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NEW FOUNDATIONS OF REASONING VIA REAL-VALUED
FIRST-ORDER LOGICS

GUILLERMO BADIA , RONALD FAGIN, AND CARLES NOGUERA

Abstract. Many-valued logics, in general, and real-valued logics, in particular, usually
focus on a notion of consequence based on preservation of full truth, typically represented by
the value 1 in the semantics given in the real unit interval [0, 1]. In a recent paper [Foundations
of Reasoning with Uncertainty via Real-valued Logics, Proceedings of the National Academy
of Sciences 121(21): e2309905121, 2024], Ronald Fagin, Ryan Riegel, and Alexander Gray
have introduced a new paradigm that allows to deal with inferences in propositional real-
valued logics based on a rich class of sentences, multi-dimensional sentences, that talk about
combinations of any possible truth values of real-valued formulas. They have proved a strong
completeness result that allows one to derive exactly what information can be inferred about
the combinations of truth values of a collection of formulas given information about the
combinations of truth values of a finite number of other collections of formulas. In this
paper, we extend that work to the first-order (as well as modal) logic of multi-dimensional
sentences. We give a parameterized axiomatic system that covers any reasonable logic and
prove a corresponding completeness theorem, first assuming that the structures are defined
over a fixed domain, and later for the logics of varying domains. As a by-product, we also
obtain a zero-one law for finitely-valued versions of these logics. Since several first-order real-
valued logics are known not to have recursive axiomatizations but only infinitary ones, our
system is by force akin to infinitary systems.

§1. Introduction. Typically, the study of inference in many-valued logic
answers the following question: given that all premises in a given set Γ are
fully true, what other formulas � can we see to be fully true as a consequence?
This standard approach can be deemed unsatisfying because, when it comes
to valid inference, it disregards almost all of the rich structure of truth values
and concentrates only on preservation of the value 1 (or on the preservation
of a set of designated truth values [13, 33]). A natural question involving
all possible truth values would be instead: what information can be inferred
about the combinations of truth values of a collection of formulas given
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information about the combinations of truth values of a finite number of
other collections of formulas?

In fact, the recent paper [24] poses the above question not just for sets
of single formulas but for sequences of propositional formulas taking any
combinations of truth values considered as a single expression called a
multi-dimensional sentence (in short, an MD-sentence). More precisely, an
MD-sentence is a syntactic object of the form 〈�1, ... , �k ;S〉 where S (called
the information set) is a set of k-tuples of truth values for the sequence of
formulas �1, ... , �k (called the components). The semantic intuition is that
〈�1, ... , �k ;S〉 should be true in an interpretation if the sequence of truth
values that �1, ... , �k take in that interpretation is one of the k-tuples in S.1

The simplest case of MD-sentences so defined are those 〈�;S〉 where � is a
single propositional formula and S is a set of truth values from [0, 1], e.g., a
singleton, an interval, a union of intervals, or the rational numbers in [0, 1].

In the context of fuzzy set theory, Pavelka introduced in [41] a formal
system with fuzzy sets of axioms, many-valued inference rules. In this system,
every formal proof comes with a degree, so, on one hand, Pavelka defined
the provability degree of a formula as the supremum of the degrees of all its
proofs. On the other hand, he defined the truth degree of a formula as the
infimum of the set of values that it takes in each model. Then, he proved,
as a generalization of the completeness theorem of classical logic, that these
two degrees coincide for each formula. Subsequently, Vilém Novák extended
Pavelka’s logic and its completeness result to a first-order language in [36]
and greatly developed this approach with the theory of fuzzy logic with
evaluated syntax [37–39]. Petr Hájek gave in [28] a (partial) representation of
fuzzy logic with evaluated syntax by means of an expansion of Łukasiewicz
logic with a language enriched with a truth-constant r for each real number
r ∈ [0, 1] (he later showed that it sufficed to consider rational numbers and
called the resulting system Rational Pavelka logic) and additional axioms,
and proved a Pavelka-style completeness theorem that showed the equality of
provability and truth degree for each formula. The enriched language of these
systems allows to write sentences of the form r → ϕ (which semantically
means that the truth value of ϕ is at least r) and ϕ → s (which semantically
means that the truth value of ϕ is at most s) and hence allows to stipulate in
a syntactical manner that the truth value that the formula ϕ has to take in a

1Observe that having this new language is not the same as simply having a wider collection
of designated truth values and studying inference in that setting in the usual truth-preserving
way. The general point is that the freedom afforded by selecting S arbitrarily lets us consider
inferences that relate certain formulas having certain truth values to other formulas having
other truth values in a totally unrestricted manner. For example, if we take the MD-sentence
〈A,B,A&B ; [0, 1]3〉 with semantics given by product logic (where & will be interpreted as
the product t-norm), we might want to infer 〈A,B,A&B ;S〉 where S ⊆ [0, 1]3 is the set of
all triples 〈s1, s2, s3〉 such that s3 = s1 · s2.

https://doi.org/10.1017/bsl.2024.56 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2024.56


NEW FOUNDATIONS OF REASONING VIA REAL-VALUED FIRST-ORDER LOGICS 321

model belongs to a certain closed interval defined by rational numbers (or
a union thereof). It is not clear whether this syntax also allows to express
that the value of ϕ belongs to any arbitrary given subset S of [0, 1], which
instead can be directly expressed by design using MD-sentences of the form
〈ϕ;S〉.

The new approach to many-valued logics based on MD-sentences is
relevant for AI due to the growing interest in any development that
may contribute to augmenting the capabilities of learning-based methods
in combination with reasoning methods, resulting in an integration that
has been branded neuro-symbolic. In this setting, the expressive power of
classical logic, with its defining restriction to crisp notions (that is, the
bivalence principle that assumes every meaningful statement to be either
completely true or completely false), becomes insufficient for the crucial
goal of representing uncertain or vague knowledge and conclusions. Hence,
several recent neuro-symbolic approaches employ real-valued logics instead,
as one can see, e.g., in logic tensor networks [6], probabilistic soft logics [2],
Tensorlog [16], or Logical Neural Networks [32, 42].

Following these motivations, the goal of [24] was to axiomatize inference
genuinely involving many truth values. The authors indeed have provided
an axiomatization in terms of MD-sentences in a parametrized way that
captures all of the most common propositional fuzzy logics and even logics
that do not obey some standard restrictions (such as conjunction being
commutative). However, many reasoning scenarios cannot be properly
modeled only with the formal tools of a propositional language and need
a more expressive setting. In fact, Logical Neural Networks (LNNs) are
AI models that can only be properly formalized by means of the first-order
MD-formulas that we introduce here. Most interesting reasoning problems
for which one might wish to use LNNs require the expressive power of
first-order logic (see the examples in [32, 42]), making the propositional
formalism insufficient. Therefore, in the present article, we generalize the
work in [24] to the first-order and modal contexts. Since it is already known
that first-order and modal real-valued logics are not necessarily recursively
enumerable for validity [43, 46] and one needs instead infinitary systems
[29, 34] to deal with them,2 our proposal is going to be necessarily more
akin in applicability to an infinitary system than a finitary one. In the
applications discussed for LNNs, all one actually needs is a fixed finite
domain (the universe of objects of a knowledge base), in which case one
recovers recursivity (Remark 14).

The article is arranged as follows. First, in §2, we give a fast overview
of the necessary notions and results that we borrow from the propositional

2Infinitary presentations are not uncommon even for propositional many-valued logics,
see, e.g., [9, 31].
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case studied in [24]. In §3, we study the first-order (as well as modal) logic of
multi-dimensional sentences (generalizing the definition of [24]) when the
models considered all have the same fixed domain (which may be of any
fixed cardinality, either finite or infinite). The key result is a completeness
result that follows the strategy of that in [24] for the propositional case.
In §4, we show how our approach leads to parameterized axiomatizations
of the valid finitary inferences of many prominent first-order real-valued
logics. Since this includes several logics that are not recursively enumerable
for validity, our system in general does not yield a recursive enumeration
of theorems. In §5, we prove a zero-one law for finitely-valued versions of
the logics dealt with in §3. Finally, in §6, we remove the restriction of a
fixed domain and provide a completeness theorem for the first-order logic
of multi-dimensional sentences on arbitrary domains.

§2. The propositional case: an overview. This section presents a brief
summary of the key results and notions from [24]. Following that article,
we take a (propositional) multi-dimensional sentence (in symbols, an MD-
sentence) to be an expression of the form 〈�1, ... , �k ;S〉 where S ⊆ [0, 1]k .
For a fixed k, we may speak of k-dimensional sentences.

The semantics of MD-sentences is as follows. By a model, we mean
an assignment M from atomic sentences (propositional variables) of a
propositional language L to truth values from [0, 1]. The usual real-valued
logics (Łukasiewicz, Product, Gödel, etc.) all have inductive definitions
indicating how to assign values to all formulas and hence the notion of
the value of an arbitrary formula in the language L in a given model M is
well-defined. Fixing one such semantics (which means we will get different
outcomes depending on the real-valued logic being considered), for an MD-
sentence 〈�1, ... , �k ;S〉, we say that M satisfies this sentence (in symbols,
M |= 〈�1, ... , �k ;S〉) if 〈s1, ... sk〉 ∈ S where si (1 ≤ i ≤ k) is the value in M

of �i according to the semantics of the real-valued logic under consideration.
Finally, given a set Γ ∪ {�} of MD-sentences, we write Γ � � if every model
that satisfies all the sentences in Γ also satisfies �; in this case, we call “Γ � �”
a valid inference.

Given these definitions, one can consider Boolean combinations of MD-
sentences. For example, take �1 := 〈�1

1 , ... , �
1
n ;S1〉 and �2 := 〈�2

1 , ... , �
2
m;S2〉.

Then, we may say that M |= �1 ∧ �2 iff M |= �1 and M |= �2. An interesting
result from [24] is that MD-sentences are closed under Boolean combina-
tions, in the sense that for any Boolean combination of such sentences there
is an MD-sentence equivalent to such combination. Hence, the collection of
MD-sentences is expressively quite robust.

Example 1. An easy example of a valid MD-sentence in, say, Gödel
semantics, is the 3-dimensional sentence 〈A,B,A ∨ B ;S〉 where S is the
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set of all triples 〈s1, s2, s3〉 where s1, s2 ∈ [0, 1] and s3 is the maximum of the
set {s1, s2}.

Now it is natural to try to build a calculus that will capture exactly the
valid finitary inferences involving MD-sentences. This is what we do next.

Axioms. We have only one axiom schema:

(1) 〈�1, ... , �k ; [0, 1]k〉.
Observe that (1) is an axiom schema. That is, for example, 〈p ∧ q, p → r;
[0, 1]2〉, 〈p ∨ (q → r); [0, 1]〉, and 〈p, q, r; [0, 1]3〉 are all axioms. The idea of
the schema is simply to assert that formulas always take some truth values.

Inference rules.

(2) From 〈�1, ... , �k ;S〉 infer 〈��(1), ... , ��(k);S
′〉,

where S ′ = {〈s�(1), ... , s�(k)〉 | 〈s1, ... , sk〉 ∈ S} and � is a permutation of
1, ... , k.

(3) From 〈�1, ... , �k ;S〉 infer

〈�1, ... , �k, �k+1, ... , �m;S × [0, 1]m–k〉.

(4) From 〈�1, ... , �k ;S1〉 and 〈�1, ... , �k ;S2〉 infer 〈�1, ... , �k ;S1 ∩ S2〉.
(5) For 0 < r < k, from 〈�1, ... , �k ;S〉 infer 〈�1, ... , �k–r ;S ′〉, where S ′ =

{〈s1, ... , sk–r〉 | 〈s1, ... , sk〉 ∈ S}.

(6) From 〈�1, ... , �k ;S〉 infer 〈�1, ... , �k ;S ′〉, when S ⊆ S ′.
At this point, let us make a clarification about rule (4). In (4), S1 ∩ S2

could, naturally, be empty. A very trivial example would be if we have the
MD-sentences 〈p; {0.2}〉 and 〈p; {0.3}〉 for then {0.2} ∩ {0.3} = ∅. This
means that, if we have the MD-sentences 〈p; {0.2}〉, 〈p; {0.3}〉, we can infer
the contradictory (in the sense of having no model) MD-sentence 〈p; ∅〉.
Thus, the set {〈p; {0.2}〉, 〈p; {0.3}〉} has itself no model.

Finally, before we introduce the last rule, let us define a piece of notation.
For any j-ary connective ◦, from a real-valued logic and real numbers
s1, ... , sj from [0, 1] we can define the function ◦̂(s1, ... , sj) giving as
output what the connective ◦ indicates in a given real-valued logic for the
values s1, ... , sj . Given an MD-sentence 〈�1, ... , �k ;S〉, we say that a tuple
〈s1, ... , sk〉 ∈ S is good if sm = ◦̂(sm1 , ... , smj ) whenever �m = ◦(�m1 , ... , �mj )
(for any mj-ary connective ◦ and for any m). In other words, a tuple of
truth values in an MD-sentence is good if it respects the semantics under
consideration of the connectives appearing in the MD-sentence (recall that
for any real-valued logic we are fixing the semantics of the connectives).
Notice that this is a local property of each tuple in S, in the sense that it
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does not depend on what other tuples are in the information set. Now, the
last inference rule is

(7) From 〈�1, ... , �k ;S〉 infer 〈�1, ... , �k ;S ′〉, where S ′ is the set of good
tuples in S.

If there are no good tuples in S, then of course S ′ = ∅, and thus the formula
we started with in the rule cannot have a model as it does not respect the
semantics of the underlying real-valued logic.

A proof of an MD-sentence � from a set Γ of MD-sentences in this system
consists, as usual, of a finite sequence of MD-sentences such that the last
member is � and every element of the sequence is either an axiom, one of the
member of Γ, or it follows from previous elements by one of the inference
rules. We write Γ � � to indicate that there exists a proof of � from Γ.

The central result from [24] states that if Γ is a finite set of MD-sentences,
we have that Γ � � is equivalent to Γ � �. It is noteworthy that this technique
provides a parameterized way of building calculi for MD-sentences with
semantics for the standard real-valued logics (where the parameters give
a particular semantic meaning to the connectives of the language); special
extra steps need to be taken for the logic of probabilities, as discussed in
[24]. The restriction to finite sets is necessary due to the finitary character
of Łukasiewicz logic [28]. Finally, in [24] a decision procedure for validity
in this system of MD-sentences for Gödel and Łukasiewicz semantics is
introduced. Furthermore, the algorithm of the procedure is implemented
and tested on various interesting cases.

Remark 2. Observe that there is nothing sacred about the t-norm algebras
on[0, 1]: everything that has been said here could have been said for logics
based on arbitrary fixed residuated lattices (see e.g., [28]). The reader could
attempt to check this by themselves noticing that the definitions we have
introduced only make use of algebraic properties of t-norm algebras on
[0, 1] that easily generalize to other lattice structures. This remark similarly
applies to the remainder of this article.

§3. The logic of a fixed domain. Throughout this section, let M be any
fixed set, finite or infinite. Observe that for finite fixed domains, by means of
eliminating quantifiers (turning a universal quantifier into a big conjunction
and turning an existential quantifier into a big disjunction), we could use
an approach that essentially reduces the problem to what was done in [24].
We work with a first-order relational vocabulary � to simplify things (but
everything we do can be adjusted to accommodate function and constant
symbols).

3.1. First-order case (the logic of a fixed domain). This part is devoted
to provide an axiomatization of the logic of a fixed domain M (of any
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cardinality), in the sense of the valid inferences over all models with
domain M.

Let us first give the basic notions for the semantics of real-valued first-
order logics.

Definition 3. Given a vocabulary �, a real-valued first-order modelM is a
structure 〈M, 〈RM〉R∈�〉, whereM �= ∅ is called the domain and for an n-ary
predicate R ∈ �, its interpretation in M is a mapping RM : Mn −→ [0, 1].

Inductively, using the semantics of the real-valued logic in question, one
can define the truth value of any formula for a sequence a of elements from
M and write it as ‖ϕ[a]‖

M
:

• ‖P[a]‖M = PM(a), for each P ∈ Pred� ;
• ‖ ◦ (ϕ1, ... , ϕn)[a]‖M = ◦̂(‖ϕ1[a]‖M, ... , ‖ϕn[a]‖M), for n-ary connec-

tive ◦;
• ‖(∀x)ϕ[a]‖M = inf{‖ϕ[a, e]‖M | e ∈M};
• ‖(∃x)ϕ[a]‖M = sup{‖ϕ[a, e]‖M | e ∈M}.3

Whenever the vocabulary includes the equality symbol ≈, its semantics is
defined in the following way:

• ‖(x ≈ y)[d, e]‖M = 1 iff d = e, for any d, e ∈M .
• ‖(x ≈ y)[d, e]‖M = 0 iff d �= e, for any d, e ∈M .

The definition of the truth value of a quantified formula as the infimum
or the supremum of the truth values of its instances is customary in many-
valued logics as a natural generalization of the semantics of quantifiers in
classical logic.

A formula ϕ(x1, ... , xn) can be said to be interpreted in the model M by
the mapping fϕ : Mn −→ [0, 1] defined as 〈a1, ... , an〉 �→ ‖ϕ[a1, ... , an]‖M
(we also say that ϕ(x1, ... , xn) defines the mapping fϕ in the model M).

Now we can define the set MD(M ) of MD-sentences with domain
M. Given a natural number n, we denote by [0, 1]M

n
the set of all

functions fromMn to [0, 1]. Let MD(M ) contain all sentences of the form
〈ϕ1(xϕ1), ... , ϕk(xϕk );S〉 where xϕi := xi1 , ... , xini , and S ⊆ [0, 1]M

n1 × ...×
[0, 1]M

nk . In the expression ϕi(x), the free variables of ϕi (if any) will be
exactly those in the list xϕi . When xϕi is empty, ϕi is a sentence and what
it gets assigned in a given S is simply a nullary function, in other words, an
element of [0, 1], as in the propositional case. If none of the formulas ϕi in
the MD-sentence 〈ϕ1, ... , ϕk ;S〉 contains free variables, then the situation
is exactly as in the propositional case [24] and there is no need to mention
in S the set M.

3The interpretation of universal quantifiers (resp. existential) as the infimum (resp.
supremum) of the truth values of their instances can be traced back to Mostowski [35];
see, e.g., [15, 28] for general studies of first-order many-valued logics that follow this idea.

https://doi.org/10.1017/bsl.2024.56 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2024.56


326 GUILLERMO BADIA, RONALD FAGIN, AND CARLES NOGUERA

Example 4. Take a vocabulary � with only two unary predicates P and
U. Then, we can build the sentence 〈Px, (∀x)Ux;S〉 where S = {〈f, r〉 |
r ∈ [0.5, 0.8), f is a mapping with domain M and range included in the set
[0, 1]}. Intuitively, we want this sentence to be satisfied in a model M with
domain M if the truth value of (∀x)Ux is a real number in the interval
[0.5, 0.8) and the interpretation of the predicate P is a mapping from M into
[0, 1].

Next, take a sentence 〈ϕ1(xϕ1), ... , ϕk(xϕk );S〉. Then, we may write

M |= 〈ϕ1(xϕ1), ... , ϕk(xϕk );S〉,
if 〈fϕ1 , ... , fϕk 〉 ∈ S. Notice that, if any of the ϕis is a sentence, then the
corresponding fϕi is a constant function. If all the ϕs are sentences, this
definition basically boils down to what appears in [24].

We introduce now a proof system associated to the domain M, called the
MD-system of M, by considering the axioms and inference rules given in
[24] for the propositional case and modifying only what is needed:
Axioms. We have only one axiom schema:

(1) 〈ϕ1(xϕ1), ... , ϕk(xϕk ), [0, 1]M
n1 × ...× [0, 1]M

nk 〉 for all formulas
ϕ1(xϕ1), ... , ϕk(xϕk ).

Inference rules.

(2) From

〈ϕ1(xϕ1), ... , ϕk(xϕk );S〉,
infer

〈ϕ�(1)(xϕ�(1)
), ... , ϕ�(k)(xϕ�(k)

);S ′〉,

where S ′ = {〈f�(1), ... , f�(k)〉 | 〈f1, ... , fk〉 ∈ S} and � is a permu-
tation of 1, ... , k.

(3) From

〈ϕ1(xϕ1), ... , ϕk(xϕk );S〉,
infer

〈ϕ1(xϕ1 ), ... , ϕk(xϕk ), ϕk+1(xϕk+1 ), ... , ϕm(xϕm );S × [0, 1]M
nk+1 × ...× [0, 1]M

nm 〉.

(4) From

〈ϕ1(xϕ1), ... , ϕk(xϕk );S1〉,
and

〈ϕ1(xϕ1), ... , ϕk(xϕk );S2〉,
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infer

〈ϕ1(xϕ1), ... , ϕk(xϕk );S1 ∩ S2〉.

(5) For 0 < r < k, from

〈ϕ1(xϕ1), ... , ϕk(xϕk );S〉,

infer

〈ϕ1(xϕ1), ... , ϕk–r(xϕk–r );S ′〉,

where S ′ = {〈f1, ... , fk–r〉 | 〈f1, ... , fk〉 ∈ S}.

(6) From

〈ϕ1(xϕ1), ... , ϕk(xϕk );S〉,

infer

〈ϕ1(xϕ1), ... , ϕk(xϕk );S ′〉,

where S ⊆ S ′.

Finally, before we introduce the last rule, let us define a piece of notation.
Consider an arbitrary domain M and functions f1, ... , fj from some
Cartesian products of M into [0, 1]. Then, for any j-ary connective ◦
from a real-valued logic, we can define the function ◦(f1, ... , fj) as
taking arguments componentwise as indicated by the output of the fis
(i ∈ {1, ... , j}) and giving as output what ◦ indicates. Also, we need to
generalize also the notion of good tuple. Indeed, given an MD-sentence
〈ϕ1(xϕ1), ... , ϕk(xϕk );S〉, we say that a tuple 〈f1, ... , fk〉 ∈ S is good if

(a) fm = ◦(fm1 , ... , fmj ) whenever ϕm(xϕm) = ◦(ϕm1(xϕm1
), ... , ϕmj

(xϕmj )),

(b) fi(e1, ... , enj ) = inf{fj(e1, ... , enj , e) | e ∈M} whenever
ϕi(xϕi ) = ∀y ϕj(xϕj ), for all e1, ... , enj ∈Mnj ,

(c) fi(e1, ... , enj ) = sup{fj(e1, ... , enj , e) | e ∈M} whenever
ϕi(xϕi ) = ∃y ϕj(xϕj ), for all e1, ... , enj ∈Mnj .

(7) From

〈ϕ1(xϕ1), ... , ϕk(xϕk );S〉,

infer

〈ϕ1(xϕ1), ... , ϕk(xϕk );S ′〉,

where S ′ is the set of good tuples in S.
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The following result establishing the soundness of the formal system is
a simple exercise but it helps in building intuition on how the formalism
works.

Lemma 5. The axioms and rules of the system are sound with respect to the
semantics.

Proof. For axiom schema (1), given a model M with domain M, and
formulasϕ1(xϕ1), ... , ϕk(xϕk ), evidently,fϕk ∈ [0, 1]M

nk by definition. Thus,
the first-order MD-sentence 〈ϕ1(xϕ1), ... , ϕk(xϕk ), [0, 1]M

n1 × ...× [0, 1]M
nk 〉

holds in M.
For rule (2), if M is a model and 〈ϕ1(xϕ1), ... , ϕk(xϕk );S〉 holds in

M, clearly for any permutation � of 1, ... , k, if S ′ = {〈f�(1), ... , f�(k)〉 |
〈f1, ... , fk〉 ∈ S}, we also have that 〈ϕ�(1)(xϕ�(1)

), ... , ϕ�(k)(xϕ�(k)
);S ′〉 holds

in M.
For rule (3), if M is a model of 〈ϕ1(xϕ1), ... , ϕk(xϕk );S〉, it

immediately follows that 〈fϕ1 , ... , fϕk 〉 ∈ S, and taking formulas
ϕk+1(xϕk+1), ... , ϕm(xϕm), it is also obvious that 〈fϕk+1 , ... , fϕm〉 ∈
[0, 1]M

nk+1 × ...× [0, 1]M
nm . Thus, the first-order MD-sentence

〈ϕ1(xϕ1 ), ... , ϕk(xϕk ), ϕk+1(xϕk+1 ), ... , ϕm(xϕm );S × [0, 1]M
nk+1 × ...× [0, 1]M

nm 〉

holds in M.
For rule (4), if we have both

M |= 〈ϕ1(xϕ1), ... , ϕk(xϕk );S1〉,

and

M |= 〈ϕ1(xϕ1), ... , ϕk(xϕk );S2〉,

then 〈fϕ1 , ... , fϕk 〉 ∈ S1 and 〈fϕ1 , ... , fϕk 〉 ∈ S2. Thus,

M |= 〈ϕ1(xϕ1), ... , ϕk(xϕk );S1 ∩ S2〉,

as desired.
We leave the proofs of the soundness of rules (5)–(7) to the reader.

The key observation for rule (7) is that S ′ retains only the elements of
S corresponding to formulas that respect the semantics of the real-valued
logic in question. �

A proof of an MD-sentence � from a set Γ of MD-sentences in this system
consists, as usual, of a finite sequence of MD-sentences such that the last
member is � and every element of the sequence is either an axiom, one of the
member of Γ, or it follows from previous elements by one of the inference
rules. We write Γ �M � to indicate that there exists a proof of � from Γ.

Before stating Lemma 8, let us introduce some terminology.
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Definition 6. Given a set A of first-order formulas, we will say that A is
closed under subformulas if for any formula ϕ ∈ A, every subformula of ϕ is
also in A.

Definition 7. We say that an MD-sentence 〈ϕ1(xϕ1), ... , ϕk(xϕk );S〉
is minimized, i.e., whenever 〈f1, ... , fk〉 ∈ S, there is a model of
〈ϕ1(xϕ1), ... , ϕk(xϕk );S〉 such that for 1 ≤ i ≤ k the interpretation of
ϕi(xϕi ) is fi .

Lemma 8. Let 〈ϕ1(xϕ1), ... , ϕk(xϕk );S〉 be the premise of Rule (7) and
assume that G = {ϕ1(xϕ1), ... , ϕk(xϕk )} is closed under subformulas. Then,
the conclusion 〈ϕ1(xϕ1), ... , ϕk(xϕk );S ′〉 is minimized and this is witnessed by
models with domain M.

Proof. Assume that 〈f1, ... , fk〉 ∈ S ′. Since G is closed under subformu-
las, there is a subsequence of 〈f1, ... , fk〉 that determines interpretations on
the domain M for the atomic formulas appearing in G, i.e., interpretations
for the predicates of �. But this subsequence then defines a model M based
on the domain M where the interpretations of ϕ1(xϕ1), ... , ϕk(xϕk ) are as
indicated by 〈f1, ... , fk〉. This is because Rule (7) is designed to select only
those sequences 〈f1, ... , fk〉 that respect the semantics of the underlying
real-valued logic. �

Remark 9. Observe that Lemma 8 does not claim that any MD-sentence
has a model. It is rather telling us that if the set {ϕ1(xϕ1), ... , ϕk(xϕk )} of
traditional formulas in the MD-sentence 〈ϕ1(xϕ1), ... , ϕk(xϕk );S〉 used as
a premise in an application of Rule (7) is closed under subformulas, then
if S ′ �= ∅, the MD-sentence 〈ϕ1(xϕ1), ... , ϕk(xϕk );S ′〉 coming from Rule (7)
has a model.

Remark 10. Lemma 8 plays an important role in the completeness
argument in this general framework. Roughly speaking, it relies on
the fact that the set S ′ can encode a model for a series of formulas
ϕ1(xϕ1), ... , ϕk(xϕk ) with domain M by a sequence of interpretations to
the finite list of predicates appearing in such formulas in a way that is
consistent with the semantics of the underlying real-valued logic. It is not
difficult to see that, for a finite vocabulary �, we can find a set S encoding
all possible models with domain M. For example, if � is the set {P1, ... , Pk}
of predicates, then we can take S to be the set of all sequences 〈f1, ... , fk〉
of possible interpretations of the predicates from our list on the domain M.

Similarly to [24, Lemma 5.3], we obtain:

Lemma 11. The conclusion and premises of rules (2), (3), (4), and (7) are
logically equivalent.

Proof. The equivalence of the premise and conclusion of Rule (2) is
clear. For Rules (3) and (7), the fact that the premise logically implies the
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conclusion follows from soundness of the rules, as does the fact that the
conjunction of the premises of Rule (4) logically implies the conclusion. We
now show that for Rules (3) and (7), the conclusion logically implies the
premise. For Rule (3), the equivalence follows from the soundness of Rule
(5). For Rule (4), the conclusion logically implies the each of the premises,
and hence the conjunction of the premises, because of the soundness of
Rule (4).

We will sketch the argument for Rule (7). Let M be a model such that

M |= 〈ϕ1(xϕ1), ... , ϕk(xϕk );S〉.

But then the interpretations f1, ... , fk of the formulas ϕ1(xϕ1), ... , ϕk(xϕk )
in the model M respect the semantics of the connectives and quantifiers
according to the real-valued logic in question. Since 〈f1, ... , fk〉 ∈ S by
hypothesis, we must have that 〈f1, ... , fk〉 ∈ S ′ where S ′ is as in Rule (7).
Hence,

M |= 〈ϕ1(xϕ1), ... , ϕk(xϕk );S ′〉,

as desired. On the other hand, if

M |= 〈ϕ1(xϕ1), ... , ϕk(xϕk );S ′〉,

given the soundness of Rule (6), it follows that

M |= 〈ϕ1(xϕ1), ... , ϕk(xϕk );S〉.

�

The following lemma is straightforward to show.

Lemma 12. Minimization is preserved by the rules (2) and (4), i.e., if the
premises of the rules are minimized, then their conclusions are too.

Let Γ �M � mean that for each model M with domain M, if M |= Γ
then M |= �. We call the relation �M the MD-logic of M. We can now
reconstruct the soundness and completeness argument from [24] and
obtain the following theorem that the MD-system of M is actually an
axiomatization of the MD-logic of M.

Theorem 13 (Completeness of the logic of a fixed domain). Let Γ be a
finite set of MD-sentences and � an MD-sentence. Then, Γ �M � iff Γ �M �.

Proof. To see that Γ �M � only if Γ �M �, one proceeds, as usual, by
induction on the length of the proof, i.e., we start by showing that the
axiom schema is sound and that the rules preserve the truth of the MD-
sentences. For example, every instance of the axiom schema is sound since
every formula in the usual first-order sense is interpreted by some mapping
on a given model based on the domain M.
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To show completeness, we follow the argument on [24, p. 12] and thus
only provide a sketch. The strategy is to transform Γ into an equivalent
MD-sentence from which � can be deduced. We may assume without loss
of generality that Γ is non-empty, for otherwise we could replace it by an
instance of Axiom (1).

Indeed, assume that we have a finite set Γ = {�1, ... , �n} of MD-
sentences in which, for each i ∈ {1, ... , n}, �i is the MD-sentence
〈ϕi1(xϕ1), ... , ϕ

i
k(xϕki );Si〉. Suppose further that � is 〈ϕ0

1(xϕ1), ... , ϕ
0
k(xϕk0 );

S0〉. Then, take the sets Γi = {ϕi1(xϕ1), ... , ϕ
i
k(xϕki )} and Γ0 = {ϕ0

1(xϕ1), ... ,
ϕ0
k(xϕk0 )}. We take G to be the usual closure under subformulas of the set⋃
j≥0 Γj .
G is a finite set and then we can follow step by step the argument in [24],

applying our slightly modified Rules (3) and (7). In particular, we make use
of Lemma 8 instead of [24, Lemma 5.2].

For each i such that 1 ≤ i ≤ n, we setHi = G \ Γi . Let ri be the cardinality
ofHi and suppose thatHi = {�1(x�1), ... , �ri (x�ri )}. Then, by applying Rule
(3), we can deduce the MD-sentence

〈ϕi1(xϕ1 ), ... , ϕik(xϕki ), ϕk+1(xϕk+1 ), ... , ϕm(xϕm );S × [0, 1]M
nk+1 × ...× [0, 1]M

nm
〉,

from 〈ϕi1(xϕ1), ... , ϕ
i
k(xϕki );S〉, i.e., �i , where the sequence ϕk+1(xϕk+1), ... ,

ϕm(xϕm) is �1(x�1), ... , �ri (x�ri ). Now let �i be the MD-sentence that results
from applying Rule (7) to the conclusion of Rule (3) displayed above.

Let ϕ1(xϕ1), ... , ϕp(xϕp) be some ordering of the formulas in G; then,
since the set of first-order formulas that appear in �i is exactly G, we
may use Rule (2) to turn �i into an equivalent MD-sentence of the form
〈ϕ1(xϕ1), ... , ϕp(xϕp);Ti〉, which we may denote by 	i . Furthermore, since
in deriving 	i , we only appealed to rules (2), (3), and (7), by Lemma 11, this
MD-sentence is logically equivalent to �i .

Assume that T = T1 ∩ ... ∩ Tn and define 	 := 〈ϕ1(xϕ1), ... , ϕp(xϕp);T 〉.
From Lemma 8, each �i is minimized since it comes from Rule (7) and

{ϕi1(xϕ1), ... , ϕ
i
k(xϕki ), ϕk+1(xϕk+1), ... , ϕm(xϕm)}

is closed under subformulas. Moreover, by Lemma 12, each 	i is minimized
and, hence, 	 is minimized.

The MD-sentence 	 can be derived from the MD-sentences 	i by repeated
applications of Rule (4). In fact, by Lemma 11, 	 and {	1, ... , 	n} have the
same logical consequences, and since 	i is equivalent to �i , we have that
{	1, ... , 	n} and {�1, ... , �n} = Γ have the same logical consequences. Hence,
	 � � given that Γ � � by hypothesis. Furthermore, in order to show that
Γ � � we simply need to show that 	 � � since Γ � 	 by the above reasoning.

Recall that � is 〈ϕ0
1(xϕ1), ... , ϕ

0
k(xϕk0 );S0〉 and 	 is 〈ϕ1(xϕ1), ... ,

ϕp(xϕp);T 〉, so by applying Rule (2) we can rearrange the order of the
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formulas ϕ1(xϕ1), ... , ϕp(xϕp) so they start with ϕ0
1(xϕ1), ... , ϕ

0
k(xϕk0 ) and

infer from 	 the MD-sentence 	′ := 〈ϕ0
1(xϕ1), ... , ϕ

0
k(xϕk0 ) ... ;T ′〉. Using

Lemma 11, we may see that 	 and 	′ are logically equivalent. Hence,
	′ � � since 	 � �. Given that 	 is minimized, it follows that 	′ is too by
Lemma 12. Using Rule (5), from 	′ we may infer an MD-sentence 	′′ of the
form 〈ϕ0

1(xϕ1), ... , ϕ
0
k(xϕk0 );T ′′〉.

The final step in the proof is to show that T ′′ ⊆ S0 (which uses
minimization in a fundamental manner) for then we can use Rule (6) to
infer � from 	′′, and hence we would have 	 � 	′ � 	′′ � �, which means
that 	 � � as desired.

Assume now that 〈f1, ... , fk〉 ∈ T ′′ to show that 〈f1, ... , fk0〉 ∈ S0. By
definition of T ′′, there is a 〈f1, ... , fk0 , ... , fp〉 ∈ T ′. Given that 	′ is
minimized, there is a model M of 	′ such that the interpretations of the
formulas ϕ0

1(xϕ1), ... , ϕ
0
k(xϕk0 ) are f1, ... , fk0 , respectively. Since 	′ � �,

then M |= �, and so 〈f1, ... , fk0〉 ∈ S0. �
There are some subtle points to consider around what we have done, which

we will discuss in the next remarks. It is important to stress that we have
axiomatized the logic of all models based on the set M, not the logic of one
particular model M based on M.

Remark 14. Let us look at the case of two-valued logic with equality (i.e.,
the classical first-order logic which, of course, is covered by our approach).
Let M be a finite set (say of size n). Now, enumerate all the first-order
validities of the form (|M | = n) → ϕ where ϕ is any first-order formula and
|M | = n is the first-order formula saying that the size of the domain M is
exactly n. In the case of finite domains, one might modify the approach here
by allowing only MD-sentences that are interval-based (in the sense of [24],
that is, where the sets of truth values involved in S are unions of finitely-
many rational intervals) or that come from such sentences by an application
of Rule (7), making the set MD(M ) countable, and then it is possible to
show by essentially the argument in [24, Theorem 6.1] that validity is not
only recursively enumerable but decidable on such domains for Łukasiewicz
and Gödel logic.

Remark 15. Recall that satisfiability on countably infinite models is
not recursively enumerable in two-valued first-order logic. Now take a
first-order sentence ϕ and let ϕ1(xϕ1), ... , ϕk(xϕk ), ϕ be the list of all
its subformulas. Fixing a countably infinite domain M, we may consider
now the MD-sentence 〈ϕ1(xϕ1), ... , ϕk(xϕk ), ϕ;S〉 (call it �) where S :=
{0, 1}Mn1 × ...× {0, 1}Mnk × {1}. Take now the MD-sentence obtained by
applying our Rule (7) to this sentence, 〈ϕ1(xϕ1), ... , ϕk(xϕk ), ϕ;S ′〉 (call it
�′). Observe that � and �′ are equivalent. Furthermore, ϕ has a countably
infinite model iff � is satisfiable iff �′ is satisfiable. Finally, by minimization
and the semantics of MD-sentences, �′ is satisfiable iff S ′ is non-empty.
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Hence, the problem of whether an arbitraryS ′ is non-empty is not recursively
enumerable.

Rule (7) implies that our formal system is not finitistic in the sense of
metamathematics [30] since when infinite domains are involved it cannot
all be formalizable in arithmetic, it goes into the realm of infinitary
mathematics. In this sense, it is akin to an infinitary proof system (although
it does not involve infinitary formulas in the usual sense). Thus, the system
we have presented here is by necessity less “usable” in practice than a finitary
one but not than an infinitary one.

3.2. Propositional modal logic (of a fixed frame). Expansions of propo-
sitional many-valued logics with modalities are a topic of lively research
(see, e.g., [3, 10, 11, 14, 25, 26, 46] due to their richer expressive power that
makes them more amenable for a variety of applications, as compared to
purely propositional logics. Thus, it is natural to extend them to the setting
of multi-dimensional sentences too.

For this subsection, fix a frame F := 〈M,R〉 where R ⊆M 2 is a binary
relation on a non-empty set M (finite or infinite, where we may call the
elements M worlds).4 Consider now a vocabulary � consisting only of
propositional variables as in modal logic and a base modal language with
� and � (unlike classical logic, many-valued logics do not allow in general
to define these two operators from one another). Now the set MD(M ) of
MD-sentences contains all the expressions of the form 〈ϕ1, ... , ϕk ;S〉 where
each ϕi is a modal formula and S ⊆ ([0, 1]M )k .

For each real-valued modelM-based onF = 〈M,R〉, i.e., a structure where
each propositional variable p ∈ � is interpreted as a mapping pM : M −→
[0, 1], we can define a notion of truth value at a world w ∈M :

• ‖p[w]‖M = pM(w), for each p ∈ �;
• ‖ ◦ (ϕ0, ... , ϕn)[w]‖M =
◦(‖ϕ0[w]‖M, ... , ‖ϕn[w]‖M), for n-ary connective ◦;

• ‖�ϕ[w]‖M = inf{‖ϕ[v]‖M | v ∈M, 〈w, v〉 ∈ R};
• ‖�ϕ[w]‖M = sup{‖ϕ[v]‖M | v ∈M, 〈w, v〉 ∈ R}.

Every formula ϕ can be said to be interpreted in the model M by the
mapping fϕ : M −→ [0, 1] defined as w �→ ‖ϕ[w]‖

M
(we also say that

ϕ defines the mapping fϕ in the model M). Given an MD-sentence
〈ϕ1, ... , ϕk ;S〉, we write

M |= 〈ϕ1, ... , ϕk ;S〉,

4In this paper, we consider only this classical notion of frame, although the literature of
many-valued logics has also studied natural many-valued generalizations in which R would be
taken as a mapping fromM 2 to [0, 1] (or to other more general structures of truth-degrees);
see, e.g., [10].
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if the formulas ϕ1, ... , ϕk , respectively, define mappings f1, ... , fk in the
model M and 〈f1, ... , fk〉 ∈ S.

As with the first-order case, from the axioms and inference rules from [24]
we need to modify only the following:
Axioms.

(1) 〈ϕ1, ... , ϕk ; [0, 1]M × ...× [0, 1]M 〉 for any formulas ϕ1, ... , ϕk .

Inference rules.

(3) From

〈ϕ1, ... , ϕk ;S〉,
infer

〈ϕ1, ... , ϕk, ϕk+1, ... , ϕm;S × [0, 1]M × ...× [0, 1]M 〉,

and we also need to modify the notion of good tuple for Rule (7). Indeed,
given an MD-sentence 〈ϕ1, ... , ϕk ;S〉, now we say that a tuple 〈f1, ... , fk〉 ∈
S is good if

(a) fm = ◦(fm1 , ... , fmj ) whenever ϕm = ◦(ϕm1 , ... , ϕmj ),
(b) fi(w) = inf{fj(e) | e ∈M, 〈w, e〉 ∈ R} whenever ϕi = �ϕj, for all
w ∈M ,

(c) fi(w) = sup{fj(e) | e ∈M, 〈w, e〉 ∈ R} whenever ϕi = �ϕj, for all
w ∈M .

As before, we get the following (since the interpretations of the
propositional variables in � is what determines a model over F):

Lemma 16. Let 〈ϕ1, ... , ϕk ;S〉 be the premise of Rule (7) and assume that
G = {ϕ1, ... , ϕk} is closed under subformulas in the usual sense. Then, the
conclusion 〈ϕ1, ... , ϕk ;S ′〉 is minimized.

Once more, closely following the argument from [24], we may show that:

Theorem 17 Completeness of the logic of a fixed frame For Γ a finite set
of MD-sentences and � an MD-sentence, Γ �F � iff Γ �F �.

The proofs of Lemma 16 and Theorem 17 are very similar (modulo some
trivial modifications) to those of Lemma 8 and Theorem 13, respectively,
and thus we omit them. One might think of modal formulas as first-order
formulas in one variable, and then it is easy to see how the same arguments
work.

Remark 18. An interesting topic of research would be to extend this
multidimensional approach to many-valued first-order modal logics. This
can be done for a fixed frame and a fixed domain.
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§4. Axiomatizations of prominent first-order (and propositional modal)
real-valued logics. Recall that, in the context of classical first-order logic,
by the Löwenheim–Skolem theorem, the first-order sentences which are
true in all countably infinite models coincide with the sentences that are
true in all infinite models. For if ϕ is true in all countably infinite models,
then ¬ϕ cannot have any infinite model since otherwise ¬ϕ would have a
countably infinite model by the Löwenheim–Skolem theorem. Moreover,
the class of infinite models is axiomatizable in first-order logic: consider the
theory formed by the sentences “there are at least n elements” for all natural
numbers n > 0. Hence, the first-order sentences which are true in all infinite
models are recursively enumerable.

Let us analyze now what happens in the real-valued case. In this section,
we will consider only the case of languages without equality. This is a
very standard practice in mathematical fuzzy logic (e.g. [1, 7, 29, 34, 43,
44]). It is well-known that neither Łukasiewicz nor Product first-order logic
have a recursively enumerable set of validities with the semantics given on
[0, 1] (see [43] and [1], respectively). In contrast, Gödel first-order logic is
recursively axiomatizable [44], and both Łukasiewicz and Product logics can
be axiomatized by the addition of an infinitary rule (see [7, 29] and [34],
respectively).

Proposition 19. Let L be a first-order real-valued logic.5 Suppose that
we have a countable vocabulary without equality. Then, for any L-sentences
ϕ1, ... , ϕk and any finite sequence 〈r1, ... , rk〉 of reals from the interval [0, 1],
there is an L-model where ϕ1, ... , ϕk take values r1, ... , rk , respectively, if there
is an L-model with a countably infinite domain where ϕ1, ... , ϕk take values
r1, ... , rk , respectively. Moreover, the converse of this implication holds even if
the vocabulary has equality.

Proof. Suppose there is an L-model, M, where ϕ1, ... , ϕk take values
r1, ... , rk respectively. By [17, Theorem 31], if M is finite, one can build
an L-model with a countably infinite domain where ϕ1, ... , ϕk take values
r1, ... , rk , respectively (in fact there is a mapping between the two models
that preserves the truth values of all formulas). On the other hand, by [17,
Theorem 30], if M is infinite, one can build an L-model with a countably
infinite domain where ϕ1, ... , ϕk take values r1, ... , rk , respectively (in such a
way that the countable model can be chosen to be an elementary substructure
of the original that preserves the truth values of all formulas). �

From this proposition and Theorem 13, we immediately obtain that
consequence from finite sets of premises in Łukasiewicz, Product, and Gödel

5For example, L might be Łukasiewicz, Product, or Gödel first-order logic or, more
generally, any first-order extension of an algebraizable logic in the sense of [17].
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first-order real-valued logic (without equality) is complete with respect to
the MD-system of a countable domain:

Corollary 20. Let M be a fixed countably infinite domain, let L be either
Łukasiewicz, Product, or Gödel first-order real-valued logic without equality,
and let �L be the corresponding consequence relation. For any finite set
ϕ1, ... , ϕk, � of L-sentences, we have

〈ϕ1; {1}〉, ... , 〈ϕk ; {1}〉 �M 〈�; {1}〉 iff ϕ1, ... , ϕk �L �.

Observe that Corollary 20 would fail in the presence of equality in the
vocabulary. This is because general validity cannot be reduced to truth in
any particular infinite (even if only countable) model. The reason is that, if
� is the first-order sentence expressing that the size of the domain is 3 then
¬� would hold in every infinite domain M, whereas this cannot be a valid
sentence in any of the logics we are considering here since� holds in models
with universes of size 3. Thus, we would have that ��L ¬� but �M ¬�.

The purpose of any completeness theorem is to obtain the equivalence
between a universal statement (about validity) and an existential statement
(about the existence of a proof). The claim of existence of a proof is a Σ1

claim on the natural numbers when the proof system is arithmetizable. By
Corollary 20 and since neither Łukasiewicz nor Product first-order logic
has a recursively enumerable set of validities, our proof systems are not
arithmetizable when the domain is infinite.

Remark 21. Observe that, even in the case of classical logic (without
equality –the situation with equality is analogous and dealt with in §6),
the axiomatization we have presented here (when the domain in question
is infinite) cannot be recursive due to Rule (7), where most of the strength
of the present approach resides (cf. Remark 15). Naturally, there are much
more fine-tuned axiomatizations of classical logic and many of the real-
valued logics under consideration here, but the sacrifice we have made in
terms of the manageability of our proof system has been in the interest of
generality, so we can encompass all these logics at once.

Remark 22. Readers not familiar with encoding syntax and proofs in
set theory may skip this remark. By representing MD-sentences as sets and
proofs as sequences of such sets (similarly as things are done in infinitary
logic [18]), our notion of proof will be a Σ1 predicate (in the Lévy hierarchy)
over the set of all sets hereditarily of some sufficiently large cardinality κ
(in fact cardinality |2�| + 1 would suffice for the case of a countably infinite
fixed domain). Therefore, we have completeness in the same sense as it can
be obtained in infinitary proof systems. Let us sketch the details of this
formalization. Suppose that we fix a countable domain M. To each formula
φ we can assign a Gödel number �φ� in the usual manner [30]. We may then
assign to each MD-sentence 〈φ1, ... , φk ;S〉 the “Gödel set” �〈φ1, ... , φk ;S〉�
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which is simply the set 〈�φ1�, ... , �φk�;S〉 (using the Kuratowski definition
of ordered tuples). Take now the collection H (|2�| + 1) containing all sets
x hereditarily of cardinality < |2�| + 1 in the sense that x, its members,
its members of members, etc., are all of cardinality < |2�| + 1. Consider
now the following set-theoretic structure: 〈H (|2�|),∈� H (|2�| + 1)〉. All
Gödel sets 〈�φ1�, ... , �φk�;S〉 are elements of H (|2�| + 1). A collection
K ⊆ H (|2�| + 1) is said to be Σ1 on H (|2�| + 1) if it is definable in
the structure 〈H (|2�| + 1),∈� H (|2�| + 1)〉 by a set theoretic formula
equivalent to one built from atomic formulas and their negations by means of
the connectives ∧,∨, the restricted quantifier ∀x ∈ y and the quantifier ∃x.
One can check then that the notion of 〈�φ1�, ... , �φk�;S〉 being a provable
formula in our system is Σ1 on H (|2�| + 1) because it claims the existence
of a finite sequence of MD-sentences such that 〈�φ1�, ... , �φk�;S〉 is the last
element of such sequence and every MD-sentence in it has been obtained by
applying one of a finite number of rules to previous elements.

Remark 23. From the results in [46] we know that neither Łukasiewicz
nor Product modal logics on the interval [0, 1] have recursively enumerable
finitary “global” consequence relations.6 Hence, similarly to what we
observed for the first-order case, the approach here does axiomatize the
logics in question, but it gives recursive enumerability only when the frame
is finite, not in general.

Part of the interest of the present approach is the uniformity it provides
in axiomatizing the previously mentioned logics (which were known to be
axiomatizable by other infinitary methods). We are essentially giving one
recipe to deal with all cases. Moreover, none of our rules are explicitly infini-
tary and the infinitary component of our formulas is hidden in the sets S.

Finally, in general, we are clearly axiomatizing more levels of formal
reasoning than it could be done before, for preservation of value 1 is a
mere fraction of the possibilities that the present system actually handles.
The system axiomatizes genuine real-valued reasoning in all of Gödel,
Łukasiewicz, and Product first-order (and modal) logics.

§5. A zero-one law for MD-logics. Beginning with [20] in the context of
graph theory, a natural question that one can consider in general is: what
is the probability that a structure satisfies P when randomly selected among
finite structures with the same domain for a suitable probability measure?
Or, more interestingly, what do these probabilities converge to (if anything)
as the size of the domain of the structures grows to infinite? Well-known and
highly celebrated results show that when the properties under consideration
are expressible by formulas of a certain logic the probabilities converge

6This means that Γ � φ if for all models based on frames from a given class, if Γ is true at
all points (or worlds) of the model, then φ is similarly true in all of them.
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to either 0 or 1 (and so we say that the formula is either almost surely
false or almost surely true, respectively). After an early result for monadic
predicate logic [12], the topic of logical zero-one laws was properly started
independently in the papers by Glebskiı̆ et al [27] and Fagin [23] for first-
order classical logic on finite purely relational vocabularies.

In this section, we want to establish a zero-one law for certain MD-logics,
namely those based on suitable finite subalgebras of [0, 1] (of the form
〈A,∧A,∨A,&A,→A, 0A, 1A〉). For example, both Gödel and Łukasiewicz
logic have multiple finitely-valued versions (though Product logic does not),
and we will list some examples below. This restriction to the finite setting is
because we wish to have, when our vocabularies are relational and finite, only
a finite number of possible models on a given finite domain, in analogy to
what happens in classical logic in [23] (or in the finitely-valued case already
considered in [5]). Regarding infinitely-valued logics, the recent paper [4]
contains a zero-one law for infinitely-valued Łukasiewicz logic and related
systems.

Example 24 The algebra of Łukasiewicz 3-valued logic The algebra

Ł3 = 〈{0,
1
2
, 1},∧Ł3 ,∨Ł3 ,&Ł3 ,→Ł3 , 0, 1〉,

such that

• ∧Ł3(x, y) = min{x, y}
• ∨Ł3(x, y) = max{x, y}
• &Ł3(x, y) = max{0, x + y – 1}
• →Ł3 (x, y) = min{1, 1 – x + y}

More generally, we may consider any Łukasiewicz n-valued logic by using
the algebra Łn on the carrier set {0, 1

n–1 ,
2
n–1 , ... ,

n–2
n–1 , 1} and with the same

definitions of operations.

Example 25 The algebra of Gödel 4-valued logic The algebra

G4 = 〈{0,
1
3
,

2
3
, 1},∧G4 ,∨G4 ,&G4 ,→G4 , 0, 1〉,

such that

• ∧G4(x, y) = &G4(x, y) = min{x, y}
• ∨G4(x, y) = max{x, y}
• and for →G4:

→G4 (x, y) =

{
1 if x ≤ y
y otherwise.
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As in the previous example, we may also consider any Gödel n-valued
logic by using the algebra Gn on the carrier set {0, 1

n–1 ,
2
n–1 , ... ,

n–2
n–1 , 1} and

with the same definitions of operations.

Let us now recall some facts from classical finite model theory. Consider a
purely relational vocabulary. A sentence is said to be parametric in the sense
of Oberschelp in [40, p. 277] if it is a conjunction of sentences of the form

∀x1, ... , xk(�= (x1, ... , xk) → φ(x1, ... , xk)),

where �= (x1, ... , xk) is the conjunction of negated equalities expressing that
x1, ... , xk are pairwise distinct, and φ(x1, ... , xk) is a quantifier-free formula
where in all of its atomic subformulas Rxi1 ... xik we have that

{xi1 , ... , xik} = {x1, ... , xk}.
Moreover, for k = 1, any formula ∀x1φ(x1), where φ is a quantifier-free
formula, is parametric. For example,

∀x¬Rxx ∧ ∀x∀y(x �= y → (Rxy → Ryx)),

is a parametric sentence, whereas

∀x∀y∀z(�= (x, y, z) → (Rxy ∧Ryz → Rxz)),

is not.
Oberschelp’s extension [40, Theorem 3] of Fagin’s zero-one law [23] says:

on finite models and finite purely relational vocabularies, for any class K
definable by a parametric sentence, any first-order sentence ϕ will be almost
surely true in members of K or almost surely false. By “almost surely true”
here we mean that the limit as n goes to ∞ of the fraction of structures in K
with domain {1, ... , n} that satisfy a given sentence ϕ is 1 (and “almost
surely false” is defined analogously). Naturally, these fractions are well
defined because there is only a finite number of possible structures on finite
vocabulary on the domain {1, ... , n}. As we mentioned earlier, this fact is
what motivates our restriction to finitely valued logics in this section. A very
accessible presentation of Oberschelp’s result is [19, Theorem 4.2.3].

An appropriate translation for our purposes from finitely-valued first-
order logics into classical first-order logic is introduced in [3]. Namely, for
any sentence φ of a first-order logic based on a finite set A ⊆ [0, 1] of truth
values and element a ∈ A, we have a first-order sentence Ta(φ) such that,
for a certain theory Σ (which can be written as a parametric sentence in the
sense of Oberschelp [40]), Ta(φ) is satisfied by a classical first-order model
M model of Σ iff there is a corresponding first-order real-valued model M∗

where φ takes value exactly a.
The idea is that, starting with a relational vocabulary � containing

countably many predicate symbols Pn1 , P
n
2 , P

n
3 , ... for each arity n, we can

introduce a vocabulary �∗ containing predicate symbols Pnai for each a ∈ A
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and each n (the intuition here is that Pnai will hold of those objects for which
Pni takes truth value a in a given model), and the following translation from
[3] (where ◦ ∈ {∨,∧,&,→}):

Ta(Pni x1 ... xn) = Pnai x1 ... xn (i ≥ 1)

Ta(◦(�1, ... , �n)) =
∨

b1,...,bn∈A
◦A(b1,...,bn)=a

∧
1≤i≤n T

bi (�i)

Ta(∃x �) =
( ∨

k≤|A|
b1...bk∈A

max{b1,...,bk}=a

k∧
i=1

∃x Tbi (�)
)
∧

∧∀y (
∨
b∈A
b≤a

T b(�(y/x)))

Ta(∀x �) =
( ∨

k≤|A|
b1,...,bk∈A

min{b1,...,bk}=a

k∧
i=1

∃x Tbi (�)
)
∧

∧∀y (
∨
b∈A
a≤b

T b(�(y/x))).

Observe how the translations of quantified formulas exactly describe the
semantics of quantifiers in these finitely-valued logics (i.e., existential as
maximum of the truth values of instances of the formula and, dually,
universal as minimum). We use classical disjunctions to run over all the
possible choices of values b1, ... , bk ∈ A that would give value a as their
maximum (resp. minimum) and then write the conjunction of the necessary
conditions that make sure that these bi ’s are indeed values of instances of �
and any other instance would give a value smaller (resp. bigger) than a.

Next, we define the theory Σ given by:

∀x1, ... , xn(
∨
a∈A
Pnai x1 ... xn),

∀x1, ... , xn(¬(Pnai x1 ... xn ∧ Pnbi x1 ... xn)),
for a, b ∈ A, a �= b, Pni ∈ �.

For any A-valued model M for the vocabulary �, we can introduce a
classical model M∗ for the vocabulary �∗ such that for any a ∈ A, the value
of φ in M is a iff M∗ |= Ta(φ). M∗ is built by taking the same domain, M,
as in M and letting the interpretation of Pnai be the set of all elements from
Mn such that the interpretation of Pni in M assigns them value a. Observe
that M∗ is a model of the theory Σ. By a similar process, from any model N
of Σ, we can extract an A-valued model M such that N = M∗.
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Proposition 26. An MD-sentence 〈φ1, ... , φn;S〉 is almost surely true on
A-valued models with finite domains iff

∨
〈a1,...,an〉∈S(Ta1(φ1) ∧ ... ∧ Tan(φn))

is almost surely true on the finite models of Σ.

Proof. Suppose that 〈φ1, ... , φn;S〉 is almost surely true on A-valued
models with finite domains. But every finite model of Σ can be seen as an
M∗ for some finite A-valued model M, and M∗ |=

∨
〈a1,...,an〉∈S(Ta1(φ1) ∧

... ∧ Tan(φn)) iff M |= 〈φ1, ... , φn;S〉. Hence,
∨

〈a1,...,an〉∈S(Ta1(φ1) ∧ ... ∧
Tan(φn)) is almost surely true on the finite models of Σ. The other direction
follows by similar reasoning. �

Rewriting the theory Σ with some care, one can turn it into a parametric
sentence when � is finite. For example, suppose that � contains only a binary
predicate R. Then, Σ would have the form (for a, b ∈ A, a �= b):

∀x1∀x2(
∨
a∈A
Rax1x2),

∀x1∀x2(¬(Rax1x2 ∧Rbx1x2)).

This can be put into parametric form by considering instead (for a, b ∈ A,
a �= b):

∀x1(
∨
a∈A
Rax1x1),

∀x1∀x2(x1 �= x2 →
∨
a∈A
Rax1x2),

∀x1(¬(Rax1x1 ∧Rbx1x1)),

∀x1∀x2(x1 �= x2 → ¬(Rax1x2 ∧Rbx1x2)).

Theorem 27 (Zero-one law for MD-logics based on finite algebras). For
any finite relational vocabulary, any MD-logic based on a finite set of truth
values, and any MD-sentence 〈φ1, ... , φn;S〉, we have that 〈φ1, ... , φn;S〉 is
almost surely true in finite models or 〈φ1, ... , φn;S〉 is almost surely false in
finite models.

Proof. This is immediate by applying Oberschelp’s version in [40] of the
zero-one law in [23] and our previous observations. By Proposition 26, an
MD-sentence 〈φ1, ... , φn;S〉 is almost surely true iff

∨
〈a1,...,an〉∈S T

a1(φ1) ∧
... ∧ Tan(φn) is almost surely true on the parametric class defined by Σ. �

Remark 28. One might wonder what is the relationship of Theorem 27
with the central result from [5]. Suppose we have a 1-dimensional sentence
〈φ;S〉. Then, applying the zero-one law from [5], the value aφ that φ takes
almost surely is in S only if 〈φ;S〉 is almost surely true. Furthermore, if
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〈φ;S〉 is almost surely true, then aφ is in S because aφ is the value that φ
takes almost surely. Thus, in the 1-dimensional case, both zero-one laws are
equivalent, but only the 1-dimensional case, and not the 2-dimensional case,
is covered in [5]. Hence, the question really is whether for a finitely-valued
logic we would have that each MD-sentence is equivalent to a 1-dimensional
sentence. In [24], it is shown that there is a 2-dimensional MD-sentence not
equivalent to any 1-dimensional MD-sentence in logics based on the full
interval [0, 1]. Does the same hold for finitely-valued logics?

§6. The logic of all domains. In this section, we will be using the same
notion of model as in Definition 3 and we will allow the presence of equality
in the vocabulary. Now, for any given domain M, let us denote by LMD(M )
the finitary part of �M , that is, the set of all pairs 〈Γ, �〉 where Γ is a finite
set of MD-sentences, � is an MD-sentence, and every model over M of Γ
is a model of �. In this section, we intend to take the next natural step and
axiomatize the finitary part of the MD-logic of all domains, i.e., the logic⋂
M a domain LMD(M ). Let us denote this consequence relation simply as �.
What kinds of inferences can appear in

⋂
M a domain LMD(M )? Clearly, only

those not mentioning any of the domains M, since otherwise the inference
could be rather specific to a particular M. For example, an MD sentence
where a domainM ′ �=M is mentioned in the set S does not make sense in
models based on the domain M, or rather it is always false. Thus, we set
the goal of axiomatizing all the valid inferences Γ � � where Γ ∪ {�} is a
finite set of MD-sentences of the form 〈ϕ1, ... , ϕk ;S〉 with each ϕi being
sentences in the usual sense of a first-order predicate language and, hence,
S is simply a set of suitable tuples of truth values (thus without a mention
of any domain).

Example 29. The MD-sentence 〈ϕ1, ϕ2;S〉 where S = {〈0.5, 0.7〉} and
ϕ1 = ∀x Px and ϕ2 = ∀x(Px ∨Ux) is an example of the kind of MD-
sentence described above, where ϕ1 and ϕ2 are sentences in the usual first-
order sense of not having any free individual variables.

Focusing on logical entailments between this kind of MD-sentences, we
can restrict attention (without loss of generality) to the models based in the
following countable list of domains (let us call these the legal domains):

(i) the infinite domain of natural numbers {1, 2, ...},
(ii) for each natural number n, a domain Dn of size n (making sure that

they are pairwise disjoint and also disjoint from {1, 2, ...}).

This is because we have the following:

Proposition 30. Any MD-sentence 〈ϕ1, ... , ϕk ;S〉 (where, for each 1 ≤
i ≤ k, ϕi is a first-order sentence in the usual sense) with an infinite model has
a countable model too.
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Proof. Take M |= 〈ϕ1, ... , ϕk ;S〉, so ‖ϕi‖M = si (for 1 ≤ i ≤ k) for
some 〈s1, ... , sk〉 ∈ S. By Proposition 19, then if M is infinite, there is a
countable model M′ such that ‖ϕi‖M′ = si (1 ≤ i ≤ k) for 〈s1, ... , sk〉, and
hence M′ |= 〈ϕ1, ... , ϕk ;S〉, as desired. �

Consequently, if we denote the finitary part of the consequence relation
over legal domains by �legal, using Proposition 30, we can see that Γ �legal

� iff Γ � � (where Γ ∪ {�} is a finite set of MD-sentences of the form
〈ϕ1, ... , ϕk ;S〉 with eachϕi being sentences in the usual sense of a first-order
predicate language). This means that we can focus on axiomatizing �legal for
the class of MD-sentences that we have described in Proposition 30 (even
though proofs may involve manipulating all kinds of MD-sentences, like
those we will introduce in the next paragraph). Therefore, in what follows,
we will restrict ourselves to consider legal models, i.e., those based on a legal
domain.

The idea is to assume MD-sentences to have the form 〈ϕ1(xϕ1), ... ,
ϕk(xϕk );S〉 where each ϕi is a first-order formula whose free variables
are xϕi = xi1 , ... , xini (for some ni ≥ 0), and S ⊆ [0, 1]

⋃
M is legalM

n1 × ...×
[0, 1]

⋃
M is legalM

nk.

Example 31. Take a vocabulary � with one binary predicate R. Then, we
can build the MD-sentence 〈Rxy, ∀x∀y(Rxy → Ryx);S〉 where

S = {〈f, 0.5〉 | f :
⋃

M is legal

M 2 −→ [0, 1]}.

We want this sentence to be satisfied in a legal model M with domain
M if the truth value of ∀x∀y(Rxy → Ryx) is 0.5 and, furthermore, the
interpretation of R in the model M is the restriction to M of one of the
functions f described in the definition of S (which in this case, happens
trivially).

As expected, we may then write

M |= 〈ϕ1(xϕ1), ... , ϕk(xϕk );S〉,

if the formulas ϕ1(xϕ1), ... , ϕk(xϕk ), respectively, define functionsf1, ... , fk
on the domain M such that there are 〈f′

1, ... , f
′
k〉 ∈ S for which f1, ... , fk

are the respective restrictions to the domain M.
We transform Axiom (1) into (1)∗:

〈ϕ1(xϕ1), ... , ϕk(xϕk ), [0, 1]
⋃
M is legalM

n1 × ...× [0, 1]
⋃
M is legalM

nk 〉,

for all formulas ϕ1(xϕ1), ... , ϕk(xϕk).
Rules (2), (4), (5), and (6) from the original system are modified

analogously into (2)∗, (4)∗, (5)∗, and (6)∗. Rule (3) needs to be modified as:
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(3)* From

〈ϕ1(xϕ1), ... , ϕk(xϕk );S〉,
infer

〈ϕ1(xϕ1), ... , ϕk(xϕk ), ϕk+1(xϕk+1), ... , ϕm(xϕm);S×

[0, 1]
⋃
M is legalM

nk+1 × ...× [0, 1]
⋃
M is legalM

nm 〉.

Finally, Rule (7) is modified into Rule (7)∗ by changing the notion of good
tuple. Indeed, given an MD-sentence 〈ϕ1(xϕ1), ... , ϕk(xϕk );S〉, we will say
that a tuple 〈f1, ... , fk〉 ∈ S is good if for some legal domain M

(a) fm �M = ◦((fm1 �M ), ... , (fmj �M )) whenever
ϕm(xϕm) = ◦(ϕm1(xϕm1

), ... , ϕmj (xϕmj )),

(b) (fi �M )(e1, ... , enj ) = inf{(fj �M )(e1, ... , enj , e) | e ∈M} when-
ever ϕi(xϕi ) = ∀y ϕj(xϕj ), for all e1, ... , enj ∈Mnj ,

(c) (fi �M )(e1, ... , enj ) = sup{(fj �M )(e1, ... , enj , e) | e ∈M} when-
ever ϕi(xϕi ) = ∃y ϕj(xϕj ), for all e1, ... , enj ∈Mnj .

Rule (7)∗ is clearly sound with respect to the relation �legal since we are
only considering models based on legal domains.7 Given this system, we
denote the corresponding provability relation simply as �.

Remark 32. Observe that the complexity of identifying an application of
Rule (7)∗ by constructing S ′ is the same, generally speaking, as in the case of
a fixed countably infinite domain and Rule (7). This is because, for example,
in the latter case, in order to identify which tuples are in S ′, one might still
need to compute the infimum of an infinite set without any nice structure in
general in the process of verifying the value of a universal quantification.

We will say that 〈ϕ1(xϕ1), ... , ϕk(xϕk );S ′〉 is minimized if when
〈f1, ... , fk〉 ∈ S ′, then there is a legal model of 〈ϕ1(xϕ1), ... , ϕk(xϕk );S ′〉,
M, such that for 1 ≤ i ≤ k the interpretation of ϕi(xϕi ) is fi �M .

Lemma 33 (Minimization Lemma). Let 〈ϕ1(xϕ1), ... , ϕk(xϕk );S〉 be
the premise of Rule (7)∗ and assume that G = {ϕ1(xϕ1), ... , ϕk(xϕk )}
is closed under subformulas in the usual sense. Then, the conclusion
〈ϕ1(xϕ1), ... , ϕk(xϕk );S ′〉 is minimized.

Proof. Assume that 〈f1, ... , fk〉 ∈ S ′. Since G is closed under subfor-
mulas, there is a legal domain M and a subsequence of 〈g1, ... , gj〉 of
〈f1, ... , fk〉 such that 〈g1 �M, ... , gj �M 〉 determines interpretations on

7Notice that if in Rule (7)∗ we had written “for each legal domain” instead of “for some
legal domain” in the definition of a good pair, the soundness argument would not work for
the resulting rule.
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M for the atomic formulas appearing in G, i.e., interpretations for the
predicates of the vocabulary � in question. But this subsequence then defines
a legal model M based on the domain M where the interpretations of
ϕ1(xϕ1), ... , ϕk(xϕk ) are as indicated by 〈g1 �M, ... , gj �M 〉. �

Lemma 34. The conclusion and premises of rules (2)∗, (3)∗, (4)∗, and (7)∗

are logically equivalent.

Lemma 35. Minimization is preserved by the rules (2)∗ and (4)∗, i.e., if the
premises of the rules are minimized, then their conclusions are too.

With these key facts at hand, the soundness and completeness proof goes
through basically as before:

Theorem 36 (Completeness of the logic of all legal domains). Let Γ ∪ {�}
be a finite set of MD-sentences in a first-order predicate language with equality.
Then, Γ � � iff Γ �legal �.

Corollary 37 (Completeness of the logic of all domains). Let Γ ∪ {�}
be a finite set of MD-sentences of the form 〈ϕ1, ... , ϕk ;S〉 with each ϕi being
a sentence in the usual sense of a first-order predicate language with equality.
Then, Γ � � iff Γ � �.

Remark 38. The approach provided in this section allows us now to
axiomatize, in particular, the valid finitary consecutions (i.e., pairs of the
form 〈Θ, �〉 where Θ is a finite set of first-order sentences and � a first-order
sentence such that the former logically entails the latter, see, e.g., [15]) of
each of Łukasiewicz, Product, Gödel, and real-valued logics with equality.
This is analogous to what we did in Corollary 20. Hence, to deal with the
presence of equality in the logic, we had to leave the realm of the fixed
countable domain from Corollary 20 and, instead, study all domains that
can be distinguished by the expressive power of a first-order language with
equality (namely, all finite domains in addition to a countably infinite ones).

Another interesting consequence of our approach is that we can provide
a finitary axiomatization of the valid inferences on finite models for any
real-valued logic. Let the class of legal∗ domains be that of the legal domains
minus the one countably infinite domain (so we are keeping only the finite
domains). One can then modify the axiomatization given above by replacing
the legal domains by the legal∗ ones. Clearly, Γ �legal∗ � iff Γ �finite �, where
�finite is the obvious logical consequence over all finite domains (notice that
the legal domains are just a specific subset of all finite domains). Exactly as
we did previously, we can obtain:

Theorem 39 (Completeness of the logic of all finite domains). Let Γ ∪ {�}
be a finite set of MD-sentences in a first-order predicate language with equality.
Then, Γ � � iff Γ �legal∗ � iff Γ �finite �.
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By a well-known theorem of Trakhtenbrot [45], the validities of classical
first-order logic on finite models are not recursively enumerable. In the
real-valued setting, the result was generalized in [8] to a large class of
logics. This entails that, once more, our axiomatization cannot possibly
be recursive. In fact, we can observe that the problem of determining
whether S ′ = ∅ in Rule (7)∗ of our axiomatization is not recursively
enumerable, which explains why our system is not recursive. This is
because we can reduce the problem of whether a sentence of classical
first-order logic is valid in the finite to whether S ′ = ∅. Take a first-
order sentence ϕ and let ϕ1(xϕ1), ... , ϕk(xϕk ), ϕ be the list of all its
subformulas. Consider now the MD-sentence 〈ϕ1(xϕ1), ... , ϕk(xϕk ), ϕ;S〉
(call it �) where S := {0, 1}

⋃
M is legalM

n1 × ...× {0, 1}
⋃
M is legalM

nk × {0}. Take
now the MD-sentence obtained by applying our Rule (7) to this sentence,
〈ϕ1(xϕ1), ... , ϕk(xϕk ), ϕ;S ′〉 (call it �′). Observe that � and �′ are
equivalent. Furthermore, ϕ is valid on all finite models iff ¬ϕ has no finite
model iff � is not satisfiable in a finite domain iff �′ is not satisfiable in a
finite domain. Finally, by minimization and the semantics of MD-sentences,
�′ is not satisfiable in a finite domain iff S ′ = ∅.

Remark 40. An alternative approach to the one followed in this section
would have been to take instead of MD-sentences, “MD-formulas” to be
objects of the form 〈ϕ1(xϕ1), ... , ϕk(xϕk );S〉 where S is a set of tuples of
truth values. Then, given a first-order model M and assignment variable v
to the free individual variables in 〈ϕ1(xϕ1), ... , ϕk(xϕk );S〉, we say that M
satisfies 〈ϕ1(xϕ1), ... , ϕk(xϕk );S〉 under the assignment v if

〈‖ϕ1[v(xϕ1)]‖M, ... , ‖ϕk[v(xϕk )]‖M〉 ∈ S.

With this modification, everything we have done in this section would work in
a very similar manner manner as long as we modify Rule (7)∗ appropriately:
given an MD-formula 〈ϕ1(xϕ1), ... , ϕk(xϕk );S〉, we will say that a tuple
〈s1, ... , sk〉 ∈ S of truth values is good if for some model M and variable
assignment v for the signature of 〈ϕ1(xϕ1), ... , ϕk(xϕk );S〉 based on a legal
domain M,

(a) sm = ◦(sm1 , ... , smj ) whenever ‖ϕm[v(xϕm)]‖M = sm, ‖ϕm1 [v(xϕm1
)]

‖M = sm1 , etc., and ϕm(xϕm) = ◦(ϕm1(xϕm1
), ... , ϕmj (xϕmj )),

(b) si = inf{‖ϕj [vy 
→e(xϕj )]‖M | vy 
→e, e ∈M} whenever ϕi(xϕi ) =
∀y ϕj(xϕj ), and vy 
→e is an assignment just like v except that the
value of variable y is made e, and if ϕj(xϕj ) appears on the left-hand-
side of our MD-formula, ‖ϕj [v(xϕj )]‖M = sj ,

(c) si = sup{‖ϕj [vy 
→e(xϕj )]‖M | vy 
→e, e ∈M} whenever ϕi(xϕi ) =
∃y ϕj(xϕj ), and vy 
→e is an assignment just like v except that the
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value of variable y is made e, and if ϕj(xϕj ) appears on the left-hand-
side of our MD-formula, ‖ϕj [v(xϕj )]‖M = sj .

With this new rule, once can reproduce the proof of the Minimization
Lemma and the rest works in an analogous way.

§7. Conclusion. In this article, we have proposed a new paradigm for deal-
ing with inference in first-order (and modal) real-valued logics. By means
of the syntax of multi-dimensional sentences, we have obtained a high level
of expressivity that goes beyond the usual preservation of full truth given by
the value 1 and surpasses even the expressivity of rational Pavelka logic or
other fuzzy logics with truth-constants (see, e.g., [21, 22]). As usual, there
is a trade-off between expressivity and effectivity of any logical formalism.
In our case, we have presented axiomatic systems that are not finitistic in
the sense of metamathematics [30] because MD-sentences contain a hidden
infinitary component (that is, the sets S), but yet these systems involve only
finitary rules. We have proved corresponding completeness theorems in a
similar sense as they had been obtained with ad hoc infinitary proof systems
for some particular real-valued logics (see [29, 34]), but now in a general,
uniform, parameterized way. However, it should be stressed that on finite
domains our proof systems become finitistic and everything works as in the
propositional case. Finally, sentences incorporating weights can be handled
completely analogous to the way it is done in [24]. As open problems that
we have not solved in this paper and remain as matters for future research
we may mention the question whether one can extend, in the case of modal
logics, the completeness theorem for the logic of a fixed frame (Theorem 17)
to logics corresponding to meaningful classes of frames, and the problem of
developing the multidimensional approach for first-order modal logics.
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