
Optimal sample sizes for group testing in two-stage sampling
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Abstract

Optimal sample sizes under a budget constraint for
estimating a proportion in a two-stage sampling
process have been derived using individual testing.
However, when group testing is used, these optimal
sample sizes are not appropriate. In this study, optimal
sample sizes at the cluster and individual levels are
derived for group testing. First, optimal allocations of
clusters and individuals are obtained under the
assumption of equal cluster sizes. Second, we obtain
the relative efficiency (RE) of unequal versus equal
cluster sizes when estimating the average population
proportion, ~p. By multiplying the sample of clusters
obtained assuming equal cluster size by the inverse of
the RE, we adjust the sample size required in the
context of unequal cluster sizes. We also show the
adjustments that need to be made to allocate clusters
and individuals correctly in order to estimate the
required budget and achieve a certain power or
precision.

Keywords: group testing, optimal power, precision,
relative efficiency, sample size

Introduction

Group testing is becoming increasingly popular because
it can substantially reduce the number of required
diagnostic tests compared to individual testing.
Dorfman (1943) proposed the original group testing
method in which g pools of size s are randomly formed
from a sample of n individuals selected from the
population using simple random sampling (SRS).

Dorfman’s method has been extended in many ways.
For example, there are group testing regression models
for fixed effects, for mixed effects, for multiple-disease
group testing data, with imperfect diagnostic tests [with
sensitivity ðSeÞ, specificity ðSpÞ , 1, or with dilution
effect], and non-parametric group testing methods,
among others (Yamamura and Hino, 2007; Hernández-
Suárez et al., 2008; Chen et al., 2009; Zhang et al., 2013).

Group testing methods have been used to detect
diseases in potential donors (Dodd et al., 2002); to
detect drugs (Remlinger et al., 2006); to estimate and
detect the prevalence of human (Verstraeten et al.,
1998), plant (Tebbs and Bilder, 2004) and animal
(Peck, 2006) diseases; to detect and estimate the
presence of transgenic plants (Yamamura and Hino,
2007; Hernández-Suárez et al., 2008); and to solve
problems in information theory (Wolf, 1985) and even
in science fiction (Bilder, 2009). When individuals are
not nested within clusters, the issue of the number of
pools the sample should have to achieve a certain
power or precision for estimating the proportion of
interest ~p has been solved (Yamamura and Hino, 2007;
Hernández-Suárez et al., 2008; Montesinos-López et al.,
2010, 2011). In practice, however, populations often
have a multilevel structure, with individuals nested
within clusters that may themselves be nested within
higher-order clusters. For example, in the detection of
transgenic corn in Mexico, sample plants are nested in
fields, which are nested in geographical areas. For such
surveys, at least two stages may arise, and outcomes
within the same cluster tend to be more alike than
outcomes from different clusters. To account for such
correlated outcomes, more clusters are needed to
achieve the same precision as SRS which generates
outcomes that are independent (Moerbeek, 2006).

Multistage surveys are often justified because it is
difficult or impossible to obtain a sampling frame or
list of individuals, or it may be too expensive to take
an SRS. For example, it would not be possible to take
an SRS of corn plants in Mexico due to travel costs
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between fields. Instead of using SRS, multistage
or cluster sampling methods would typically be
employed in this situation. Sampling units of two or
more sizes are used and larger units, called clusters or
primary sampling units (PSUs), are selected using a
probability sampling design. Then some or all of the
smaller units (called secondary sampling units or
SSUs) are selected from each PSU in the sample. In the
example of sampling for transgenic corn, PSU ¼ field
and SSU ¼ plant. This design would be less expensive
to implement than an SRS of individuals, due to the
reduction in travel costs. Also, cluster sampling does
not require a list of households or persons in the entire
country. Instead, a list is constructed for the PSUs
selected to be in the sample (Lohr, 2008).

In a non-group testing context, optimal sample size
gives the most precise estimate of the proportion of
interest and the largest test power or precision given a
fixed sampling budget (Van Breukelen et al., 2007).
It can also be defined as the cheapest sample size that
gives a certain power or precision of the estimate of
interest (Van Breukelen et al., 2007). It is less costly to
sample a few clusters with many individuals per cluster
than many clusters with just a few individuals per
cluster because sampling in an already selected cluster
may be less expensive than sampling in a new cluster
(Moerbeek et al., 2000). However, simulation studies in
a non-group testing context indicate that it is more
important to have a larger number of clusters than a
larger number of individuals per cluster (Maas and
Hox, 2004). In a group testing context, no work has
been published on the optimal sample size in two-stage
sampling, given a specified sampling budget. Thus
new methods are needed to determine the required
number of clusters and pools per cluster, given a certain
budget, for obtaining a desired precision for estimating
the proportion of interest using group testing.

Often optimal sample size calculations for multi-
stage sampling completely assume equal cluster sizes
(equal number of individuals per cluster). However,
in practice, there are large discrepancies in cluster
sizes, and ignoring this imbalance in cluster size
could have a major impact on the power and
precision required for the parameter estimates. For
this reason, sample size formulas have to be adjusted
for varying cluster sizes. One approach used to
compensate for this loss of efficiency is to develop
correction factors to convert the variance of equal
cluster size into the variance of the unequal cluster
size (Moerbeek et al., 2001a; Van Breukelen et al.,
2007, 2008; Candel and Van Breukelen 2010). This
correction factor is normally constructed as the
inverse of the relative efficiency (RE), which is
calculated as the ratio of the variances of the
parameter of interest of equal versus unequal cluster
sizes. This RE concept has been used in mixed-effects
models for continuous and binary data to study loss

of efficiency due to varying cluster sizes in a non-
group testing context for the estimation of fixed
parameters and for variance components (Van
Breukelen et al., 2007, 2008; Candel et al., 2008). In
the group testing framework, the RE concept has not
been used to adjust optimal sample sizes under the
assumption of equal cluster sizes.

In this study, we obtain optimal sample sizes in two
stages in a group testing context using a multilevel
logistic group testing model where we assume that
clusters are randomly sampled from a large number of
clusters. First, under the assumption that cluster sizes
do not vary, we derive analytical expressions for the
optimal allocation of clusters and individuals under a
budget constraint. These analytical expressions were
derived by linearization using a first-order marginal
quasi-likelihood to approach the multilevel logistic
group testing model. Although equal sample sizes per
cluster are generally optimal for parameter estimation,
they are rarely feasible. For this reason, we derived an
approximate formula for the relative efficiency of
unequal versus equal cluster sizes for adjusting the
required sample sizes for estimating the proportion in a
group testing context. The approximate RE obtained is
a function of the mean, the variance of cluster size and
the intraclass correlation. The proposed expressions
are also useful for estimating the budget required to
achieve a certain power or precision when the goal is
to achieve a confidence interval of a certain width or
to obtain a pre-specified power for a given hypothesis.

Materials and methods

Random logistic model for individual testing

In the context of individual testing, the standard
random logistic model is obtained by conditioning on
all fixed and random effects, and assuming that the
responses yij are independent and Bernoulli distrib-
uted with probabilities pi and that these probabilities
are not related to any covariable (Moerbeek et al.,
2001a). Then the linear predictor using a logit link is
equal to

hi ¼ logit pið Þ ¼ ln
pi

1 2 pi

� �
¼ b0 þ bi ð1Þ

where hi is the linear predictor that is formed from a
fixed part ðb0Þ and a random part ðbiÞ, which is
Gaussian iid with mean zero and variance s2

b .
Therefore, equation (1) can be written in terms of the
probability of a positive individual as:

pi ¼ piðb0;sbÞ ¼ ½1þ exp f2ðb0 þ biÞg�
21: ð2Þ

The mixed logit model for binary responses can be
written as the probability pi plus a level 1 residual,
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denoted eij:

yij ¼ pi þ eij

where eij has zero mean and variance yijjbi

� �
¼pið12piÞ

(Goldstein, 1991, 2003; Rodrı́guez and Goldman, 1995;
Candy, 2000; Moerbeek et al., 2001b; Skrondal and
Rabe-Hesketh, 2007; Candel and Van Breukelen, 2010).
This model is widely used for estimating optimal
sample sizes when the variance components are
assumed known (Goldstein, 1991, 2003; Rodrı́guez
and Goldman, 1995; Candy, 2000; Moerbeek et al.,
2001a).

Random logistic model for group testing

Suppose that, within the ith field, each plant is
randomly assigned to one of the gi pools; let yijk ¼ 0
if the kth plant in the jth pool in field i is negative,
or yijk ¼ 1 otherwise for i ¼ 1; 2; . . .;m, j ¼ 1; 2; . . .; gi

and k ¼ 1; 2; . . .; sij as the pool size. Note that yijk is
not observed, except when the pool size is 1. Define
the random binary variable Zij that takes the value
of Zij ¼ 1 if the jth pool in field i tests positive and
Zij ¼ 0 otherwise. Therefore, the two-level general-
ized linear mixed model (Breslow and Clayton,
1993; Rabe-Hesketh and Skrondal, 2006) for the
response Zij is exactly the same as that given for
individual testing in equation (1). Conditional on
the random effect ½bi�, the statuses of pools within
field i are independent, and assuming that the
statuses of pools from different fields are indepen-
dent, the probability that the jth pool in field i is
given as

P Zij ¼ 1 bij
� �

¼ p
p
i

¼ Se þ ð1 2 Se 2 SpÞ
Ysij

k¼1

ð1 2 pijkÞ ð3Þ

where Se and Sp denote the sensitivity and
specificity of the diagnostic test, respectively. Se and
Sp are assumed constant and close to 1 (Chen et al.,
2009). For simplicity in planning the required
sample, we will assume an equal pool size, s, in all
clusters, and under this assumption equation (3)
reduces to:

P Zij ¼ 1 bij
� �

¼ p
p
i ¼ Se þ w ð1 2 piÞ

s ð4Þ

where w¼ ð1 2 Se 2 SpÞ. The mixed group testing logit
model for binary responses can be written as the
probability p

p
i plus a level 1 residual, denoted e

p
ij:

Zij ¼ p
p
i þ e

p
ij ð5Þ

where p
p
i is as given in equation (4) and e

p
ij has zero

mean and variance V Zijjbi

� �
¼ p

p
i 1 2 p

p
i

� �
. Now let

u¼ ðb0;sbÞ denote the vector of all estimable
parameters. The multilevel likelihood is calculated
for each level of nesting. First, the conditional
likelihood for pool j in field i is given by:

Lijðu biÞ ¼ p
p
i

� �Zij
½1 2 p

p
i �

12Zij :
��� ð6Þ

By multiplying the conditional likelihood (equation 6)
by the density of bi and integrating out the random
effects, we get the marginal (unconditional) overall
likelihood:

LðujyÞ ¼
Ym
i¼1

ðYgi

j¼1

Lijðu biÞ f ðbiÞdbi

��8<:
9=;;

where f bið Þ is the density function of bi. Unfortunately,
this unconditional likelihood is intractable. There are
various ways of approximating the marginal likelihood
function. Two of them are: (1) to use integral approxi-
mations such as Gaussian quadrature; and (2) to linearize
the non-linear part using Taylor series expansion (TSE)
(Moerbeek et al., 2001a; Breslow and Clayton, 1993). The
marginal form of the generalized linear mixed model
(GLMM) is of interest here, since it expresses the variance
as a function of the marginal mean.

Approximate marginal variance of the proportion

The marginal model can be fitted by integrating the
random effects out of the log-likelihood and maximiz-
ing the resulting marginal log-likelihood or, alterna-
tively, by using an approximate method based on TSE
(Breslow and Clayton, 1993). Next, p

p
i is approximated

using a first-order TSE around bi ¼ 0, as

p
p
i < p

p
i

��
bi¼0
þ

›p
p
i

bi

����
bi¼0

bi 2 0ð Þ

p
p
i < p

p
i

��
bi¼0
þsw ð1 2 piÞ

s21pi 1 2 pið Þ
��
bi¼0

bið Þ

p
p
i < ~pp þ sw ð1 2 ~pÞs21 ~pð1 2 ~pÞbi ð7Þ

where ~pp ¼ p
p
i

��
bi¼0
¼ Seþ w 1 2 1þ exp 2b0

� �� �21
	 
s

and ~p ¼ pijbi¼0¼ 1þ exp 2b0

� �� �21
, since bi are

independent and identically distributed (iid), and we
use the fact that

›p
p
i

bi
¼

›p
p
i

pi

›pi

›bi
;

›pi

›bi
¼

›pi

›hi
¼ pið1 2 piÞ and

›p
p
i

pi
¼ sw ð1 2 piÞ

s21

Now, by substituting equation (7) in equation (5),
we can approximate equation (5) by

Zij < ~pp þ sw ð1 2 ~pÞs21 ~pð1 2 ~pÞbi þ e
p
ij: ð8Þ
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Therefore, the approximate marginal variance
based on a first–order TSE of the responses of a
pool is equal to:

Var Zij

� �
< fsw ð1 2 ~pÞs21g

2
f ~p ð1 2 ~pÞg

2
s2

b þ ~pp 1 2 ~pp
� �

where the variance of e
p
ij was approximated by

~pp 1 2 ~ppð Þ. Note that �Z ¼

Pm

j¼1

Pg

j
Zij

mg is a moment

estimator of Eðp
p
i Þ and its variance is equal to:

Var �Z
� �

<
fswð12 ~pÞs21g

2
f ~pð12 ~pÞg

2
s2

b

m
þ

~pp 12 ~ppð Þ

mg
ð9Þ

Recall that we will select a sample of m fields,
assuming that the same number of pools per field
will be obtained, i.e. g ¼ �g. Since the probability of
success is not a constant over trials but varies
systematically from field to field, the parameter pi is
a random variable with a probability distribution.
Therefore, it is reasonable to work with the expected
value of pi across fields to determine sample size.
To approximate EðpiÞ, we take advantage of the
relationship between �Z and E p

p
i

� �
:

�Z ¼ E p
p
i

� �
¼ E Se þ w ð1 2 piÞ

s
� �

¼ E SeÞ þ Eðw ð1 2 piÞ
s

� �
¼ Se þ wEðKÞ ð10Þ

where K ¼ ð1 2 piÞ
s. Using a first-order TSE around

bi ¼ 0, we can approximate K as

K < Kjbi¼0þ
›K

bi

����
bi¼0

bi 2 0ð Þ

K < ~Kþ sð1 2 ~pÞs21 ~p ð1 2 ~pÞbi ð11Þ

where ~K¼ Kjbi¼0¼ 1 2 1þ exp 2b0

� �� �21
	 
s

¼ ð1 2 ~pÞs

and we use the fact that

›K

bi
¼

›K

pi

›pi

›bi
;

›pi

›bi
¼

›pi

›hi
¼ pið1 2piÞ and

›K

pi
¼ sð1 2piÞ

s21:

Then

E Kð Þ < ~K:

But doing TSE of the first order, we can obtain that
1 2 EðpiÞð Þs< 1 2 ~pð Þs ¼ ~K, and so

E Kð Þ < 1 2 EðpiÞð Þs:

That is, we approximate E Kð Þ ¼ E½ð1 2 piÞ
s�

by ½1 2 E pið Þ�
s. This implies that E p

p
i

� �
< Seþ

w ð1 2 EðpiÞÞ
s, and since �Z is an estimator for E p

p
i

� �
,

then an estimator for EðpiÞ can be obtained from

Se þ w ð1 2 EðpiÞÞ
s < �Z:

Therefore, an estimator for EðpiÞ is

dEðpiÞEðpiÞ < 1 2
Se 2 dE p

p
i

� �
E p

p
i

� �
w

0@ 1A1
s

¼ 1 2
Se 2 �Z

w

� �1
s

:

The variance of this estimator, dEðpiÞEðpiÞ, can be
approximated from the variance of �Z (equation 9)

with a first-order TSE around Eðp
p
i Þ of the function

g zð Þ ¼ 1 2 Se2z
w

	 
1
s

. After some algebra we get:

V dEðpiÞEðpiÞ
	 


<
›g zð Þ

›z

����
z¼E p

p

i

� �
 !2

Var �Z
� �

where
›g ẑð Þ

›z ¼
1
s

Se2z
w

	 
1
s21

1
w
¼ 1

sw ð12 ~pÞs21. However, since

Eðp
p
i Þ doesn’t have a close exact form, we replace this

with ~pp and obtain:

V dEðpiÞEðpiÞ
	 


¼ V p̂ð Þ <
s2*

b

m
þ

V dð Þ

mg

¼
ðs2*

b þ VðdÞÞ½ �g 2 1
� �

rþ 1�

m�g
ð12Þ

where s2*
b ¼ f ~p 1 2 ~pð Þg

2
s2

b , VðdÞ ¼ Se2 ~p pð Þ
2
s22 ~p pð12 ~p pÞ

s 2ðwÞ2=s ,

~pp ¼ Se þ w ð1 2 ~pÞs and r ¼ s2*
b =½s

2*
b þ VðdÞÞ� is the

intraclass correlation coefficient that measures the
amount of variance between clusters (fields).

Results and discussion

Optimal sample size assuming equal cluster size

Minimizing variance subject to a budget constraint

Now assume we have a fixed sampling budget for
estimating the population proportion, p. The question
of interest is how to allocate clusters (m) and pools per
cluster (g) to estimate the proportion ~p with minimum
variance, subject to the budget constraint:

C ¼ mgc1 þmc2 ðcl . 0; m; g $ 2; l ¼ 1; 2Þ ð13Þ

where C is the total sampling budget available, c1 is the
cost of obtaining a pool of s plants from a field, and c2 is the
cost of obtaining a cluster. The optimal allocation of units
can be obtained using Lagrange multipliers. By combin-
ing equations (12) and (13), we obtain the Lagrangean

Lðm; g; lÞ ¼ L ¼ Vðp̂Þ þ l½C 2 ðmgc1 þmc2Þ� ð14Þ

where V p̂ð Þ, given by equation (12), is the objective
function that will be minimized with respect to m and g,
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subject to the constraint given in equation (13), andl is the
Lagrange multiplier. The partial derivatives of equation
(14) with respect to l;m and g are:

›L

›l
¼ 0 ¼ C 2 ðmgc1 þmc2Þ; then m ¼

C

c2 þ gc1

›L

›g
¼ 0 ¼ 2

VðdÞ

g2m
2 lmc1; then l ¼ 2

VðdÞ

g2m2c1

›L

›m
¼ 0 ¼ 2

f ~pð1 2 ~pÞg
2
s2

b

m2
2

VðdÞ

m2g
2 l½gc1 þ c2�:

Solving these equations results in the optimal
values for m and g (see Appendix A):

m ¼
C

c2 þ gc1
; where g ¼

ffiffiffiffi
c2

c1

r ffiffiffiffiffiffiffiffiffiffi
VðdÞ
p

~pð1 2 ~pÞsb
: ð15Þ

First, we calculate the number of pools per field, g,
rounded to the nearest integer. Using this value, we
calculate the number of fields to sample, m, rounded
to the nearest integer. Note that equation (15) is a
generalization of the optimal sample sizes for
continuous data for two–level sampling given by
Brooks (1955) and Cochran (1977).

Minimizing the budget to obtain a certain width of
the confidence interval

Often a researcher is interested in choosing the number
of clusters and pools per cluster to minimize the total
budget, C, to obtain a specified width ðvÞ of the
confidence interval (CI) of the proportion of interest.
Assuming that the distribution of p̂ is approximately
normal with a mean ~p and a fixed variance Var p̂ð Þ,
then the 1 2 að Þ100% Wald confidence interval of ~p is
given by p̂ 7 Z12a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðp̂Þ
p

, where Z12a=2 is the
quantile 1 2 a=2 of the standard normal distribution.
Therefore, the observed width of the CI is equal to
W ¼ 2Z12a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðp̂Þ
p

, and since we specified the
required width of the CI to be v, this implies that
V p̂ð Þ ¼ v2=4Z2

12a=2. Here the optimization problem is
to minimize the sampling budget as given in equation
(13) under the condition that V p̂ð Þ (equation 12) is
fixed. That is, we want to minimize C ¼ mgc1 þmc2

subject to V p̂ð Þ ¼ V0. Again, using Lagrange
multipliers, the corresponding Lagrangean is
Lðm; g; lÞ ¼ L ¼ mgc1 þmc2 þ l½V p̂ð Þ2 V0�. Now the
partial derivatives of L with respect to l, m and g are

›L

›l
¼ 0 ¼

f ~pð1 2 ~pÞg
2
s2

b

m
þ

VðdÞ

mg
2 V0; then

m ¼ ~p ð1 2 ~pÞf g
2s2

b þ
VðdÞ

g

� 

=V0

›L

›g
¼ 0 ¼ mc1 2 l

VðdÞ

g2m
2 lmc1; then l ¼

g2m2c1

VðdÞ

›L

›m
¼ 0 ¼ gc1 þ c2 2

l

m 2
~pð1 2 ~pÞf g

2s2
b þ

VðdÞ

g

� 

:

Solving these equations for the optimal values gives
(see Appendix B):

m ¼ f ~p ð1 2 ~pÞg
2
s2

b þ
VðdÞ

g

� 

=V0; where ð16Þ

g ¼

ffiffiffiffi
c2

c1

r ffiffiffiffiffiffiffiffiffiffi
VðdÞ
p

~p ð1 2 ~pÞsb

Note that the number of pools per cluster, g,
required when we minimize the cost subject to
V p̂ð Þ ¼ V0 is the same as when minimizing V p̂ð Þ

(equation 14) subject to a budget constraint. However,
the expression for obtaining the required number of
clusters, m, is different. In this case, the value of

V0 ¼ v2/4Z2
12a=2 is substituted into equation (16) and

the expression for the required number of clusters is

m ¼
4Z2

12a=2

v 2 ~pð1 2 ~pÞf g
2s2

b þ
VðdÞ

g

h i
. Another way of

obtaining the same solution to this problem is given
in Appendix C.

It is useful to consider the problem without a
budget constraint. For a fixed number of pools per
cluster (g), with a CI width of v, we can get the
required number of clusters, m, by making

2Z12a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g ~p ð12 ~pÞf g

2s2
b

gm þ VðdÞ
mg

r
¼ v and solving for m.

The required number, m, is equal to:

m ¼
4Z2

12a=2

v2
~p ð1 2 ~pÞf g

2s2
b þ

VðdÞ

g

� 

ð17Þ

Equation (17) is the same expression as derived in
equation (16) for the required number of clusters for
minimizing the total budget subject to a variance
constraint. However, equation (17) produces optimal
allocation of clusters, m, only when we replace the

values of g ¼
ffiffiffi
c2

c1

q ffiffiffiffiffiffiffi
VðdÞ
p

~p ð12 ~pÞsb
in equation (17).

Minimizing the budget to obtain a certain power

Assume a threshold is defined a priori, and our main
interest is to test H0 : ~p ¼ ~p0 versus H1 : ~p . ~p0. For
example, the European Union (Anonymous, 2003)
requires that the proportion of genetically modified
(GM) seed impurities in a seed lot be lower than 0.005.
Here the issue of interest is to determine a sampling
plan (i.e. m and g) budget required for this test to have
a specified power (1 2 gÞ and significance level a when
d ¼ ~p1 2 ~p0j j. For performing a test with a type I error
rate of a and a type II error rate of g when ~p ¼ ~p1
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under H1, the following must hold:

Z12a ¼ ðp̂ 2 ~p0Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var cp0p0

� �q
and

Z12g ¼ ðp̂ 2 ~p1Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var cp0p0

� �q
:

Here varðcp0p0Þ is the variance of p̂ but under the
value of the null hypothesis. Both Z12a and Z12g have
a standard normal distribution because the variance
components are assumed known. According to
Cochran (1977) and Moerbeek et al. (2000), these
equations result in the relation:

V2 ¼
dj j

2

ðZ12a þ Z12gÞ
2
: ð18Þ

If we change the alternative hypothesis to
H1 : ~p , ~p0, equation (18) is still valid, but if we
change to a two-sided test H1 : ~p – ~p0, Z12a in
equation (18) is replaced by Z12a=2. This is because
we want the required budget for this test to have
the specified power ð1 2 gÞ and significance level a

when d ¼ ~p1 2 ~p0j j.
Similarly, we are interested in minimizing the total

budget to obtain a specified power ð1 2 gÞ. This
implies that Vðcp0p0Þ is a fixed quantity and equal to
equation (18). Therefore, the problem is exactly the
same as minimizing the budget to obtain a certain
width of the confidence interval, but with a value of
V0 equal to equation (18), since we want to mini-
mize min ðC ¼ mgc1 þmc2Þ subject to V p̂ð Þ ¼ V2.
Thus the optimal allocation of clusters and pools
per cluster is also given in equation (16) but using

equation (18) in place of V0, Vðd0Þ ¼
Se2 ~p

p

0ð Þ
2
s22

~p
p

0
ð12 ~p

p

0
Þ

s 2ðSeþSp21Þ2=s

in place of VðdÞ, and ~p0 in place of ~p ; therefore,

~p
p
0 ¼ Se þ ð1 2 Se 2 SpÞð1 2 ~p0Þ

s since these values

need to be calculated under the null hypothesis. This

implies that m ¼
ðZ12aþZ12gÞ

2

dj j
2 ~p0 1 2 ~p0ð Þf g

2s2
b þ

Vðd0Þ
g

h i
and g ¼

ffiffiffi
c2

c1

q ffiffiffiffiffiffiffiffi
Vðd0Þ
p

~p0 12 ~p0ð Þsb
.

Again, assuming no budget constraint and a given
number of pools per cluster, g, we can solve for the
required number of clusters, m, to achieve a power

level 1 2 g
� �

for a desired d. To get the required m we

need to make var cp0p0

� �
¼ dj j

2

ðZ12aþZ12gÞ
2 and solve for m.

Therefore, solving for m from equation (18) indicates
that the required number of clusters (m) is equal to:

m ¼
ðZ12a þ Z12gÞ

2

dj j
2 ~p0 1 2 ~p0ð Þf g

2s2
b þ

Vðd0Þ

g

� 

: ð19Þ

Here, also, equation (19) is the same as that
obtained for m from equation (16) but with

V0 ¼
dj j

2

ðZ12aþZ12gÞ
2. For this reason, equation (19)

produces optimal values if we use g ¼
ffiffiffi
c2

c1

q ffiffiffiffiffiffiffiffi
Vðd0Þ
p

~p0 12 ~p0ð Þsb
.

Behaviour of the optimal sample size for
equal cluster sizes

Figure 1a presents several graphs that demonstrate the
behaviour of the optimal sample size for equal cluster
sizes and values of s2

b ¼ 0:25. Most of the time the
optimal sample size requires fewer clusters (m) than
pools per cluster (g) since the ratio (m/g) is usually less
than 1. However, for values of s2

b $ 0:65 and p . 0:04,
m/g . 1, and more clusters (m) than pools per cluster
(g) are required. Figure 1a illustrates that when the
variability between clusters, s2

b , is greater than the
variability within clusters, VðdÞ, more clusters than
pools per cluster are needed when the remaining
parameters are fixed.

Figure 1b illustrates the behaviour of the ratio (m/g)
as a function of the cost of enrolling clusters in
the study c2. As c2 increases, the ratio (m/g) decreases,
which is expected since the cost of including a cluster
increases relative to the cost of enrolling pools,
which does not change. Figure 1c shows that the
number of clusters, m, decreases as the expected
width of the CI increases (v), which makes sense,
since a narrow expected width (v) of the CI implies
that the estimation process is more precise, and vice
versa. In Fig. 1d, we can see that the required number
of clusters, m, increases when a larger power is
required.

Correction factor for unequal cluster sizes

Although equal cluster sizes are optimal for estimating
the proportion of interest, they are rarely encountered
in practice. Variation in the actual size of the clusters
(fields, localities, hospital, schools, etc.), non-response
and dropout of individuals (among others) generate
unequal cluster sizes in a study (Van Breukelen et al.,
2007). Cluster size variation increases bias and causes
considerable loss of power and precision in the
parameter estimates. For this reason, we will calculate
the relative efficiency of unequal versus equal cluster
sizes for adjusting the optimal sample size under the
assumption of equal cluster sizes. The relative
efficiency of equal versus unequal cluster sizes for
the estimator of the proportion of interest, REðp̂Þ, is
defined as:

RE p̂ð Þ ¼
Var p̂j6equal

� �
Var p̂j6unequal

� � ð20Þ

where Var p̂j6equal

� �
denotes the variance of the

proportion estimator given a design with equal cluster
sizes, Var p̂j6unequal

� �
denotes a similar value for an

unequal cluster size design, but with the same
number of clusters m and the same total number of
pools ðN ¼

Pm
i¼1 giÞ as in the equal cluster size design.
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Thus RE p̂ð Þ is equal to:

RE p̂ð Þ ¼
ðs2*

b þ VðdÞ=�gÞ=mPm
i¼1 ½ðs

2*
b þ VðdÞ=gi�=m 2

¼
�gþ a

�g

1

m

Xm

i¼1

gi

gi þ a

� 

ð21Þ

where s2*
b ¼ ~p 1 2 ~pð Þf g

2s2
b and a ¼ VðdÞ=s2*

b . Note
that equation (21) is equal to that derived for the
RE of equal versus unequal cluster sizes in cluster
randomized and multicentre trials given by Van
Breukelen et al. (2007) to recover the loss of power
when estimating treatment effects using a linear
model. Here we use RE to repair the loss of
power or precision when estimating the proportion
using a random logistic model for group testing.
Since our RE was expressed as that derived by
Van Breukelen et al. (2007), we use their approach
to obtain a Taylor series approximation of equation
(21), expressing the RE as a function of the
intraclass correlation r, and the mean and
standard deviation of cluster size. It is important
to point out that equation (21) is expressed in
terms of pools instead of individuals, as in the
formula of Van Breukelen et al. (2007). Therefore,
we assumed that the cluster sizes giði ¼ 1; 2; . . .;mÞ
are realizations of a random variable U having
mean mg and standard deviation sg. According to

Van Breukelen et al. (2007), equation (21) can be
considered a moment estimator of

RE p̂ð Þ ¼
�gþ a

�g
E

U

U þ a

� �
: ð22Þ

If we define l ¼ ðmg/(mg þ aÞÞ, and the coefficient
of variation of the random variable U by CV ¼ sg=mg,
then by using derivations similar to those reported
by Van Breukelen et al. (2007, pp. 2601–2602; see
Appendix D), we obtain the following second-
order Taylor approximation of the expectation part
of equation (22) Eð U

UþaÞ < lf1 2 CV 2l 1 2 lð Þg. The
second-order Taylor approximation of equation (21) is:

RE p̂ð Þt< 1 2 CV 2l 1 2 lð Þ
� �

: ð23Þ

It is evident that RE p̂ð Þt does not depend on
the number of clusters m, but rather on the distribution
of cluster sizes (mean and variance) and intraclass

correlations. When s2*
b ! 0 (and thus r ! 0Þ or s2*

b ! 1

(and thus r ! 1Þ, we have RE ! 1. For 0 , s2*
b , 1

(and thus 0 , r , 1Þ, we can see that RE , 1, implying
that equal cluster sizes are optimal. For practical
purposes, we will denote RE p̂ð Þt¼ REt. To correct for
the loss of efficiency due to the assumption of equal
cluster sizes, one simply divides the number of clusters
(m) given in equation (15) or (16) by the expected RE
resulting from equation (23). Also, it is evident that
the number of clusters will increase the budget to
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Figure 1. Ratio of the number of clusters and number of pools per cluster. (a) Ratio of the number of clusters and number of pools
per cluster m/g as a function of the proportion ( ~p), for C ¼ 10; 000, c1 ¼ 250; c2 ¼ 800; s ¼ 10; Se ¼ 0:98; Sp ¼ 0:96 and five
different values of s2

b . (b) Ratio of m/g as a function of c2, for C ¼ 10; 000, s2
b ¼ 0:5; ~p ¼ 0:05, s ¼ 10; Se ¼ 0:98; Sp ¼ 0:96 and

several values of c1. (c) Required number of clusters, m, as a function of the desired confidence interval width vð Þ, for
c1 ¼ 50; c2 ¼ 1600; ~p ¼ 0:05; s ¼ 10; Se ¼ 0:98; Sp ¼ 0:96, and five different values of s2

b . (d) Required number of clusters, m, as a
function of the desired power ð1 2 gÞ, for c1 ¼ 50; c2 ¼ 1600; ~p ¼ 0:04; d ¼ 0:015; s ¼ 10; Se ¼ 0:98; Sp ¼ 0:96;a ¼ 0:05 and five
different values of s2

b .
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C* ¼ C 1
REt

	 

, whereas the optimal number of pools

per cluster (g) does not change.

Comparison of the relative efficiency and
its Taylor approximation

To compare the RE of equation (21), its Taylor
approximation (equation 23) was performed for four
cluster size distributions: uniform, unimodal, bimodal
and positively skewed. Three different cluster sizes,
ga; gb; gc, with frequencies f a; f b; f c, were evaluated (see
Table 1). For each of the four distributions, both REs
[asymptotic (equation 21) and Taylor approximation
(equation 23)] were computed and plotted as a
function of the intraclass correlation (the values used
were from 0.0 to 0.3).

Figure 2 shows that for the four distributions
(uniform, unimodal, bimodal and positively skewed),
the RE drops from 1 at r ¼ 0 to minimum at r

somewhere between r ¼ 0:05 and 0.1, and then
increases, returning to 1 for r ¼ 1. Lower RE values
are observed when there is more cluster size variation
(as in the case of bimodal distribution with larger
values of CV . 0.70). For this reason, by comparing the
four distributions, we can see in Fig. 2 that the
positively skewed distribution gives the highest RE,
followed by the unimodal, uniform and bimodal
distributions. These results are in line with results
reported by Van Breukelen et al. (2007, 2008) and
Candel and Van Breukelen (2010) for studies of cluster

randomized trials for normal data and binary results
in a non-group testing context.

Figure 2 also shows that the Taylor approximation
(equation 23, denoted as REt) of the RE given in
equation (21) is acceptable in most cases. However,
it is clearly affected by the distribution of the cluster
sizes, the number of clusters, the number of pools per
cluster and the value of the intraclass correlation.

Estimating the proportion of transgenic
plants – An example

Next we illustrate how to achieve the optimal allocation
of fields and pools for minimizing the variance (using
equation 15), and for estimating the required budget for
a desired CI width and the budget required to obtain a
certain power (using equation 16). Carreón-Herrera
(2011) collected corn grain in 14 localities of the Sierra
Nororiental and 22 localities in the Mixteca Baja, in the
State of Puebla, Mexico. She collected a total of 58 kg of
grain. Forty-seven samples were obtained from farmers
and 11 from DICONSA stores. Of the 58 samples, 36
were white grain, 10 yellow, 8 blue and 4 red. The
researchers used the polymerase chain reaction (PCR)
to detect the promoter of cauliflower mosaic virus
(CaMV-35S), which indicates the presence of transgenic
corn. They reported the percentage of the CaMV-35S
promoter in each sample. The standard 0.01% was used
as the lower limit of reference for the detection of
CaMV-35S. The percentages of the CaMV-35S promoter
reported varied between 0.01% and 0.25%. However, in
a study conducted in the neighbouring state of Oaxaca,
Landavazo Gamboa et al. (2006) reported a lower
value (0.000012% median for the five fields studied) for
the percentage of the CaMV-35S promoter. Assuming
that we wish to conduct another study in this region
of Puebla, we can assume that the expected proportion

of transgenes is equal to ~p ¼ 0:002520:00000012
2 ¼ 0:0013,

while the variance between clusters s2 ¼ ð
range

6 Þ
2.

For binomial data, the range relevant to six-sigma
approximation is the difference between the maximum
and minimum plausible logit (Stroup, 2012). Since
we know the lowest ( ~pL ¼ 0:00000012Þ and highest
( ~pH ¼ 0:0025Þ plausible probabilities, we can calculate

the logit lL ¼ log ~pL

12 ~pL

h i
¼ log 0:00000012

120:00000012

� �
¼ 26:9208

and lH ¼ log ~pH

12 ~pH

h i
¼ log 0:0025

120:0025

� �
¼ 22:60 097; then

the range is equal to range ¼22.6009 þ 6.9208 ¼ 4.3196.

Therefore, s2
b ø ð4:3196=6Þ2 ¼ 0:5184. Based on a litera-

ture review, we decided to use a pool size of 10 plants
per pool, Se ¼ 0:999, Sp ¼ 0:997, C ¼ 20; 000 total budget

for the study, c2 ¼ 850 cost of enrolling fields in the
study, and c1 ¼ 70 cost of enrolling pools composed
of s ¼ 10 plants in the study. Next we obtained the
required sample sizes for minimizing the variance, for

Table 1. Cluster size distribution used for calculating relative
efficiency

Cluster size
Cluster

frequencies

Distribution ga gb gc f a f b f c CV

m ¼ 18; �g ¼ 22; s ¼ 10
Uniform 4 22 40 6 6 6 0.668
Unimodal 4 22 40 2 14 2 0.386
Bimodal 4 22 40 8 2 8 0.771
Positively

skewed
8 26 44 8 6 4 0.643

m ¼ 48; �g ¼ 20; s ¼ 10
Uniform 5 20 35 16 16 16 0.612
Unimodal 5 20 35 8 32 8 0.433
Bimodal 5 20 35 22 4 22 0.718
Positively

skewed
10 24 42 24 16 8 0.583

f a number of clusters of size ga (small), f b number of clusters
of size gb (medium), f c number of clusters of size gc (large);
CV ¼ coefficient of variation. Two numbers of clusters were
studied: m ¼ 18 with average pools per cluster �g ¼ 22, and
m ¼ 48 with average pools per cluster �g ¼ 20. In both cases,
the pool size was s ¼ 10.
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achieving a certain width of the CI and for obtaining a
certain power.

Minimizing the variance

Computing ~pp¼ 0:999þð1 2 0:999 2 0:997Þð1 2 0:0013Þ10

¼ 0:01587 and VðdÞ ¼ Se2 ~p pð Þ
2
s22 ~p pð12 ~p pÞ

s 2ðSeþSp21Þ2=s

¼ 0:99920:01587ð Þ
2

10
22
ð0:01587Þð120:01587Þ

102ð0:999þ0:99721Þ2=10 ¼ 0:000161 results in

g¼

ffiffiffiffiffiffiffiffi
850

70

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:000161
p

0:0013ð1 2 0:0013Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5184
p ¼ 47:32856

< 47

m¼
C

c2þgc1
¼

20000

850þð51Þð70Þ
¼ 4:8042 < 5:

This means that we need to select five fields at random
from the population of fields, with 47 pools in each
field. Thus the total number of plants to select from
each field is g£ s¼ 47£ 10¼ 470 plants, which will be
allocated at random to form the 47 pools.

Now, if the cluster sizes are unequal, how do we
compensate for the loss of efficiency due to varying cluster
sizes? Assuming that the mean and standard deviation
of cluster sizes are mg ¼ 177 and sg ¼ 81:5, respectively,

then CV¼ 81:5
177 ¼ 0:4605, a¼ VðdÞ

s2
b*
¼ 0:000161

0:0013 120:0013ð Þf g
20:5184

¼ 5,

so l¼ð177=ð177þ5Þ ¼ 0:9602. Therefore, REt¼

f1 2 ð0:46052Þð0:9725Þ 1 2 0:9725ð Þg ¼ 0:9943 and, for prac-
tical purposes, adjustment for unequal cluster sizes is not
needed. However, to illustrate the method, full efficiency

can be restored by taking m¼ 4:8042
0:9943¼ 4:8316 < 5 clusters

with g ¼ 47 pools, and the new total budget will increase

to C*¼ 20000
0:9943¼ 20114:65.

Specified CI width

Now suppose that the researcher requires a 95%
confidence interval estimate, with a desired
width for the proportion of transgenic plants that
is equal to W ¼ ð ~pU 2 ~pLÞ # v ¼ 0:0025. There-

fore, Z120:05=2 ¼ 1:96 and V0 ¼ v2/4Z2
12a=2 ¼

0:00252

4*1:962

¼ 0:000000401. Using the same values of s; Se; Sp;

s2
b; ~p; c2 and c1 as given for minimizing the variance,

equation (16) gives g ¼
ffiffiffiffiffiffi
850
70

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
0:000161
p

0:0013ð120:0013Þ
ffiffiffiffiffiffiffiffiffiffi
0:5184
p ¼ 47,

while the number of clusters is equal to:

m ¼
0:0013 1 2 0:0013ð Þf g

2 0:5184ð Þ þ 0:000161
47

� �
0:000000401

¼ 10:5802 < 11:

Since the value of g does not change, we need 470
plants per field, but now we need 11 fields to reach
the required width of a 95% CI. However, this sample
size is valid only for equal cluster sizes. If needed,
adjustment for unequal cluster sizes is carried out
by m* ¼ m

REt
.

Therefore the budget has to be equal to
C ¼ 47ð Þ 11ð Þ 70ð Þ þ 11 850ð Þ ¼ 45,540. This implies that
the required total budget for obtaining a 95% CI for
estimating the proportion ~pð Þ with a desired width of
0.0025 is 2.264 times larger than the previous budget
(20,114.65).

1.00(a) (b)

0.90

0.80
R

E

R
E

0.70

1.00

0.90

0.80

0.70

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.00 0.05 0.10 0.15 0.20 0.25 0.30

Intraclass correlation (ρ) Intraclass correlation (ρ)

1.00(c) (d)

0.90

0.80

R
E

R
E

0.70

1.00

0.90

0.80

0.70

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.00 0.05 0.10 0.15 0.20 0.25 0.30

Intraclass correlation (ρ) Intraclass correlation (ρ)

RE, m = 18, g = 22
REt, m = 18, g = 22
RE, m = 18, g = 20
REt, m = 18, g = 20

RE, m = 18, g = 22
REt, m = 18, g = 22
RE, m = 18, g = 20
REt, m = 18, g = 20

RE, m = 18, g = 22
REt, m = 18, g = 22
RE, m = 18, g = 20
REt, m = 18, g = 20

RE, m = 18, g = 22
REt, m = 18, g = 22
RE, m = 18, g = 20
REt, m = 18, g = 20

Figure 2. Relative efficiency of unequal versus equal cluster sizes as a function of the intraclass correlation ð r Þ for four
distributions of cluster size: (a) uniform, (b) unimodal, (c) bimodal and (d) positively skewed distribution.
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Now we determine the required number of clusters
when there is no budget constraint, and assuming
g ¼ 10 (pools per cluster). Using equation (17) and
assuming the same values of v; s;a; Se; Sp;s

2
b; ~p as were

given for minimizing the variance, we have

m ¼
4ð1:96Þ2

0:00252

� 0:0013 1 2 0:0013ð Þf g
2ð0:5184Þ þ

0:000161

10

� 

¼ 41:7783 < 42:

This implies that we need a sample of 42 clusters, each
containing 10 pools, assuming equal cluster size. Using
unequal cluster sizes and assuming the same mean

and standard deviation of cluster sizes, we need m * ¼
41:7783
0:9943 ¼ 42:0178 < 43 clusters. Of course, in this case,

the total budget will be higher than the previously
specified budget.

Specified power

Now suppose that we need to know the budget and
sample size required for testing H0 : ~p0 ¼ 0:0013
versus H1 : ~p0 . 0:0013 at an a ¼ 0:05 significance
level with a power ð1 2 gÞ ¼ 0:9 (90%)
for detecting d $ 0:002 and using the same

parameter values (s; Se; Sp;s
2
b; c2 and c1) as

before. Then, V0 ¼ V2 ¼
0:0022

1:645þ1:282ð Þ2
¼ 0:0000004671.

Since Vðd0Þ ¼ V dð Þ ¼ 0:000161, ~p ¼ ~p0, then

g ¼
ffiffiffiffiffiffi
850
70

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
0:000161
p

0:0013ð120:0013Þ
ffiffiffiffiffiffiffiffiffiffi
0:5184
p < 47, and the required

number of clusters is equal to:

m ¼
0:0013 1 2 0:0013ð Þf g

2 0:5184ð Þ þ 0:000161
47

� �
0:000105

¼ 9:2136 < 10:

Here, too, we need 470 plants per field, but now we
need 10 fields to reach the required power of 90%. To
compensate for the unequal cluster sizes and assuming
the same mean and standard deviation of the cluster
sizes (mg ¼ 177 and sg ¼ 81:5), we multiply m ¼ 9:2136

by the correction factor (1/0.9943), which gives us

m * ¼ 9:2136
0:9943 ¼ 9:2664 < 10 clusters. Here the number of

clusters remains the same due to rounding, but this is
not always the case.

Here, also, the required budget is C ¼ (10)(47)
(70) þ 10(850) ¼ 41,400 which implies that the
required total budget is 2.058 times larger than the
budget for minimizing the variance of the proportion
(20,114.65). However, this case guarantees a power of
90% for d $ 0:002.

Now consider the problem without a budget
constraint with 10 pools per cluster (g); solving for
the required number of clusters (m) using the same

values of s; Se; Sp;s
2
b;a; ð1 2 gÞ, d ¼ ~p1 2 ~p0 as above,

gives

m ¼
1:645þ 1:282ð Þ2

0:0022

� 0:0013 1 2 0:0013ð Þf g
2ð0:5184Þ þ

0:000161

10

� 

¼ 44:6386:

This means that to perform the study, we need
45 clusters with 10 pools per cluster if the cluster sizes

are equal, and m * ¼ 44:6386
0:9943 ¼ 44:8945 < 45 clusters

using unequal cluster sizes.

Tables for determining sample size

This section contains tables that help to calculate the
optimal sample size. Table 2 gives the optimal
allocation of clusters and pools when the goal is to
estimate the proportion ( ~p) with minimum variance
using group testing with pool size (s ¼ 10). The cost
function is C ¼ mgc1 þ mc2 with C ¼ 10,000, with six
values of s2

b ¼ 0:15; 0:25; 0:45; 0:65; 0:85; 1:05; three
values of c1 ¼ 50; 100; 200 and c2 ¼ 800. To illustrate
how to use Table 2, assume that the proportion of
interest is ~p ¼ 0:035, and that the variance between
clusters is s2

b ¼ 0:25. Assume the researcher estimates
the cost of enrolling clusters in the study as c2 ¼ 800,
that the cost of enrolling pools of size s ¼ 10 is c1 ¼ 100
and the total budget for conducting the study is
C ¼ 10,000. Since in this case c1 ¼ 100, we will refer to
the second subsection of Table 2. We find the value of
~p ¼ 0:035 in the first column and the value of s2

b ¼ 0:25
in columns four and five. The values in the intersection
between the value of ~p ¼ 0:035 (first column) and the
value of s2

b ¼ 0:25 (columns 4 and 5) are the optimal
number of pools per cluster (g ¼ 11) and the number of
clusters (m ¼ 6) required.

Table 3 gives the optimal allocations of clusters (m)
and pools per cluster (g) to estimate ~p with a certain
width of the confidence interval under the cost
function C ¼ mgc1 þmc2, when c1 ¼ 50 and c2 ¼ 800
and significance level a ¼ 0:05. Three values of
s2

b ¼ 0:15; 0:25; 0:5 form the three subsections of
Table 3. To illustrate, assume that ~p ¼ 0:035,
s2

b ¼ 0:25, c1 ¼ 50, c2 ¼ 800, and the desired width of
the confidence interval is equal to v ¼ 0:015.
The optimal m and g are obtained where the value of
~p ¼ 0:035 (first column) intersects with the value of
v ¼ 0:015 (columns 6 and 7) in the second subsection
corresponding to s2

b ¼ 0:25. Therefore the optimal
numbers of pools per cluster (g) and of clusters (m) are
16 and 4, respectively.

Table 4 should be used when testing a hypothesis,
that is, when we want to test H0 : ~p ¼ ~p0 relative to
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H1 : ~p . ~p0. Using this table, for six values of power
(0.70. 0.75, 0.80, 0.85, 0.90, 0.95), significance level
ða ¼ 0:05Þ, pool size (s ¼ 10), c1 ¼ 50 and
c2 ¼ 800;s2

b ¼ 0:5; d ¼ 0:01; 0:03; 0:05, and 10 values
of ~p from 0.005, 0.015 to 0.095 with increments of 0.01,
we obtain the optimal allocations of clusters (m) and
of pools per cluster (g) using the cost function
C ¼ mgc1 þmc2. To illustrate, assume that ~p ¼ 0:035,
s2

b ¼ 0:5, c1 ¼ 50, c2 ¼ 800, the desired power is
1 2 g ¼ 0:8, the significance level is a ¼ 0:05 and
d ¼ 0:03. Using the second subsection (d ¼ 0:03),
we find the value of ~p ¼ 0:035 (first column) and
1 2 g ¼ 0:8 (columns 6 and 7) and at the point where
they intersect, we find the required number of pools
per cluster (g ¼ 11) and the number of clusters (m ¼ 7)
needed to achieve a power of 80%.

Conclusions

In the present paper, we derived optimal sample sizes
for group testing in a two-stage sampling process
under a budget constraint. We assumed that the
budget for enrolling individuals and clusters in the
study is fixed and that we know the variance
components. The optimal sample sizes were derived
using Lagrange multipliers and produced formulae
similar to the methods of Brooks (1955), Cochran
(1977, p. 285) and Moerbeek et al. (2000) based on
minimizing the error variance. This optimal allocation
of clusters and pools was derived assuming equal
cluster sizes, which are a good approximation when
financial resources are scarce. However, since in
practice the equality of cluster sizes is rarely satisfied,

Table 2. Optimal sample sizes (g and m) for group testing for two stages given a pool size that minimizes
the variance of the proportion ðp̂Þ

s2
b ¼ 0:15 s2

b ¼ 0:25 s2
b ¼ 0:45 s2

b ¼ 0:65 s2
b ¼ 0:85 s2

b ¼ 1:05

~p g m g m g m g m g m g m

c1 ¼ 50 and c2 ¼ 800
0.005 65 3 50 4 37 4 31 5 27 5 24 5
0.015 32 5 25 5 19 6 15 7 14 7 12 8
0.025 25 5 19 6 14 7 12 8 10 8 9 8
0.035 21 6 16 7 12 8 10 8 9 9 8 9
0.045 19 6 15 7 11 8 9 8 8 9 7 9
0.055 17 6 14 7 10 8 8 9 7 9 7 9
0.065 17 7 13 7 10 8 8 9 7 9 6 9
0.075 16 7 12 8 9 8 8 9 7 9 6 10
0.085 15 7 12 8 9 9 7 9 6 9 6 10
0.095 15 7 12 8 9 9 7 9 6 9 6 10

c1 ¼ 100 and c2 ¼ 800
0.005 46 2 35 3 26 3 22 4 19 4 17 4
0.015 23 4 18 4 13 5 11 6 10 6 9 7
0.025 17 4 13 5 10 6 8 7 7 7 7 7
0.035 15 5 11 6 9 7 7 7 6 8 6 8
0.045 13 5 10 6 8 7 6 7 6 8 5 8
0.055 12 5 10 6 7 7 6 8 5 8 5 8
0.065 12 6 9 6 7 7 6 8 5 8 4 9
0.075 11 6 9 6 6 7 5 8 5 8 4 9
0.085 11 6 8 7 6 7 5 8 5 8 4 9
0.095 11 6 8 7 6 8 5 8 4 9 4 9

c1 ¼ 200 and c2 ¼ 800
0.005 32 2 25 2 19 3 16 3 14 3 12 4
0.015 16 3 12 4 9 4 8 5 7 5 6 5
0.025 12 4 9 4 7 5 6 6 5 6 5 6
0.035 10 4 8 5 6 5 5 6 4 6 4 7
0.045 9 4 7 5 5 6 5 6 4 7 4 7
0.055 9 4 7 5 5 6 4 7 4 7 3 7
0.065 8 5 6 5 5 6 4 7 3 7 3 8
0.075 8 5 6 5 5 6 4 7 3 7 3 8
0.085 8 5 6 6 4 6 4 7 3 7 3 8
0.095 8 5 6 6 4 6 4 7 3 7 3 8

With pool size (s ¼ 10), cost function C ¼ mgc1 þmc2 with C ¼ 10,000 and c2 ¼ 800. For ten values of ~p,
three values of c1 and six values of s2

b .
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we derived a correction factor (inverse of the relative
efficiency) to adjust the optimal sample sizes under
equal cluster sizes. It is important to point out that
this correction factor does not affect the number of
required pools per cluster (g), but only the number of
required clusters (m) and the total budget (C).

To determine the optimal sample sizes for equal or
unequal cluster sizes, we started by specifying the
needed power or precision; we then calculated Vðp̂Þ as
well as the needed budget (C), and later obtained the
optimal numbers of clusters (m) and pool per cluster
(g) needed. This is extremely important because the
researcher will usually plan his/her research in terms
of power or precision under a budget constraint. The
examples given show how the researcher can estimate
the budget needed to reach the desired power or

precision for the parameter estimate, equations (17)
and (19) can be used for precision and power,
respectively. However, the sample sizes given by
equations (17) and (19) are not optimal, since the value
of g is determined by the researcher according to
his beliefs.

It is important to point out that the derived optimal
sample sizes are approximate since they were obtained
assuming that the proportion ð ~pÞ is distributed
approximately normal. This produces poor coverage
for small sample sizes and also when the proportion
ð ~pÞ takes extreme values (near 0 and 1). For this reason,
under simple random sampling, the exact or Pearson
CI or the Wilson CI are preferred (Agresti and Coull,
1998; Agresti and Min, 2001; Brown et al., 2001). Even
in group testing it has been demonstrated that the best

Table 3. Optimal sample sizes (g and m) for confidence interval estimation using group testing
in two stages given a pool size

v ¼ 0.01 v ¼ 0.03 v ¼ 0.015 v ¼ 0.07 v ¼ 0.09 v ¼ 0.11

~p g m g m g m g m g m g m

s2
b ¼ 0:15

0.005 65 3 65 2 65 2 65 2 65 2 65 2
0.015 32 16 32 2 32 2 32 2 32 2 32 2
0.025 25 35 25 4 25 2 25 2 25 2 25 2
0.035 21 61 21 7 21 3 21 2 21 2 21 2
0.045 19 93 19 11 19 4 19 2 19 2 19 2
0.055 17 133 17 15 17 6 17 3 17 2 17 2
0.065 17 171 17 19 17 7 17 4 17 3 17 2
0.075 16 221 16 25 16 9 16 5 16 3 16 2
0.085 15 278 15 31 15 12 15 6 15 4 15 3
0.095 15 333 15 37 15 14 15 7 15 5 15 3

s2
b ¼ 0:25

0.005 50 4 50 2 50 2 50 2 50 2 50 2
0.015 25 22 25 3 25 2 25 2 25 2 25 2
0.025 19 50 19 6 19 2 19 2 19 2 19 2
0.035 16 89 16 10 16 4 16 2 16 2 16 2
0.045 15 134 15 15 15 6 15 3 15 2 15 2
0.055 14 189 14 21 14 8 14 4 14 3 14 2
0.065 13 255 13 29 13 11 13 6 13 4 13 3
0.075 12 331 12 37 12 14 12 7 12 5 12 3
0.085 12 406 12 46 12 17 12 9 12 6 12 4
0.095 12 487 12 55 12 20 12 10 12 7 12 5

s2
b ¼ 0:5

0.005 35 7 35 2 35 2 35 2 35 2 35 2
0.015 18 35 18 4 18 2 18 2 18 2 18 2
0.025 13 86 13 10 13 4 13 2 13 2 13 2
0.035 11 154 11 18 11 7 11 4 11 2 11 2
0.045 10 237 10 27 10 10 10 5 10 3 10 2
0.055 10 327 10 37 10 14 10 7 10 5 10 3
0.065 9 446 9 50 9 18 9 10 9 6 9 4
0.075 9 565 9 63 9 23 9 12 9 7 9 5
0.085 8 725 8 81 8 29 8 15 8 9 8 6
0.095 8 873 8 97 8 35 8 18 8 11 8 8

With pool size (s ¼ 10), cost function C ¼ mgc1 þmc2 subject to V p̂ð Þ ¼ v 2/4Z2
12a=2 with

c1 ¼ 50, c2 ¼ 800 and significance level a ¼ 0:05. For ten values of ~p, six values of the expected
width of the CI (v), and three values of s2

b .

Sample sizes in two-stage sampling 23

https://doi.org/10.1017/S096025851400035X Published online by Cambridge University Press

https://doi.org/10.1017/S096025851400035X


options for CI are the Exact and the Wilson CI (Tebbs
and Bilder, 2004). For this reason, Montesinos-López,
et al. (2010) proposed sample sizes for pooled data that
guarantee narrow confidence intervals under simple
random sampling. However, when the data are
clustered it is not appropriate to use these sample
size values and it is not possible to obtain exact
confidence intervals (as Pearson type). For this reason,
the analysis and sample size determination of binary
data is usually performed under a generalized
linear mixed model framework, which is accepted
worldwide since it produces consistent parameter
estimates. It is also true that when maximum
likelihood is used, the parameter estimates are better
than when a Taylor Series Expansion is employed. It is
important to point out that since our data are clustered
and the response variable is binary under group
testing, the variance of the proportion is composed

of between and within group variances and both
components are affected by the proportion. This is in
agreement with the results obtained by Candel and
Van Breukelen (2010) in a non-group testing context.

For the reasons above, our optimal sample sizes
were derived using a first-order TSE approach under
the assumption that the variance components are
known. Therefore, it is expected that the optimal
sample sizes will be biased, which is supported for
several Monte Carlo simulations for estimating fixed
and random effects and determining optimal sample
size for clustered randomized trials (Goldstein
and Rasbash, 1996; Moerbeek et al., 2001b; Candel
and Van Breukelen, 2010). Even with the limitations of
the proposed method, it is a valuable contribution to
the planning of sample size for clustered data under
group testing, since it produces an optimal allocation
of the required number of clusters and pools given

Table 4. Optimal sample sizes (g and m) for power estimation using group testing in two stages given a pool size

1 2 g ¼ 0.70 1 2 g ¼ 0.75 1 2 g ¼ 0.80 1 2 g ¼ 0.85 1 2 g ¼ 0.90 1 2 g ¼ 0.95

~p g m g m g m g m g m g m

d ¼ 0.01
0.005 35 2 35 3 35 3 35 3 35 4 35 5
0.015 18 11 18 13 18 15 18 17 18 20 18 25
0.025 13 27 13 30 13 35 13 40 13 48 13 61
0.035 11 47 11 54 11 62 11 72 11 86 11 108
0.045 10 73 10 83 10 96 10 111 10 132 10 167
0.055 10 100 10 115 10 132 10 153 10 182 10 230
0.065 9 137 9 157 9 180 9 209 9 249 9 314
0.075 9 173 9 198 9 228 9 265 9 315 9 398
0.085 8 222 8 254 8 292 8 339 8 404 8 511
0.095 8 268 8 306 8 351 8 409 8 487 8 615

d ¼ 0.03
0.005 35 2 35 2 35 2 35 2 35 2 35 2
0.015 18 2 18 2 18 2 18 2 18 3 18 3
0.025 13 3 13 4 13 4 13 5 13 6 13 7
0.035 11 6 11 6 11 7 11 8 11 10 11 12
0.045 10 9 10 10 10 11 10 13 10 15 10 19
0.055 10 12 10 13 10 15 10 17 10 21 10 26
0.065 9 16 9 18 9 20 9 24 9 28 9 35
0.075 9 20 9 22 9 26 9 30 9 35 9 45
0.085 8 25 8 29 8 33 8 38 8 45 8 57
0.095 8 30 8 34 8 39 8 46 8 55 8 69

d ¼ 0.05
0.005 35 2 35 2 35 2 35 2 35 2 35 2
0.015 18 2 18 2 18 2 18 2 18 2 18 2
0.025 13 2 13 2 13 2 13 2 13 2 13 3
0.035 11 2 11 3 11 3 11 3 11 4 11 5
0.045 10 3 10 4 10 4 10 5 10 6 10 7
0.055 10 4 10 5 10 6 10 7 10 8 10 10
0.065 9 6 9 7 9 8 9 9 9 10 9 13
0.075 9 7 9 8 9 10 9 11 9 13 9 16
0.085 8 9 8 11 8 12 8 14 8 17 8 21
0.095 8 11 8 13 8 15 8 17 8 20 8 25

With pool size (s ¼ 10), cost function C ¼ mgc1 þmc2 subject to V p̂ð Þ ¼ dj j
2

ðZ12aþZ12gÞ
2 with c1 ¼ 50, c2 ¼ 800;s2

b ¼ 0:5 and
significance level a ¼ 0:05. For ten values of ~p, six values of power ð1 2 gÞ and three values of d.
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budget constraint. Furthermore, the formulae for
sample size determination are easy to use. However,
more research is required to study further the proposed
optimal sample sizes method.
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Appendix A: Derivation of the optimal solution
for minimizing V p̂ð Þ subject to C 5 mgc1 1 mc2

ðcl > 0;m;g $ 2; l 5 1; 2Þ

By combining equations (12) and (13), we obtain the
Lagrangean

Lðm; g;lÞ ¼ L ¼ Vðp̂Þ þ l½C 2 ðmgc1 þmc2Þ� ð14Þ

where V p̂ð Þ ¼
�g ~pð12 ~pÞf g

2s2
b

�gm þ VðdÞ
m�g . l is the Lagrange

multiplier. The partial derivatives of equation (14)
with respect to l;m and g are

›L

›l
¼ 0 ¼ C 2 ðmgc1 þmc2Þ; then m ¼

C

c2 þ gc1

›L

›g
¼ 0 ¼ 2

VðdÞ

g2m
2 lmc1; then l ¼ 2

VðdÞ

g2m2c1

›L

›m
¼ 0 ¼ 2

~pð1 2 ~pÞf g
2s2

b

m2
2

V dð Þ

m 2g
2 l½gc1 þ c2�

,
VðdÞ

g2m2c1
½gc1 þ c2� ¼

~pð1 2 ~pÞf g
2s2

b

m2
þ

VðdÞ

m 2g
;

since l ¼ 2
VðdÞ

g2m2c1

, V dð Þgc1 þ VðdÞc2 ¼ g2c1 ~pð1 2 ~pÞf g
2s2

b þ
VðdÞ

g

� 

;

, VðdÞc2 ¼ g2c1 ~pð1 2 ~pÞf g
2s2

b

, g ¼

ffiffiffiffi
c2

c1

r ffiffiffiffiffiffiffiffiffiffi
VðdÞ
p

~pð1 2 ~pÞsb

Appendix B: Derivation of the optimal solution for
minimizing C 5 mgc1 1 mc2 subject to V p̂ð Þ5 V 0

By combining equations (12) and (13), we obtain the
Lagrangean

Lðm; g; lÞ ¼ L ¼ mgc1 þmc2 þ l½V p̂ð Þ2 V0� ð14Þ

where V p̂ð Þ ¼
�g ~pð12 ~pÞf g

2s2
b

�gm þ VðdÞ
m�g . Now the partial deriva-

tives of L with respect to l;m and g are

›L

›l
¼ 0 ¼

~pð1 2 ~pÞf g
2s2

b

m
þ

VðdÞ

mg
2 V0; then

m ¼

�
~pð1 2 ~pÞf g

2s2
b þ

VðdÞ

g



=V0

›L

›g
¼ 0 ¼ mc1 2 l

VðdÞ

g2m
; then l ¼

g2m2c1

VðdÞ
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›m
¼ 0 ¼ gc1 þ c2 2

l

m 2

�
~pð1 2 ~pÞf g

2s2
b þ

VðdÞ
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, gc1 þ c2 ¼
g2m2c1

VðdÞ

~pð1 2 ~pÞf g
2s2

b

m2
þ

VðdÞ

m2g

" #
;

since l ¼
g2m2c1

VðdÞ

, gc1 þ c2 ¼
g2c1
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2s2
b þ

VðdÞ

g

� 

;

, c2 ¼
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, g ¼

ffiffiffiffi
c2

c1

r ffiffiffiffiffiffiffiffiffiffi
VðdÞ
p

~pð1 2 ~pÞsb
:

Appendix C: Alternative derivation of the optimal
solution for minimizing C 5 mgc1 1 mc2 subject
to V p̂ð Þ5 V 0

If the sampling budget is C, the allocation of units
as given in equation (15) results in a minimal value of
V p̂ð Þ which in terms of cost is equal to:

Vðp̂Þ ¼
c2 þ gc1

C
~pð1 2 ~pÞf g

2s2
b þ

VðdÞ

g

� 

ðC1Þ

where g ¼
ffiffiffi
c2

c1

q ffiffiffiffiffiffiffi
VðdÞ
p

~pð12 ~pÞsb
. The solution to this problem

can be derived directly since this budget C is also the
minimal budget to obtain that particular value of Vðp̂Þ.
If there were a smaller budget with other allocations
yielding the same Vðp̂Þ, then our allocation (15) given
C would not be optimal. This is true because the
variable g appears in equation (C1) in the same manner
as in equation (12), so that the g of equation (15) is also
the value of g which will minimize the cost of the
sample if the variance of the estimate of the proportion
(pÞ is fixed. Thus it also minimizes the cost variance
product (Brooks, 1955). Thus, if a value of Vðp̂Þ equal

V0 ¼ v2/4Z2
12a=2 is required, the minimal budget to

obtain this Vðp̂Þ follows by setting V p̂ð Þ (as given in

equation C1) equal to V0 ¼ v2/4Z2
12a=2. Solving for

budget C gives C ¼ ðc2 þ gc1Þ ~pð1 2 ~pÞf g
2s2

b þ
VðdÞ

g

h i
=V0

and, finally, the corresponding optimal allocation of

units follows from equation (15). Since m ¼ C
c2þgc1

and

substituting C ¼ ðc2 þ gc1Þ ~pð1 2 ~pÞf g
2s2

b þ
VðdÞ

g

h i
=V0,

we obtain m ¼

�
~pð1 2 ~pÞf g

2s2
b þ

VðdÞ
g



=V0 and

g ¼
ffiffiffi
c2

c1

q ffiffiffiffiffiffiffi
VðdÞ
p

~pð12 ~pÞsb
.

Appendix D: Taylor series approximation
(equation 23) of the RE in equation (21) given by
Van Breukelen et al. (2007)

Taylor series approximation (equation 23) is derived
from the RE of equation (21) in four steps.

Step 1

Let the gi values be independent realizations of a
random variable cluster size U with expectation mn

and standard deviation mn. Equation (19) is a moment
estimator of

RE p̂ð Þ ¼
�gþ a

�g
E

U

U þ a

� �
ðD1Þ

where a ¼ ð1 2 rÞ=r $ 0.

Step 2

Define d ¼ U 2 mn

� �
; then the last term in equation

(D1) can be written as:

E
U

U þ a

� �
¼ E

mn þ d

mn þ aþ d

� �

¼ E
mn þ d

mn þ a

� �
1

1þ ðd=ðmn þ aÞÞ

� �� �
:

The last term is a Taylor series [Mood et al. (1974),
p. 533, equation 34]:

1

1þ ðd=ðmn þ aÞÞ

� �
¼
X1
j¼0

�
2d

mn þ a

�j

if 2 mn þ a
� �

, d , mn þ a
� �

to ensure convergence.
Since d ¼ U 2 mn and a $ 0, this convergence

condition will be satisfied, except for a small
probability PðU . 2mn þ aÞ for strongly positively
skewed cluster size distributions combined with
large rð¼ smallaÞ. Thus we have:

E
U

U þ a

� �
¼ E

mn þ d

mn þ a

� �X1
j¼0

2d

mn þ a

� �j
8<:

9=;: ðD2Þ

Step 3

If we ignore all terms dj with j . 2 and rearrange terms
in equation (D2), we will have

E
U

U þ a

� �
¼ l 1 2 CV 2l 1 2 lð Þ

� �
ðD3Þ

where l ¼ ðmg=ðmg þ aÞÞ [ ð0; 1�, assuming �g ¼ mg and
CV ¼ sg=mg is the coefficient of variation of the
random variable U.

Step 4

Plugging (D3) into (D1) gives:

RE p̂ð Þt< 1 2 CV 2l 1 2 lð Þ
� �

: ðD4Þ
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Remark

Ignoring in (D2) only those dj terms with j . 4 instead
of 2 will give

RE p̂ð Þt< 1 2 ð1 2 lÞ½lCV 2 2 lCV 3skew
�

ðD5Þ

þl3CV 4 kurtþ 3ð Þ�g

where skew and kurt are the skewness and
kurtosis of the cluster size distribution, that is,
skew ¼ the third central moment of the U
divided by s3

n, and kurt ¼ the fourth moment of
U divided by s4

n, minus 3 (see, for example, Mood
et al., 1974, p. 76).
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