relationship between dynamic binding and delimited control by giving a language
that gives the programmer access to both. Interestingly, their approach is the opposite to
ours. They directly define the dynamic binding in terms of delimited control with multiple
prompts. On the other hand, we use the conceptually simpler notion of dynamic binding as
a stepping stone for understanding delimited control with multiple prompts.

The languages of control given here provide a framework for describing high-level
control operators using a variety of semantic tools. The control operations are given as fine-
grained primitives that can express many higher-level control operators. Consider again the
questions raised in Example 2:

(reset[(abort(raise0)∗5)handlen ⇒ n+1])

handlen ⇒ n+2

By giving a definition of the abort and raise operators in terms of λ μ̂0, we can specify
the precise behavior that we intend, including finer details of the semantics such as when
portions of the context are captured or cleared. Suppose that we take the definition of
exception handling in Section 9.2, using a default name for the dynamic co-variable that is
different from t̂p. If we define abort as:

abort = λx.μ .[t̂p]x

then due to the call-by-value semantics of function application, first raise0 is evaluated,
clearing the context (abort�)∗5 and invoking the innermost exception handler and giving
the result 1. If we define abort as:

abort t = μ .[t̂p]t

then first abort takes control and clears the context � ∗ 5, but then evaluates raise0 still
inside the innermost handler and also gives the result 1. If we instead define abort as:

abort t = μ .[t̂p]0 .t

then abort clears the context�∗5 and also removes the innermost handler while searching
for reset. After abort finds and removes the reset, raise0 is evaluated where the reset

was, thereby invoking the outermost handler and giving the result 2. Each of these choices
for abort has different semantics, and the difference in behavior is clearly expressed by
different encodings in λ μ̂0.

We have seen how delimited control with multiple prompts can be used to represent
a variety of computational effects, in the style of Filinski (1994, 1999), so that they can
be combined without interference within a single program. This can be used to combine
different effects such as exceptions and short-circuiting abort in Example 2, or to extend
a single effect such as exception handling with multiple named exception in Section 9.2
or mutable state with multiple cells in Section 9.4. By giving the control operations as a
collection of well-behaved, and fine-grained primitives, we can express a wide range of

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

54 P. Downen and Z. M. Ariola

different behaviors for our chosen high-level control operators, and use the same set of
semantic tools for reasoning about each. The λ μ , λ μ t̂p, and λ μ t̂p0 calculi each contain
a small number of control primitives with basic semantics. However, it is unclear if the
λ μ̂0 calculus can be broken down into even simpler primitives in the style of λ μ t̂p0 et
al. Such a development could show how named prompts can be extended to a hierarchy,
integrating both delimited control with multiple named prompts and the CPS hierarchy,
which we leave as a future direction of our work.

Acknowledgments

Paul Downen and Zena M. Ariola have been supported by NSF grant CCF-0917329 and
by INRIA Équipe Associée SEMACODE.

Supplementary materials

For supplementary materials for this article, please visit dx.doi.org/10.1017/
S0956796813000312.

References

Ariola, Z. M. & Herbelin, H. (2008) Control reduction theories: The benefit of structural substitution.
J. Funct. Program. 18(May), 373–419.

Ariola, Z. M., Herbelin, H., Herman, D. & Keith, D. (2011) A robust implementation of delimited
control. In First International Workshop on the Theory and Practice of Delimited Continuations,
Novi Sad, Serbia, p. 6.

Ariola, Z. M., Herbelin, H. & Sabry, A. (2009) A type-theoretic foundation of delimited
continuations. Higher Order Symb. Comput. 22(3), 233–273.

Biernacka, M., Biernacki, D. & Danvy, O. (2005) An operational foundation for delimited
continuations in the CPS hierarchy. Log. Methods Comput. Sci. 1(2), 1–39.

Danvy, O. (2004) On evaluation contexts, continuations, and the rest of the computation. In ACM
Sigplan Continuations Workshop, pp. 13–23.

Danvy, O. & Filinski, A. (1989) A Functional Abstraction of Typed Contexts. Tech. rept. 89/12.
DIKU, University of Copenhagen, Copenhagen, Denmark.

Danvy, O. & Filinski, A. (1990) Abstracting control. In Proceedings of the 1990 ACM Conference
on LISP and Functional Programming. Pittsburgh, PA: ACM Press, pp. 151–160.

Downen, P. & Ariola, Z. M. (2012) A systematic approach to delimited control with multiple
prompts. In Procedings of the 21st European Symposium on Programming. Berlin, Germany:
Springer, pp. 234–253.

Dybvig, R. K., Jones, S. P. & Sabry, A. (2007) A monadic framework for delimited continuations.
J. Funct. Program. 17(6), 687–730.

Felleisen, M. (1988) The theory and practice of first-class prompts. In Principles of Programming
Languages ’88, pp. 180–190.

Felleisen, M. (1991) On the expressive power of programming languages. Sci. Comput. Program.
17(1–3), 35–75.

Felleisen, M. & Friedman, D. P. (1987) A reduction semantics for imperative higher-order languages.
In Parallel Architectures and Languages Europe (PARLE), Lecture Notes in Computer Science,
vol. 259. Berlin, Germany: Springer, pp. 206–223.

Felleisen, M., Friedman, D. P., Kohlbecker, E. E. & Duba, B. F. (1987) A syntactic theory of
sequential control. Theor. Comput. Sci. 52, 205–237.

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

Delimited control and computational effects 55

Felleisen, M. & Hieb, R. (1992) The revised report on the syntactic theories of sequential control and
state. Theor. Comput. Sci. 103(2), 235–271.

Felleisen, M., Wand, M., Friedman, D. P. & Duba, B. F. (1988) Abstract continuations: A
mathematical semantics for handling full jumps. In LISP and Functional Programming,
Snowbird, UT, pp. 52–62.

Filinski, A. (1994) Representing monads. In Principles of Programming Languages ’94. Pittsburgh,
PA: ACM, pp. 446–457.

Filinski, A. (1999) Representing layered monads. In Principles of Programming Languages ’99,
pp. 175–188.

Flatt, M., Yu, G., Findler, R. B. & Felleisen, M. (2007) Adding delimited and composable control to
a production programming environment. In Proceedings of the 12th ACM Sigplan International
Conference on Functional Programming, vol. 1., pp. 165–176.

Gunter, C. A., Rémy, D. & Riecke, J. G. (1995) A generalization of exceptions and control in ML-like
languages. In Functional Programming Languages and Computer Architecture ’95. New York,
NY: ACM, pp. 12–23.

Kameyama, Y. & Hasegawa, M. (2003) A sound and complete axiomatization of delimited
continuations. In Proceedings of the Eighth ACM Sigplan International Conference on Functional
Programming (ICFP ’03). New York, NY: ACM, pp. 177–188.

Kiselyov, O. (2010) Delimited control in OCaml, abstractly and concretely: System description. In
Functional and Logic. Programming, Lecture Notes in Computer Science vol. 6009. New York,
NY: Springer, 304–320.

Kiselyov, O., Shan, C.-C. & Sabry, A. (2006) Delimited dynamic binding. In Proceedings of the
Eleventh ACM Sigplan International Conference on Functional Programming (ICFP ’06). New
York, NY: ACM, pp. 26–37.

Materzok, M. & Biernacki, D. (2011) Subtyping delimited continuations. In Proceeding of the 16th
ACM Sigplan International Conference on Functional Programming (ICFP ’11). New York, NY:
ACM, pp. 81–93.

Materzok, M. & Biernacki, D. (2012) A dynamic interpretation of the CPS hierarchy. In 10th Asian
Symposium on Programming Languages and Systems (APLAS 2012), pp. 296–311.

Moggi, E. (1989) Computational lambda-calculus and monads. In Proceedings of the Fourth Annual
Symposium on Logic in Computer Science (IEEE), pp. 14–23.

Moggi, E. (1991) Notions of computation and monads. Inf. Comput. 93(1), 55–92.
Moreau, L. (1998) A syntactic theory of dynamic binding. Higher Order Symb. Comput. 11(3), 233–

279.
Parigot, M. (1992) Lambda-my-calculus: An algorithmic interpretation of classical natural

deduction. In Logic Programming and Automated Reasoning. New York, NY: Springer, pp. 190–
201.

Plotkin, G. D. (1975) Call-by-name, call-by-value, and the λ -calculus. Theor. Comput. Sci. 1, 125–
159.

Reynolds, J. C. (1972) Definitional interpreters for higher-order programming languages. In
Proceedings of the 25th ACM National Conference. New York, NY: ACM, pp. 717–740.

Shan, C.-C. (2007) A static simulation of dynamic delimited control. Higher Order Symb. Comput.
20(4), 371–401.

Sitaram, D. & Felleisen, M. (1990a) Control delimiters and their hierarchies. LISP Symb. Comput.
3(1), 67–99.

Sitaram, D. & Felleisen, M. (1990b) Reasoning with continuations II: Full abstraction for models of
control. In Proceedings of the 1990 ACM Conference on LISP and Functional Programming. New
York, NY: ACM, pp. 161–175.

https://doi.org/10.1017/S0956796813000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000312

