At 11:50 PM, the emergency management headquarters of prefectural medical response was established in the hospital, but a connection could not be established to 10 regional health centers for the weekend. Water levels of some rivers were increasing nearly to flood levels, and an evacuation order was announced to hundreds of thousands of people. This situation continued for a few days throughout many regions. The information of flood or landslide probability was continuously monitored, but an attempt was made to decide the timing of cancellations of standby.

Discussion: An ordinary response to disaster depends on a clear turning point, such as the occurrence time. In heavy rainfall, there are two issues. One is about actions to prevent disaster and another is a recognition of geographic points or surface. Many critiques to the response focus on the judgments and actions for prevention before a critical event. Lessons learned included the importance of preventive actions along with a timeline and the judgment of restoration.

Prehosp. Disaster Med. 2019;34(Suppl. 1):s43–s44
doi:10.1017/S1049023X19001055

The Role of Japan DMAT in Tokyo Inland Earthquake

Dr. Yuichi Koido1, Dr. Miho Misaki1, Ms. Kayako Chishima1, Dr. Yuzuru Kawashima1, Dr. Hisayoshi Kondo1, Mr. Yoshiaki Toyokuni1, Dr. Yasubiro Otomo2, Dr. Katsuori Yoshiharu1

1. National Disaster Medical Center of Japan, Tachikawa, Japan
2. Tokyo Medical and Dental University, Bunkyo-ku, Japan
3. Tohoku University, Ota-ku, Japan

Introduction: An inland earthquake is expected to occur in Tokyo in the near future, and disaster preparedness and response measures have been put in place by the government of Japan and local authorities.

Methods: Japan Disaster Medical Assistant Teams (DMATs) conducted two large-scale drills for the first time in preparation for a Tokyo inland earthquake, in collaboration with the following participants: the Tokyo Metropolitan Government, disaster base hospitals in Tokyo, three Staging Care Units (SCUs), and neighboring prefectures. One of the scenarios was a north Tokyo Bay earthquake affecting the Tokyo wards and had 142 Japan DMATs participation. Another scenario was Tama inland earthquake affected mid-west of Tokyo and 110 DMATs participated. The drill included headquarters operation, affected hospital support operation, patient transportation within the area and to the wider region, SCU operation, collaboration with associated organizations, and logistics operation.

Results: Post-drill assessments identified the following areas that need to be addressed: review of Japan DMAT implementation strategies; improvement of SCUs; establishment of a patient air transportation framework; securing means of patient transportation; improvement of communication systems; strengthening of disaster response of all hospitals in the Tokyo Metropolitan; and preparations for survival in the event of isolation caused by the disaster.

Prehosp. Disaster Med. 2019;34(Suppl. 1):s44
doi:10.1017/S1049023X19001079

Study of Medical Supply and Demand Balance for the Nankai Trough Earthquake

Mr. Yosuke Takada1,2, Dr. Yasubiro Otomo1

1. Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
2. Dentistry and Pharmaceutical Sciences, Okayama University, Graduate School of Medical, Okayama, Japan

Introduction: The Nankai Trough, marking the boundary between the Eurasian Plate and the Philippine Sea Plate, is forecasted to create a tragic earthquake and tsunami within 30 years.

Aim: To clarify the gap between medical supplies and demand.

Methods: Collected the data of the estimation of injured persons from each prefecture throughout Japan, and also the number of Intensive Care Unit (ICU) and High Care Unit (HCU) beds in Japan from the Ministry of Health database. We re-calculated the number of severe cases based on official data. Moreover, we calculated the number of beds of hospitals with the capacity to receive severe patients.

Results: The total number of disaster base hospitals is 723 hospitals with 6556 ICU beds, and 545 hospitals have 5,248 HCU beds throughout Japan. When the Nankai Trough earthquake occurs, 187 disaster base hospitals would be located in the area with seismic intensity 6-upper on the Japanese Seismic Intensity Scale of 0–7, and 79 disaster base hospitals would be located in the tsunami inundation area. The estimated total number of injured persons is 661,604 including 26,857 severe cases, 290,065 moderate cases, and 344,682 minor cases.

Discussion: Even if all ICU and HCU beds are usable for severe patients, there will be 15,053 more beds needed. The Cabinet Office of Japan assumes that 60% of hospital beds would not be able to be used in an area of the seismic intensity of 6-upper. If 80% of beds are used in the non-disaster time, the number of beds which are usable at the time of a disaster will decrease more. The beds needed for severe patients would be significantly lacking when the Nankai Trough earthquake occurs. It will be necessary to start treatment of the severe patients who are “more likely to be saved more.”

Prehosp. Disaster Med. 2019;34(Suppl. 1):s44
doi:10.1017/S1049023X19001079

They have Arrived! How Dallas, Texas Provided Shelter-Based Onsite Medical Care to Evacuees from Hurricane Harvey

Dr. Lindsay A. Flax, Dr. E. Liang Liu, Dr. Kelly R. Klein, Dr. Raymond L. Fowler, Dr. Raymond E. Swienton

Department of Emergency Medicine, University of Texas Southwestern Medical Center, Dallas, United States

Introduction: After Hurricane Harvey and the flooding that ensued, 3,829 displaced persons were transported from their homes and sheltered in the Dallas Convention Center. This large general population sheltering operation was medically supported by the onsite Mega-Shelter Medical Clinic (MMC). In an altered standard of care environment, a number of multi-disciplinary medical services were provided including emergent management, acute pediatric and adult care,