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Semiconductor microcavities: towards polariton lasers
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In this review paper we address one of the most rapidly developing new domains of semiconductor 
optics: light-matter coupling in semiconductor microcavities. Using the non-local dielectric 
response theory and transfer matrix technique, we show how two-dimensional confinement of a 
photonic mode coupled to an exciton resonance results in the appearance of two branches of exciton-
polaritons, quasi-particles combining properties of photons and excitons. We obtain the dispersion 
relations of polaritons in microcavities and derive a condition for strong-weak coupling threshold. 
We show that being bosons, exciton-polaritons are subject to Bose-condensation which might result 
in emission of a coherent and monochromatic light in the strong coupling regime. A source of such 
coherent light is referred to as a polariton laser. We show that polariton lasers have theoretically no 
threshold and require essentially new basic physics as compared to conventional lasers described by 
Einstein theory. We give examples of model polariton laser structures expected to work at room 
temperature and overview the main difficulties on the way to producing these new opto-electronic 
devices.

 

1 Introduction

The decade 1992-2002 in semiconductor optics can be
called “decade of microcavities”. Hundreds if not thou-
sands of papers dedicated to the physics of light-matter
interaction in microcavities have appeared. Still,  cavi-
ties remain one of the most intriguing semiconductor
systems, extremely rich with new fundamental effects.
Among such effects, we can mention the strong cou-
pling of photons and excitons, the optical coupling of
macroscopically separated quantum wells, giant Fara-
day rotation, motional narrowing and stimulated scatter-
ing of exciton-polaritons, their weak localization and
their Bose-condensation. Many laboratories all over the
world now work on enhancing the growth of microcav-
ity samples, whose which is perpetually on the increase.
All kinds of available optical  spectroscopy techniques
have been applied to study the properties of  exciton-
polaritons in microcavities. The observed phenomena
are still puzzling  theorists involved in these studies.

We do not claim to assemble a comprehensive story
of microcavities physics from start to finish, not to men-
tion that the story itself is far from over. We try to give
here an overview of the first decade of the "microcavity
boom". 

Our point of view on the theory of cavity polaritons
can be briefly formulated as follows: We suppose that
the most natural and simple way to interpret optical
effects (all effects connected with the polaritons are
optical effects) is to recourse to classical optics. We will
avoid in this paper the unnecessary use of quantum
mechanics and will consider light interaction with exci-
tons in terms of Maxwell equations written for a system
having a non-local dielectric response function. We are
convinced that the language of classical optics is the one
most adapted  to description of  coherent optical spectra
(reflection, transmission and resonant elastic scattering
spectra), and can be successfully applied to interpret a
number of non-linear effects in  cavities. We will only
use the alternative formalism of quantum electrodynam-
ics when talking about Bose-condensation of exciton-
polaritons and perspectives on the realization of the
polariton laser. 

Historically,  studies of  microcavities have been
started by reflectivity measurements that  reveal the
strong coupling between the exciton resonance and the
confined cavity mode (Weisbuch, 1992  [1]). This is why
we begin this paper with a careful calculation of light
reflection by the basic elements of a microcavity,
namely, Bragg mirrors and quantum wells. We introduce
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the exciton-polaritons in quantum wells following the
works of Andreani, Bassani and Ivchenko (1980s  [2]
[3] [4]). Using the transfer matrix formalism we show
how to obtain the dispersion equations for exciton-
polaritons in microcavities. 

Then we focus on the most recent experimental data
on the dynamics of energy relaxation of exciton-polari-
tons in microcavities. Observation of  stimulated scatter-
ing of exciton-polaritons by Savvidis et al (2000)  [5]
has opened a new field that is attacting  a huge number
of experimental groups and theorists. Bosonic behavior
of polaritons, evidenced in the experiments of Baum-
berg and his collaborators inspired many speculations
on the possibility of the realisation of a new generation
of opto-electronic devices, polariton lasers, lasers which
do not require inversion of population. We shall care-
fully describe all the main mechanisms of polariton
relaxation in the cavities, namely, scattering with acous-
tic and optical phonons, polariton-polariton and polari-
ton-electron scattering. The famous “bottleneck”
problem that prevents realization of polariton lasers will
be addressed. Finally, we give a simple theory of polari-
ton Bose condensation in a finite two-dimensional sys-
tem and discuss a possibility of realisation of a polariton
laser.

We have limited our scope to microcavities in the
strong coupling regime only. For all effects connected
with vertical cavity surface emitting lasers (VCSELs) or
light-emitting diods (VCLEDs) the reader is referred to
the vast literature existing on the subject.

2 How typical microcavities look.

A typical microcavity structure is schematically shown
on figure 1. It consists of a planar Fabry-Perot cavity
sandwiched between two so-called Bragg mirrors and
containing an embedded quantum well (QW) (figure
1a), or, possibly, a thin layer of bulk semiconductor,
multiple QWs (figure 1b), quantum wires or quantum
dots. A Bragg mirror is a periodical structure made up of
two semiconductor or dielectric materials having differ-
ent refractive indices. The thicknesses of layers are cho-
sen so that the light reflected by all the interfaces
interferes negatively within a spectral range further
referred to as the stop-band. In high-quality structures,
reflectivity of Bragg mirrors within the stop-band
exceeds 99%. Their spectral width is 100 meV wide.
The thickness of the cavity layer usually ranges  from
one to three times the wavelength of light in the center
of the stop-band. A so-called cavity mode, i.e. a light-
mode confined in the cavity, has a finesse dependent on
the reflectivity of the mirrors. It can be as high as 1500-
2000 in the best samples. In quantum microcavities the
parameters of Bragg mirrors and cavity are chosen to
have a resonance between the cavity mode frequency

and the exciton transition in a quantum structure embed-
ded into the cavity. We recall that excitons are Coulomb-
correlated electron-hole pairs characterized by discrete
transition frequencies. Effects originating from coupling
of the exciton resonance to the cavity mode are referred
to as exciton-polariton effects where an exciton-polari-
ton is a half-light-half-matter crystal excitation, a quasi-
particle combining properties of excitons and photons.

Exciton-polaritons, predicted theoretically by
Hopfield  [6] and by Agranovich  [7] [8] in the begin-
ning of 1960s, have been extensively studied in bulk
semiconductor materials, thin films  [9] [10],  quantum
wells  [11] [12], quantum wires and dots  [13] [14].
They can be interpreted  as virtual exciton-photon pairs
that propagate through the crystal because of a chain of
virtual absorptions and emissions of photons by exci-
tons. It is essential to note that the polariton states are
true eigen-states of the system, so that once polaritons
are present, there are no more pure excitons or photons.
Though the original theory of exciton-polaritons was
written with the formalism of second quantization, it has
been quickly understood that the so-called semi-classi-
cal approach is formally equivalent to the quantum
description for any linear optical problem. Within the
semi-classical approach, which will be used in most  of
this paper, the Maxwell equations are solved for light
propagating within a dielectric media characterized by
frequency-dependent (and eventually wave-vector-
dependent) complex polarization induced by excitons.
Dispersion of exciton-polaritons in this case is nothing
but dispersion of light modified by the presence of the
exciton resonance. The semi-classical technique is very
suitable for the calculation of coherent optical spectra
(reflection, transmission, and elastic scattering),
although it hardly describes the energy relaxation and
dephasing of exciton-polaritons.

Exciton-polaritons in microcavities have very partic-
ular properties resulting from the reduced dimensional-
ity of the system with respect to semiconductor
structures with no optical confinement. In particular, the
strength of exciton-light coupling is greatly enhanced in
microcavities, which results in so-called strong-cou-
pling regime manifested by anticrossing of the exciton-
polariton modes observed for the first time by Claude
Weisbuch et al  [1] in 1992. The sample chosen for this
experiment was spatially inhomogeneous in the plane,
thus providing experimentalists with an opportunity to
tune the cavity mode to the exciton resonance by chang-
ing the light spot’s position on the surface of the sample.
They  found a point of exact resonance between the
light-mode and the exciton resonance where the reflec-
tion spectrum exhibited two distinct dips corresponding
to two exciton-polariton eigen-modes of the microcav-
ity. Figure 2 shows a series of reflection spectra calcu-
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lated for a GaN-based microcavity sample similar to one
studied studied in Ref.  [1], except that it is GaN-based
instead of GaAs-based.  These eigen-modes appeared to
split at the anticrossing point that defines the strong-
coupling regime. Splitting between modes at this point
is widely referred to as vacuum field Rabi-splitting or
simply Rabi-splitting, although originally the term Rabi-
splitting was used in atomic physics for a different
effect. Note that in the opposite case of the weak-cou-
pling regime, there is no splitting between polariton
eigen-modes at the crossing point. The weak-coupling
regime is achieved, in particular, in VCSELs and
VCLEDs.

In this paper we will only discuss the phenomena
characteristic of the strong coupling regime. Among
these phenomena we should mention first of all the par-
ticular dependence of the polariton eigen-frequencies of
the in-plane wave-vector of the incident light. This
dependence further referred to as in-plane dispersion of
cavity polaritons has been experimentally measured by
angle-resolved reflection by Houdré et al  [15]. It has
been shown that the shape of polariton despersion
curves is strongly dependent on the detuning between
bare cavity mode ωc(k) and bare exciton mode ω0(k) at

zero in-plane wave-vector k=0. The detuning is given by
ωc(0) - ω0(0).  Figure 3 shows three typical dispersion

curves of cavity polaritons calculated for positive, zero,
and negative detunings and for a GaN-based microcav-
ity containing 9 QWs. One can see that at small k, dis-
persion of exciton-polaritons in the cavity is essentially
parabolic and can be characterized by an effective mass,
while this mass varies dramatically as a function of
detuning. The possibility to tune the polariton’s effective
mass over a wide range is an important peculiarity of
microcavities.

Between 1992 and 2002 a variety of microcavity
structures have been studied. Observed Rabi-splittings
reached almost  30 meV in the best inorganic cavities
and an order of magnitude larger in organic cavities.
External magnetic field has been shown to increase the
polariton splitting. Microcavities containing layers of
bulk semiconductor, multiple QWs, quantum wires and
dots, as well as coupled microcavities, pillar microcavi-
ties, photonic cavities have been studied. Some of these
structures offering new optical effects are treated in this
paper. Conventional microcavities with embedded QWs
have shown the greatest number of interesting phenom-
ena. In the end of 1990s, the scientific community

enthusiastically discussed so-called motional narrow-
ing effect  [16] [17] initially associated  with observed
narrowing of polariton spectral resonances in the vicin-
ity of the anticrossing point. Further deep studies of the
disorder scattering of cavity polaritons helped to under-
stand the dynamics of these unusual quasi-particles. 

2000 was a revolutionary year in the physics of
microcavities. In the beginning of that year, research
groups from Southampton and Sheffield reported obser-
vations of very strong stimulated scattering of exciton-
polaritons which evidenced that polaritons behave as
good bosons and can, in principle, Bose-condense  [5].
Numerous works devoted to relaxation dynamics of
polaritons in microcavities followed this discovery. The
challenge has been to observe Bose-condensation of
exciton-polaritons, an extremely fascinating effect likely
to be exploited in future polariton lasers  [18] [19].  At
the moment of submission of this manuscript we are
aware of only few works claiming experimental evi-
dence of polariton lasing  [20] [21].  New materials
should necessarily come into play in order to allow for
Bose-condensation of exciton-polaritons at room tem-
perature.

We estimate potentialities of microcavities both for
the basic studies and applications as very high. Much
has to be done to understand quantum kinetics of exci-
ton-polaritons and their spin-relaxation mechanisms.
Intriguing consequences of Bose-condensation of
polaritons, such as the optical Josephson effect  [22], to
give an example, are awaiting for investigation. Our
knowledge about microcavity polaritons is far from
being complete; its improvement is certainly in the
hands of the reader.

3 Reflection and transmission of light by 
quantum wells containing excitons.

Here we derive amplitude reflection and transmission
coefficients for light incident on a quantum well in the
vicinity of the exciton resonance frequency.

3.1 Normal incidence case.

Let us consider a light-wave propagating in dielectric
media homogeneous in the plane of the wave (xy-plane)
but possibly inhomogeneous in the propagation direc-

tion (z-direction). Electric and magnetic  fields of
the wave are given by the set of Maxwell equations:
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,                           (3.1)

 

where ,  being the dielectric polarisa-
tion vector. Consider a QW parallel to the plane xy and
characterized by an exciton resonance frequency ω0.
The displacement field near this frequency can be writ-
ten as:

,                                            (3.2)

 

where  is the excitonic contribution to the dielec-
tric polarization, εB is the background dielectric con-
stant, taken to be the same in the QW and surrounding
barriers for simplicity. Equations ((3.1)) and ((3.2))
yield:

,                                 (3.3)

 
where k0=ω0/c is the wave-vector of light in vac-

uum.
In the local model:             

                       ,                             (3.4)

 
where χ(z) is the local dielectric susceptibility. This

simplest model of all can be successfully applied for
description of cw experiments in QWs. It fails to
describe correctly the dynamics of exciton-polaritons in
quantum structures. Thus for the purposes of this paper
it is not suitable. The reader can find a detailed descrip-
tion of the local model applied both to QWs and super-
lattices in the book by Ivchenko and Pikus  [23].

In the rest of this section we will follow so-called
non-local dielectric response theory developed by
Andreani, Bassani and Ivchenko in 1980s to describe
the optical response of excitons in QWs  [2] [3] [4].  It
takes into account the fact that if an exciton appears at

the point z' of the crystal, the dielectric polarization is
changed at all points z within the exciton wave-function.
This effect is conveniently described in framework of
the theory of spatial dispersion in the optical media,
where the exciton wavefunction plays the role of the
correlation function. This theory is based on an assump-
tion that the exciton-induced dielectric polarization can
be written in form:

,                                        (3.5)

 
where

,                                          (3.6)

 
with

.

 
Here Φ(z) is the exciton wavefunction taken with

equal electron and hole coordinates (thus, z is the coor-
dinate of both electron and hole), ω is the frequency of
the incident light, γ is the homogeneousbroadening of
the exciton resonance caused by acoustic phonons, ωLT

and aB are two intrinsic excitonic parameters called lon-

gitudinal-transversesplitting and Bohr radius. Physi-
cally, the exciton Bohr radius is analogous to the
hydrogen atom’s Bohr radius, it is proportional to the
average distance between electron and hole for the
ground exciton state. aB in GaAs is 150Å, in wide-band
semiconductors it is 2-4 times less. ωLT is a measure of
exciton-light coupling strength in bulk semiconductors.
For the ground exciton state in GaAs hωLT=0.08 meV,
while in wide-band-gap materials (GaN, ZnO) it is an
order of magnitude larger. Equation (3.6) is based on a
micro-model described in detail by Haug and Koch
[24]. 

Once the polarization (3.5) is introduced, Equation
(3.3) becomes an integro-differential equation and can
be solved exactly with use of the Green-function
method. Within this method solution of Equation (3.3) is
represented in a form

,                         
(3.7)
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where is the amplitude of the incident light. The
Green-function G is subject to the equation

,             .         (3.8)

 

Having in mind that  one can

easily check that G is

.                                                  (3.9)

 
Equation (3.7) still should be solved with respect to

E(z) which appears in both the left and right parts. In
order to do so, let us multiply both parts by Φ(z) and
integrate over z. This procedure leads to:

,    (3.10)

 
which means that

 .                      

(3.11)

 
Now we come back to Equation (3.7) and substitute

((3.11)) into its right part: 

        

(3.12)

 
Using ((3.9)) we finally obtain

,          

(3.13)

 
Now the amplitude reflection (r) and transmission (t)

coefficients of the QW can be obtained as:

, .                     (3.14)

 
If we consider a ground exciton state, Φ(z) is an even

function, and the integrals in the right part of Equation
(3.13) can be easily simplified. 

In the limit of z→+∞:

;

 
in the limit of z→-∞:

.

   

.

 
This allows to obtain reflection and transmission

coefficients of the QW in a simple and elegant form:

                                     (3.15)

   

,                                               (3.16)

 
where

                                       (3.17)

 
is an important characteristic further referred to as

the exciton radiative broadening, and

                      

(3.18)

 
is the renormalisation of the exciton resonance fre-

quency due to the polariton effect. 
The radiative broadening Γ0 is connected to the exci-

ton radiative lifetime τthrough the relation

.                                                  (3.19)
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A finite exciton radiative lifetime is a particularity of
confined electronic systems. In an infinite bulk crystal,
an exciton-polariton can freely propagate in any direc-
tion and its lifetime is limited only by non-radiative pro-
cesses like scattering with acoustic phonons.
Conversely, in a QW, an exciton-polariton can disappear
by giving its energy to a photon emitted in a perpendicu-
lar direction to the QW plane. The polariton effect (also
sometimes referred to as a retardation effect) consists in
this case of the possibility for the emitted photon to be
reabsorbed once again by the same exciton. The chain of
virtual emission-absorption leads to a finite value of τ
and is also responsible for the renormalization of the
exciton frequency (3.18). The renormalization does not
exceed a few µeV in realistic QWs, while it becomes
more important in quantum dots. The radiative lifetime τ
is about 10 ps in typical GaAs-based QWs. Though it is
extremely hard to observe free excitons in the photolu-
minescence governed mainly by excitons localized at
imperfections of a QW, the lifetime τ of a free exciton of
12 ps has been experimentally measured by Deveaud et
al  [25] on a record quality 100Å-thick GaAs/AlGaAs
QW.

3.2 Oblique incidence case.

If light is incident on a QW at oblique angle, Equation
(3.3) takes a more complex form. Here we examine
reflection and transmission of linearly polarized light for
TE-polarization (electric field of the light wave in the
QW plane, also called s-polarization) and TM-polariza-
tion (magnetic field of the light wave in the QW plane,
also called p-polarization). Any light-wave having a dif-
ferent polarization can be represented as a linear combi-
nation of TE- and TM-polarized waves. In the rest of
this section we follow Ref.  [26].

Thus, in s-polarization, reflection and transmission
coefficients are given by:

      ,                                    

(3.20)

 

where , and ϕ is the incidence angle. 
In p-polarization, reflection and transmission coeffi-

cients have a more complex form:

rp = p0 − p1 ,

tp = 1+  p0 + p1 ,                                         (3.21)

 
where

, 

,

 
the parameter Γx,z is proportional to the oscillator

strength for excitons polarized parallel and normal to the
interface, and ∆ω0 is the splitting between these states.
As follows from interband selection rules, Γz = 0 for e1-
hh1 excitons, whereas for the e1-lh1 state both Γz and Γx

are nonzero: Γz ≈ 4 Γx (here e, hh, and lh denote the
terms electron, heavy hole, and light hole, respectively).
Therefore two poles separated by an angle-dependent
value of ∆ω0 are present in the expression for the p-
polarized reflection or transmission coefficient near the
light-hole exciton resonance. The allowance for the sec-
ond pole is important for sufficiently large values of ϕ.

4 Reflectivity of Bragg mirrors.

4.1 Normal incidence case.

A Bragg mirror is a periodical structure composed of
pairs of layers of dielectric or semiconductor materials
characterized by different refractive indices (say; na and
nb). The thicknesses of the layers (a and b, respectively)
are chosen so that

.                                                    (4.1)

 
Condition ((4.1)) is usually called Bragg interfer-

ence condition. The wavelength of light  marks the
center of the stop-band of the mirror, i.e., the band of the
wave-lengths for which the reflectivity of the mirror is
close to unity. In the following we will assume na<nb.
We shall describe the optical properties of the mirror
within its stop-band using the transfer matrix technique. 

At normal incidence, the transfer matrices across the
layers which compose the mirror are (see Appendix for
details):

,  

,                  (4.2)
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where , and  . The transfer

matrix  across the period of the mirror is given by
their product:

.                                                        (4.3)

 
An infinite Bragg mirror represents the simplest one-

dimensional photonic crystal. Its band structure is given
by the equation

,                                             (4.4)

 

where Tij are matrix elements of  and Q is the
effective wave-vector of light in a mirror. Equation (4.4)
is derived in the Appendix.  Its solutions with real Q
form allowed photonic bands, while solutions with a
complex Q having a nonzero imaginary part form photo-
nic gaps or stop-bands. 

At the central frequency of the stop-band, given by

,                                                       (4.5)

 

the matrix  becomes:

.                                               (4.6)

 
Its eigen values are:

,      .                            

(4.7)

 
The reflection coefficient of a semi-infinite Bragg

mirror at  can be found from the condition:

,                                     (4.8)

 
which readily yields r=1.

In the vicinity of  one can derive a simple and
useful expression for the reflection coefficient leaving in

the matrix only terms linear in

  .                                                 (4.9)

 
The matrix reads, in this approximation,

.                                    (4.10)

 
Equation (4.8) yields in this case

,   

                          (4.11)

 
where

.                                                 (4.12)

 
The coefficient

                                                    (4.13)

 
is frequently called effective length of a Bragg mir-

ror. Note that it has nothing in common with the pene-

tration length of the light-field into the mirror at

.  can be easily obtained from the eigen-values
of the matrix ((4.6)),

.                                                         (4.14)
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Figure 4 shows the profile of an electric field of a
light wave propagating in a Bragg mirror at the center of
the stop-band. Decay of the field is dependent on the
contrast between refractive indices nA and nB: the higher
the contrast, the faster the decay.

For a finite-size mirror, the reflection coefficient
within the stop-band is different from unity because of
the tunneling of light across the mirror. It can be found
from the matrix equation:

,                                            (4.15)

 

where  and  are amplitude reflection and trans-
mission coefficients of the mirror, Nis the number of
periods in the mirror, and nf is the refractive index
behind the mirror. At the center of the stop-band, 

,    

.                                 (4.16)

 
As follows from these formulae, the higher the con-

trast between nA and nB, the better the reflectivity of the
mirror. In many cases we shall approximate the reflec-

tion coefficient of the mirror in the vicinity of  by

.                                                  (4.17)

 
Note that, strictly speaking, this approximation is

valid only if light propagates normal to the surface of
the mirror. Oblique incidence of light on a Bragg mirror
will be considered later in this section.

One more important characteristic of a Bragg mirror
is the width of its stop-band. It can be found from Equa-
tion (4.4). Boundaries of the first stop-band are given by
a condition:

(T11 + T22)/2 = −1.                                           (4.18)

 
Keeping only terms up to the second order in x one

can transform this equation:

.                                     (4.19)

 
The splitting between the two solutions is propor-

tional to the stop-band width (in frequency):

.                                                (4.20)

 
The stop-band width increases with increase of the

contrast of two refractive indices. Note, that Equation

(4.20) is valid only if , i.e.

,                                                 (4.21)

 
which is usually the case in realistic structures. Oth-

erwise, one should solve Equation (4.18) numerically.

4.2 Oblique incidence case.

Under oblique incidence the optical thickness of layers
composing Bragg mirrors changes. The phase gained by
light crossing a layer of thickness a under an angle θA is
given by

,                                           (4.22)

 
where nA is the refractive index of this layer. It is

evident that the frequency which fulfills the Bragg inter-
ference condition φ = π/2 is higher for oblique angles
than for a normal angle. That is why, at oblique angles,
stop-bands of any Bragg mirror shift towards higher fre-
quencies. Also bearing in mind that at oblique angles
condition ((4.22)) is satisfied at different frequencies for
layers with different refractive indices, one can conve-
niently define the center of the stop-band as a frequency

 for which the phase of the reflection coefficient of
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the mirror ϕ is zero. Analysis using the transfer matrix
yields:

,                          

(4.23)

 
where θ0 is the incidence angle, θA,B are propagation

angles in layers having refractive indices nA, nB, respec-
tively. They are linked by Snell-Descartes law:

.                                    (4.24)

 
Transfer matrices ((4.2)) are modified in case of

oblique incidence. For s-polarized light, one should
multiply all the refractive indices by cosines of propaga-
tion angles in corresponding media:

  ,                                           (4.25)

 
For p-polarized light the same replacement should

be done in the arguments of the trigonometric functions
in ((4.2)), while in the coefficients one should substitute:

.                                              (4.26)

 
Condition ((4.8)) still holds at oblique incidence. It

provides the expression for frequency dependent phase
of the reflection coefficient 

 .                       

(4.27)

 
Thus, reflection coefficient rB of a Bragg mirror at

oblique incidence near the center of the stop-band is
given by Equation (4.17), where the amplitude is the
same as for normal incidence (Equation (4.16)), while
the phase is changed according to Equation (4.27) and
Equation (4.23).

Note that for finite Bragg mirrors at very big inci-
dence angles, the amplitude of rB is also affected. It
decreases with increase of θ0 faster in p-polarization
than in s-polarization. Later on, we will neglect this
effect.

5 Dispersion of exciton-polaritons in the 
microcavities containing a single quantum well.

Consider a symmetric microcavity having a single
QW embedded in the middle. In the basis of amplitudes
of light-waves propagating in positive and negative
direction along z-axis, the transfer matrix across the QW
has a form (see Appendix for details):

,                                     (5.1)

 
where rQW and tQW are angle and polarization

dependent amplitude reflection and transmission coeffi-
cients of the QW derived in Equation (3.14). 

The transfer matrix across the cavity from one Bragg
mirror to another one is a product:

,  

            (5.2)

 
where Lcis the cavity width. 

The elements of this matrix are:

, , , .              

(5.3)

 
To find eigen-frequencies of exciton-polariton

modes of the microcavity one should look for nontrivial
solutions of Maxwell equations under the requirement
of no light incident on the cavity from the outside. This
yields

 ,                                          (5.4)

 
where rB is the angle-dependent reflection coeffi-

cient of Bragg mirrors for light incident from inside the
cavity introduced in Equation (4.17). Excluding the
coefficient A from Equation (5.4), we obtain the follow-
ing equation for polariton eigen-modes 

 .                                          (5.5)
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This is already a dispersion equation because the
coefficients of the transfer matrix and rB are dependent
on the in-plane wave-vector of light. Substituting coeffi-
cients (5.3) into (5.5) one can represent the dispersion
equation in the following form:

.                        (5.6)

 
Solutions of Equation (5.6) coming from roots of the

second paranthesis in its left part coincide with pure odd
optical modes of the cavity. These modes have a node in
the center of the cavity where a QW is situated. There-
fore, they are not coupled with the ground exciton state
having an even wave-function. The first paranthesis of
the left part of (5.6) contains the reflection coefficient of
the QW which is dependent on excitonic parameters.
Roots of this paranthesis describe eigen-states of exci-
ton-polaritons resulting from coupling of even optical
modes with the exciton ground state. Further in the text
we will consider only these states. We neglect here and
later excited exciton states that may be coupled to odd
cavity modes.

For the even modes and normal incidence, if we take 

                                       (5.7)

 
we obtain

,                                   (5.8)

 

where ,  .

This is an equation for eigen-states of a system of
two coupled harmonic oscillators, namely, the exciton
resonance and the cavity mode. Note, that in this form
Equation (5.8) has been published for the first time by
Savona et al  [27], while its general form Equation (5.5)
has been obtained in  [28]. Equation (5.8) is only appli-
cable in the normal incidence case. Thus, in order to cal-
culate dispersion relations of the exciton-polaritons in
microcavities, one should, in principle, use Equation
(5.5). On the other hand, in most cases it suffices  to take
into account the wave-vector dependence of resonance
frequencies ωc and ω0  to obtain a reasonable approxi-
mation to the true dispersion curves. 

The parameter V is the strength of coupling between
the cavity photon mode and the exciton resonance. If 

,                                                   (5.9)

 
anticrossing takes place between exciton and photon

modes and is characteristic of the strong coupling
regime. In this regime, two distinct exciton-polariton
branches manifest themselves as two optical resonances
in reflection of transmission spectra. The splitting
between these two resonances is referred to as vacuum
field Rabi splitting. It achieves 4-15 meV in existing
GaAs-based microcavities, up to 30 meV in CdTe-based
microcavities, and is expected to be as large as 50 meV
in future GaN cavities. The advantage of GaN is that A
and B excitons in this semiconductor have a record
oscillator strength, exceeding by an order of magnitude
the oscillator strength in GaAs  [29].

If 

,                                                   (5.10)

 
the weak-coupling regime holds, characterized by

crossing of the exciton and photon mode and increase of
the exciton decay rate at the resonance point. This
regime is typically used in vertical cavity surface emit-
ting lasers (VCSELs). Note that all the above theory
neglects the disorder effect on the exciton resonance.
Taking into account inevitable inhomogeneous broaden-
ing of the exciton resonance and Rayleigh scattering of
exciton-polaritons one should also modify the criterion
((5.9)) for weak-coupling-strong-coupling threshold
[16]. This is out of the scope of this article.

Dispersion of exciton-polaritons in microcavities has
a purely classical nature. However, polaritons them-
selves can be considered as quantum quasi-particles.
This consideration makes sense when their relaxation
along the dispersion curves is discussed. Relaxation of
polaritons is considered in the next section.

6 Polariton Bose-condensation and 
superfluidity in microcavities

An exciton is a Coulomb-correlated electron-hole pair.
It is a neutral particle of integer spin value. Depending
on their density and on temperature, excitons can behave
as a weakly interacting Bose gas, a metallic liquid, or an
electron-hole plasma. It has been understood by Mosk-
alenko  [30] and Blatt  [31] that excitons remain in the
gas phase at low densities and low temperatures and are
therefore good candidates for observation of Bose-Ein-
stein condensation (BEC). A great research effort has
been dedicated to the problem of exciton Bose conden-
10  MRS Internet J. Nitride Semicond. Res. 8, 3 (2003).
 © 2003 The Materials Research Society

57/S1092578300000466 Published online by Cambridge University Press

https://doi.org/10.1557/S1092578300000466


https://doi.org/10.15
sation. A number of theoretical works on excitonic con-
densation and superfluidity has appeared  [32] [33] [34]
[35] [36] [37]. In most of these works, the fermionic
nature of excitons is addressed as well. The starting
point of these models is a system of degenerate elec-
trons and holes of arbitrary densities which are treated
in the spirit of the BCS theory. A key point of all the for-
malisms developed is that they assume infinite lifetime
of the semiconductor excitations. In other words these
theories are looking for steady state solutions of a
Schrödinger equation of interacting excitons. It is
indeed clear that to have enough time to Bose-condense,
excitons must have a radiative lifetime much longer than
their relaxation time. Thus the use of "dark" (uncoupled
to light) excitons seems preferential. This is the case of
bulk Cu2O paraexcitons whose ground state spin is 2 or
of excitons in coupled quantum wells  [32] [35] [36]
[37] where the electron and hole are spatially separated.
These two systems have been subjected to energetic
experimental studies which have sometimes claimed
achievement of exciton BEC or superfluidity  [38] [39]
[40] [41] [42]. However, a careful analysis by Lozovik
and Tikhodeev  [40] [43] showed that a clear evidence of
excitonic BEC has not yet been achieved. The difficul-
ties to Bose-condense excitons are twofold. The first
reason is the intrinsic imperfections of semiconductors.
Because of an unavoidable structural disorder, dark
excitons non-resonantly excited are often trapped in
local minima of the disorder potential and can hardly be
considered as free bosons able to condense. The second
source of difficulties is connected with a problem of
detection of the condensed phase. The clearest signature
of exciton Bose condensation should be the emission of
a coherent light by spontaneous recombination of con-
densed excitons  [40]. Such emission is a prioriforbid-
den for a system of dark excitons. 

On the other hand, "bright" excitons directly coupled
to light might also be good candidates for condensation
despite their short lifetimes. In bulk semiconductors this
coherent coupling gives rise to a polarization wave that
can be considered from a quantum mechanical point of
view as a coherent superposition of pure excitons and
photon states  [6] [7]. A quasiparticle state resulting
from this superposition is referred to as an exciton-
polariton (polariton). Bulk polaritons are stationary
states that transform into photons only at surfaces.
Polaritons are bosons and can, in principle, form con-
densates that would emit spontaneously coherent light.
This process will be referred to in the course of this arti-
cle as polariton lasing.

Typical dispersion curves of bulk polaritons are
shown in figure 5. The steps needed to achieve polariton
lasing in this system are as follows. Initially, optically or
electronically excited electrons and holes form excitons.

Excitons thermalize at their own temperature through
exciton-exciton interaction. They reduce their kinetic
energy interacting with phonons and relax along the
lower polariton branch (figure 5). In the vicinity of the
exciton-photon intersection point, the density of states
of polaritons is strongly reduced and the excitonic con-
tribution to the polariton is decreased. One should note
that strictly speaking, a k=0 photon does not exist and
that consequently, k= 0 polaritonic state of the lower
polariton branch does not exist either. The polariton dis-
persion has no minimum so that a true condensation
process is strictly forbidden. Polaritons accumulate in a
large number of states in the so-called bottleneck region. 

The situation is drastically different in microcavities,
where a semiconductor layer (generally a quantum well)
is embedded in an optical cavity (Fabry-Perot resona-
tor). The cavity prevents the escape of photons and
allows the formation of long lifetime cavity polaritons
[1]. The in-plane cavity polariton dispersion is shown in
figure 6-a. One can see that contrary to the bulk case the
dispersion exhibits a well defined minimum located at
k=0  (k being the in-plane polariton wave vector). This
makes cavity polaritons good candidates for BEC. They
have moreover an extremely small effective mass
around k=0 which provides a large critical temperature
for condensation. Experimental discovery of stimulated
scattering of exciton-polaritons in semiconductor micro-
cavities containing QWs by Savvidis and Baumberg  [5]
has proved that a microcavity is probably the most suit-
able system to evidence effects linked to the bosonic
nature of exciton-polaritons. On the other hand, polari-
tons are 2D quasi-particles that cannot exhibit a strict
BEC phase transition  [44] [45] [46], but rather a local
condensation or a Kosterlitz-Thouless phase transition
[47] [48] [49] [50]. A fundamental peculiarity of the
system is also a strongly non-equilibrium population of
polaritons because of their finite lifetime. The relaxation
kinetic of polaritons plays a major role in this case. 

7 Statistical properties of cavity polaritons

Consider a typical microcavity structure  [51]. The opti-
cal cavity having a refractive index n quantizes the light
wave vector in the growth direction, so that it can only
be equal to π/(nLz) or to any integer multiple of this
quantity. The in-plane polariton propagation remains
free. The cavity photon dispersion thus reads (see figure
6-a):

 (7.1)
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This dispersion is quasi-parabolic for small wave
vectors and is characterized by a photon effective mass: 

 (7.2)

 

Contrary to the three dimensional case, photons
interact with the cavity mirrors and have consequently a

mass which is typically 105 times smaller than the free
electron mass. As one can see in figure 6-a, cavity
polariton dispersion is strongly non-parabolic, espe-
cially for the lower polariton branch that can be sepa-
rated in two distinct zones. The smaller central zone
where the polariton wave vector is less than the light
wave vector in bulk crystal contains a deep and sharp
minimum, where the polariton mass is close to the cav-
ity photon mass. The remaining of the lower branch is
completely exciton-like. 

Imamoglu  [18] [19] was first to propose the use of
the bosonic character of cavity polaritons to build up an
exciton-polariton condensate subsequently emitting a
coherent laser light by spontaneous emission. His idea
was to create an equilibrium (non thermal!) polariton
distribution by  external optical pumping. The relaxation
of this non-thermal distribution through its interaction
with acoustic phonons was assumed to be able to pro-
vide an efficient polariton accumulation in their ground
state. However, a number of peculiarities of cavity
polaritons, especially their unusual dispersion shape,
has not been taken into account in the proposed model,
which therefore missed most of the physics of real
microcavities. It has indeed been demonstrated, one year
later by Tassone  [52], that acoustic phonons cannot pro-
vide an efficient polariton relaxation towards the ground
state because of the steep central part of the polariton
dispersion "bottleneck region" where its slope exceeds
the sound velocity (figure 6-b). Nevertheless, a qua-
dratic dependence of emission on the non-resonant
pumping power has been evidenced experimentally in
II-VI  [53] and III-V  [54] [55] microcavities. This was a
proof that other relaxation mechanisms allow a part of
polaritons to cross the bottleneck region. The main of
these additional mechanisms is the exciton-exciton scat-
tering  [56]. F. Boeuf et al.,  [57] [58] have reported
exponentially growing emission intensity versus pump-
ing intensity and have claimed that bosonic stimulation
of relaxation to the ground state takes place in their
experiments. However neither the ground state occupa-
tion factor nor the coherence of the emitted light have
been checked in these works and it seems to us that no
clear evidence of polariton lasing has there been given.

A real breakthrough came from an experiment per-
formed under resonant excitation by Savvidis and
Baumberg  [5]. They have macroscopically populated
the inflection point of the lower polariton branch (wave
vector k0) by a 1 ps pump pulse (see figure 6-c). A weak
probe pulse sent at a normal angle to the sample within a
short delay was used to seed the polariton ground state.
This stimulated a simultaneous scattering of one k0

polariton to the ground state and another one to the state
2 k0. This stimulated process, conserving the energy and
the wave-vector, provided an amplification of the probe
reflection by a factor of 70. Similar results have been
obtained under cw excitation by Stevenson and Skolnick
in GaAs-based cavities  [59] and by Saba et al in CdTe
based structures  [60]. In this latter case, stimulated scat-
tering to the ground state was seen up to 200 K. Strong
dressing of the dispersion relation due to the interaction
between coherently populated states has also been
observed  [61] and successfully interpreted by Ciuti
[61] by a generalisation of the Bogoliubov  [62] [63]
approach. These experimental results have clearly dem-
onstrated the bosonic behaviour of cavity polaritons up
to quite high pumping intensities and temperatures.
Complex spin dynamics, a signature of strong bosonic
effects, has also been observed under resonant excitation
by Lagoudakis et al  [64] and recently under non reso-
nant excitation by Martin et al.  [65]. These last results
are not yet fully understood  [66], but reveal the possi-
bilities associated with this new research area. Finally,
very recently an increase of coherence of light emitted
from a ground polariton state in a GaAs-based micro-
cavity containing 12 QWs versus non-resonant pumping
intensity has been reported  [21]. This extremely prom-
ising result still needs to be carefully understood. An
important point is whether the coherence of emission is
due to polariton Bose-condensation or if it is just
endowed by the coherence of the pumping laser light.
This discovery could represent a step towards the
achievement of a quasi-Bose condensation effect in
solid state systems.

The most challenging objective for this active field is
now without any doubt to clearly achieve polariton
coherence in non-resonantly pumped microcavities. The
buildup of a ground state coherent population can be
interpreted as a phase transition towards a Bose con-
densed state or as “polariton lasing” effect resulting
from bosonic stimulated scattering. A criterion for Bose
condensation in a macroscopic ground state density in
the thermodynamic limit is:

 (7.3)
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where N0 is the ground state population and R the

system size. On the other hand, the bosonic stimulated
scattering is not necessarily an equilibrium property and
the criterion is less restrictive:

N0(R) >> 1 (7.4)

 
Both BEC and stimulated scattering effects are

based on the same physics, namely on a trend of bosons
to accumulate in the same (ground) quantum state.
Actually, stimulated scattering represents a dynamical
aspect of Bose-condensation. 

“Polariton lasers” exploit both of these effects. For-
mation of the condensate within the polariton lifetime is
only possible because of the rapidity of stimulated scat-
tering. Once condensed, polaritons emit coherent mono-
chromatic light. Here and further by “emission of light
by polaritons” we mean escape of light from the cavity
by its tunneling through the Bragg mirrors. As the light
emission by a polariton quasi-condensate is spontane-
ous, there is no population inversion condition required
in polariton lasers, absorption of light does not play any
role, and ideally there is no threshold for lasing. Con-
cerning this latter point, the argument is that it is suffi-
cient to have two polaritons in the ground state for
creating a condensate and thereby collecting two coher-
ent photons.

A few theoretical works attempting to describe these
phenomena have appeared recently. An analysis based
on the Dike model has been proposed by Eastham and
Littlewood  [67] to describe the 0 K properties of an
arbitrary pumped microcavity including disorder and
space filling effect. Malpuech et al. have defined a sim-
ple criterion for polariton quasi-condensation in finite
size 2D system and have plotted the corresponding
polariton phase diagram  [68]. This paper shows that
room temperature polariton lasing was achievable in
hypothetic microcavities based on large band gap semi-
conductors  [68] [69]. Kinetic aspects of polariton relax-
ation have also been studied, mainly by numerical
solution of semi-classical Boltzmann equations.
Malpuech et al have proposed to introduce a free elec-
tron gas in the cavity in order to speed up the polariton
relaxation  [70]. Soroko and Ivanov  [71] have proposed
to use microcavities at very positive detuning in order to
suppress the relaxation bottleneck, keeping advantage in
this geometry of a polariton mass still smaller than the
exciton one. This idea is however achievable only in
extremely high quality structures, probably far beyond
the actual growth abilities. Finally, Porras et al. have
presented a simulation  [72] demonstrating that existing
II-VI microcavities might exhibit polariton lasing at low

temperatures and achieved a qualitative agreement with
experimental results. 

8 Cavity polariton phase transition.
8.1 Kosterlitz Thouless phase transition.

In this chapter, we discuss thermodynamic properties of
microcavities polaritons considered as equilibrium parti-
cles, i.e., particles having an infinite lifetime. Even
though this approximation is very far from reality,
mainly governed by relaxation kinetics, it is definitely
instructive to examine the BEC conditions in this limit-
ing case. We will moreover assume that polaritons
behave as either ideal or weakly interacting bosons so
that the following analysis is valid only in a weak den-
sity limit.

Let us start with the Bose-Einstein distribution func-
tion:

                                            

(8.1)

 

where µ is the chemical potential,  is the in-
plane dispersion function of polaritons and T is the tem-
perature. In the thermodynamic limit, when the size of
the system goes to infinity, the total polariton density is
given by the following integration over the reciprocal
space.

 (8.2)

 
where d is the dimensionality of the system. The

critical concentration of bosons needed for condensation
is given by 

 (8.3)

 
The critical density is finite for a non-zero tempera-

ture if d > 2. However, the integral ((8.3)) diverges in
the 2D case. Thus, a non-interacting Bose gas cannot
condense in an infinite two-dimensional system and the
same statement turns out to be true when interactions
are taken into account. A rigorous proof of the absence
of BEC in 2D has been given by Hohenberg  [45]. And
equivalent statement known as the Mermin-Wagner the-
orem assert that long range order cannot exist in system
of dimensionality lower than 2  [44]. Finally, it has been
shown that spontaneous symmetry breaking does not
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occur in 2D  [46]. However a phase transition between a
normal state and a superfluid state can take place in 2D
as it has been predicted by Kosterlitz and Thouless 30
years ago  [47] in the framework of the XY model. Such
first order phase transition is forbidden for ideal bosons,
but it can take place in systems of weakly interacting
bosons  [48] like low density excitons  [49] [50] or
polaritons. We are now going to describe qualitatively
how this phase transition takes place and what are the
differences with a true BEC effect. At temperatures
higher than the critical temperature TKT, the superfluid
density ns is zero, but local condensation can take place.
Condensate droplets can have quite large sizes as we
will see later, however the correlation function of the
quasi-condensate wavefunction is decreasing exponen-
tially and the droplets are not connected together.
Defects, or votices, prevent long range ordering, i.e.,
connection of the  quasi-condensate droplets. However,
once the critical temperature TKT is reached, single vor-
tices are no more stable: they bind, forming pairs and
clusters, allowing a sudden connection between quasi-
condensate droplets so that a superfluid is formed whose
density is  [73]: 

 (8.4)

 
where m is the ground state mass. Superfluidity

means that two points on the surface are statistically
connected by a phase coherent path. Defects (vortices)
remain as well below TKT, which means that the super-
fluid does not homogeneously fill the space. The corre-
lation function is not constant but decreases as a power
law. The superfluid wave function has thus a finite
extension in reciprocal space and is consequently not a
BEC wave function. A complete homogeneity can be
achieved only at T=0 where vortices disappear. Below
TKT normal and superfluid phases coexist. The normal
fluid can be characterized by a density nn and a velocity

, while the superfluid fluid has a density ns and

velocity . The total fluid density is:

n = nn + ns (8.5)

 
whereas the normal fluid density is given by the Lan-

dau formula  [74]: 

 (8.6)

 
where m(k) is the wave vector dependent polariton

mass, fB is the Bose distribution function ((8.5)) and Ebo

is the Bogoliubov dispersion relation valid for interact-
ing bosons, to which are associated new quasi-particles
(the so-called bogolons)  [62] [63]: 

 (8.7)

 
µ is the polariton chemical potential given in our

case by:

µ ≈ n V(k) (8.8)

 
with V(k) the Fourier transform of boson-boson

potential of interaction given by V(k) = 6x(k)Ebab
2,

where x is the exciton fraction in the polariton wave-
function, Eb is the exciton binding energy, and ab is the
two dimensional exciton Bohr radius. Equations (8.6-
8.8) yield ns(T,n). Its substitution into Equation (8.8)
allows to obtain TKT(n). As one can see from Equation
(8.7), repulsive particle interaction makes the bogolons
[62] [63] dispersion relation linear around k=0. Hence
elementary excitations from the ground state are sound-
like and dissipation-less. They are therefore responsible
for the superfluid properties of the 2D gas. 

Solid lines on Figure 7 (a,b,c,d) show the critical
concentration for the KT phase transition according to
the abovementioned procedure and calculated for typi-
cal microcavity structures based on GaAs (a), CdTe (b),
GaN (c), and ZnO (d). In all cases, we assume zero
detuning of the exciton resonance and the cavity photon
mode. For GaAs- and CdTe-based microcavities we
have used the parameters of experimentally studied
samples reported in Refs.  [53] [52]. Parameters of
model GaN and ZnO microcavity structures can be
found in Refs.  [68] [69]. The two latter structures have
for now only a hypothetic interest, since the strong cou-
pling is not yet achieved experimentally in GaN and
ZnO based cavities. Vertical and horizontal dashed lines
in Figure 7 show the approximate limits of the strong
coupling regime in the microcavity that come from
either exciton screening by photo-induced electron-hole
plasma or from temperature-induced broadening of the
exciton resonance. 

Note that the limiting concentration of polaritons in
a microcavity is imposed by the strong-weak coupling
threshold rather than by the Mott transition  [75]. This
threshold takes place because of the decrease of the
exciton oscillator strength caused by a bleaching effect.
The weakly interacting boson model we have presented
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is therefore perfectly valid in the strong coupling
regime. Above the critical density, if still in the strong
coupling regime, a microcavity operates as a polariton
diode emitting an incoherent light, while in the weak
coupling regime the device behaves like a conventional
light-emitting diode. Above the critical density, in the
weak coupling regime, the microcavity acts as a conven-
tional laser. Thin dotted lines in figure 7 indicate the
limit between two latter phases that can not be found in
the framework of our formalism limited to the strong
coupling regime. One can note that critical temperatures
achieved are much larger than those that can be achieved
in exciton systems. In existing GaAs and CdTe-based
cavities these temperatures are high enough for experi-
mental observation of KT-phase transition in laboratory
conditions, but do not allow the production of devices
working at room temperature. Record critical tempera-
tures of  TKT=400 K and 560 K for GaN- and ZnO-
based model cavities are given by extremely high exci-
ton dissociation energies in these semiconductors. It is
interesting to note that even above TKT(n), n - nn does
not vanish, which reflects the existence of isolated
quasi-condensate droplets. As we show below, these
droplets can reach substantial size, even above Koster-
litz-Thouless temperature or density. Their properties
could dominate the behaviour of real systems as we will
discuss in the next sub-section.

8.2 Quasi-condensation and local effects

In this section we define a rigorous criterion for boson
quasi-condensation in finite size systems. For the sake
of simplicity we neglect here all kinds of interactions
between bosons. Let us consider a system of size R. The
particle density is given by 

 (8.9)

 
where N0 is the ground state population. We define

the critical density as the maximum number of bosons
that can be accommodated in all the states except the
ground state: 

 (8.10)

 
The quasi condensate density is thus given by n0 = n

- nc. In this case, formally, the chemical potential µ is
always strictly negative, but it approaches zero allowing
to put as many bosons as we want in the ground state
while keeping concentration of bosons in all other states

finite and limited by nc. Concentration ((8.10)) can be
considered as the critical concentration for local quasi-
Bose condensation in 2D-systems. Later, we shall refer
to Tc defined in this way as the critical temperature of
Bose condensation in a finite 2D-system. On the other
hand it appears possible, knowing temperature and den-
sity, to deduce typical coherent droplet size which is
given by the correlation length of the quasi-condensate. 

From a practical point of view, experiments are per-
formed on samples having a lateral size of about 1 cm.
Electron-hole pairs are generated by a laser light having
a spot area of about 100 µm. These electron-hole pairs
rapidly (typically on a time-scale less than 1 ps) form
excitons that relax down to the optically active region
where they strongly interact with the light field to form
polaritons. The excitons that form polaritons have a
finite spatial extension in the plane of the structure, but
they are all coupled to each other via light  [76] [77].
The polariton system thus covers the whole surface
where excitons are generated. If KT critical conditions
are not fulfilled, but if typical droplets size are larger
than the light spot size, the whole polariton system can
be transiently phase coherent and thus exhibits local
BEC. As we will show below, this situation is the most
likely to happen in current optical experiments per-
formed at low temperature. 

Let us underline at this point an important advantage
of polaritons with respect to excitons weakly coupled to
light for the purposes of BEC or superfluidity. Actually,
individual excitons in real structures are subject to
strong localisations in inevitable potential fluctuations
that prevent them from interacting and forming con-
densed droplets. Polaritons are basically delocalized
even though the excitons forming them could be local-
ized. That is why their interactions are expected to be
more efficient and bosonic behaviour more pronounced.

Dotted and dashed lines on Figure 7 (a,b,c,d) show
the critical concentration for local quasi condensation in
microcavity systems having 100 µm and 1 meter lateral
sizes, respectively. In the high-temperature (high-con-
centration) limit, critical concentrations are very similar
for both lateral sizes and they slightly exceed critical
concentrations of the KT phase transition. This means
that in this limit the KT transition takes place before
droplets size achieve 100 µm. Conversely, in the low-
temperature (low concentration) limit, the KT curve is
between the transition curves of the 100 µm and 1 meter
size systems. This shows that droplets at the KT transi-
tion are larger than 100 µm but smaller than 1 m. Since
the typical laser spot size is of about 100 µm, this means
that local Bose condensation takes place before KT tran-
sition at low pumping. A detailed analysis could allow to
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obtain the percolating droplets size versus temperature,
which is out of our present scope.

9 Polariton lasing

Microcavity polaritons have finite lifetime, ranging from
1-2 ps to about 1000 ps depending on their in-plane
wave-vector. This is why non-resonantly excited polari-
tons may have no time to relax to their equilibrium dis-
tribution ((8.5)). If their relaxation time is shorter than
the lifetime, they emit light in a wide energy and wave-
vector range instead of yielding a strong coherent emis-
sion signal from k=0 state. Actually, in most microcavity
samples studied so far the polariton relaxation time is
much longer than the lifetime and the emission remains
broad. The origin of such a slow relaxation dynamics is
a kinetic blocking effect also called bottleneck effect.
The bottleneck region of the lower polariton branch cor-
responds to the transition from the exciton-like to the
photon-like dispersion (see figure 6-b). While relaxation
with acoustic phonons along the excitonic part of the
dispersion curve is very quick, the acoustic-phonon
assisted scattering in the photonic part of the dispersion
requires high-energy acoustic phonons whose density is
close to zero at low temperatures as pointed out by Tas-
sone  [52]. Thus, most of photoluminescence comes
from the bottleneck region, and the population of the
k=0 state remains much lower than what one could
expect from the equilibrium distribution function  [57]
[59] [78] [58] [79] [80].

We see two possible ways to suppress the bottleneck
effect and to achieve polariton lasing. First, in the future
GaN or ZnO-based cavities, at room temperature if the
strong coupling regime still holds, acoustic phonon
relaxation should be much more efficient than in pres-
ently available cavities at Helium temperature. Second,
n-doping of microcavities is expected to allow efficient
electron-polariton scattering within the photon-like part
of the dispersion  [70]. Here we present the formalism
based on solving numerically the semi-classical Boltz-
mann equation  [81] for polaritons that illustrates the
above statements.

We simulate relaxation of cavity polaritons excited
non-resonantly in a continuous regime. A Boltzmann
equation is solved numerically in two-dimensional
reciprocal space:

,                       (9.1)

 
where nk is the polariton distribution function in the

state having a wave vector k, Pk is the generation term
describing optical pumping. Γk is the recombination rate

composed of both radiative and nonradiative compo-
nents. Wk→k' is the total scattering rate between the
states k and k'. This scattering rate is composed of three
terms in our model, namely: polariton-acoustic phonon

scattering (rate Wa), polariton-polariton scattering (rate

Wx), and polariton-electron scattering (rate We). We
assume perfect cylindrical symmetry for the polariton
distribution function, implying that the population of a
state k is only a function of the absolute value of the
wave-vector, relevant to the case of nonresonant pump-
ing. Only the intrabranch scattering within the lower
polariton branch is considered. We calculate the radia-
tive recombination rate, polariton-acoustic phonon, and
the polariton-polariton scattering rates as Tassone  [56].
The polariton-electron scattering rate is calculated using
the Fermi golden rule as in our paper  [69]. Boltzmann
equations are in principle written for an infinite system
and describe distribution function evolution versus time.
Strictly speaking one cannot demonstrate true condensa-
tion effect but rather stimulated scattering and lasing.
Such equations cannot however describe the buildup of
phase coherent polariton field. A formalism describing
the time evolution of this phase has been developed by
Banyai  [63] but it includes only interactions with
phonons. A more general formalism, making the link
between Boltzmann equation and phase coherent polari-
ton field, including all kinds of interactions, has been
recently developed by Laussy et al  [82], but is still
unpublished.

Figure 8 shows the equilibrium distribution
function under continuous pumping for a GaAs-based
microcavity having a normal-mode splitting of 5 meV
containing a single QW, and for zero detuning of cavity
and exciton modes. All the cavity parameters were taken
from the work by Tassone  [56]. We have assumed cav-
ity photon lifetime of 8 ps, and exciton radiative lifetime
of 20 ps. The polariton nonradiative lifetime is chosen
constant over the whole reciprocal space (1 ns). For all
the curves the pump power absorbed by the single QW

is set to be 4.2 W/cm2 between k=3×106 cm-1 and

k=5×106 cm-1 roughly equivalent to an excess of energy
of 20 meV. Note that the results we present are not
strongly sensitive to the pumping conditions, which
allow for both optical and electrical pumping mecha-
nisms. 

Taking into account only the acoustic phonon scat-
tering (curve (a) in Figure 8), a thermal distribution

function is seen only beyond k=2×104 cm-1 (the bottle-
neck region) where polaritons accumulate. Equilibrium
is reached after 10 ns leaving a polariton density of

2.5×1010 cm-2. Including both polariton-polariton and
polariton-acoustic phonon scattering processes (curve
16  MRS Internet J. Nitride Semicond. Res. 8, 3 (2003).
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(b) in Figure 8) shows partial relaxation of the bottle-
neck and a flat polariton distribution. However, the
polaritons equilibrium density in the cavity remains the
same, close to the saturation density for excitons (about

5×1010 cm-2). The distribution function near the polari-
ton ground state approaches one. This result is in excel-
lent agreement with experimental results obtained
recently by Sellenart, Butté and Tartakovskii  [55] [81],
showing that amplification threshold for the distribution
function at the trap state is reached when the strong cou-
pling regime is likely to be suppressed. To get an
increase in the population of the lowest k state one has to
increase the population of a large number of states
requiring a large density of excitons. This is due to the
flat shape of the distribution function which comes from
the nature of the polariton-polariton scattering process
(each scattering event increases population of the high-k
states. Relaxation of polaritons from these states is then
assisted only by phonons and is slow). The radiative effi-
ciency, which we estimate as the ratio of the concentra-
tion of photons leaving the cavity within a cone of less
than 1° to the pumping intensity, is thus only 1.7%.

When all three scattering processes listed above are
taken into account (curve c in Figure 8), a huge occupa-

tion number of the lowest energy state of more than 104

is achieved. This system thus acts as a polariton laser in
which scattering of polaritons injected at high k by opti-
cal or electrical pumping is stimulated by population of
low k-states (ground state). In this situation the light

power emitted in a cone of 1° is 2.3 W/cm2 and the effi-
ciency of the energy transfer from pump to emitted light
is about 80%. The light emitted by the cavity is much
more directional and comes from a smaller number of
states than in the case (b). The equilibrium polariton

density in the cavity is now 1.25×109 cm-2, i.e., 20 times
lower than in cases (a,b). Pump powers at least forty
times stronger can be used before the strong to weak-
coupling threshold is reached. The thin dotted line in
Figure 8 shows the equilibrium polariton density from a
Bose distribution function (1) plotted for zero chemical
potential. It follows quite closely the curve (c) which
clearly demonstrates that a thermodynamic equilibrium
is practically achieved for this value of the chemical
potential, which is a signature of Bose condensation of
polaritons. This is confirmed by tracking the temporal
evolution of the distribution function at the ground state
for different excitation powers (Figure 9a). For the
strongest pumping, it is strongly enhanced at very short
times as soon as it exceeds one, demonstrating Bose
amplification of the final state population. The dashed
curve corresponds to the threshold condition for Bose
amplification, producing an equilibrium population of

the k = 0 state slightly exceeding 1, but without signifi-
cant amplification occuring.

Figure 9(b) shows the temporal evolution of popula-
tion of the ground state for different degrees of doping
in the system. The equilibrium density is strongly
enhanced and exceeds the lasing threshold for electron

densities above 10×1010 cm-2. Figure 10 shows the radi-
ative efficiency of the device as a function of input
power with (a) and without (b) polariton-electron scat-
tering. In the first case, the emission rises quadratically
up to the threshold, while in the second case it is much
larger and linearly increases. The dotted line on the
curve b marks the excitation conditions for which the
strong coupling regime collapses because of bleaching
of excitons. For the doped microcavity, an excitation
area of a 100 µm diameter corresponds to an extremely
low threshold power of 3 µW. However, high excitation
powers can also be used, while conserving the strong
coupling regime.

Finally, we address the effect on the characteristics
of the polariton laser of the heating of the electron gas
due to electron-exciton scattering. The dashed line in
figure 10 shows the radiative efficiency of the polariton
laser calculated while taking into account the dynamics
of free electrons. The calculation simultaneously solves
the Boltzmann equation for the exciton-polaritons
together with the Boltzmann equation for the electron
gas. Because of the strong electron-electron interaction,
we assume that the electron gas follows a Fermi-Dirac
statistics at an electron temperature Te. This equilibrium
electron distribution interacts only with polaritons and
phonons. One can see that the result is identical to the
curve obtained for the equilibrium Fermi-distribution of

electrons for pump intensities below 100 W/cm2. This is
because of efficient electron-electron scattering (rate

about 1.5 ps-1 in our case) which leads to rapid relax-
ation of the electron gas to its thermal equilibrium. At

pump intensities of 1000 W/cm2 the temperature of the
electron gas is 22K, approaching the critical temperature
for Bose condensation of polaritons in our system (25
K). At higher pumping intensities, the electron-polariton
interaction starts to play an important role, and the radi-
ative efficiency of the polariton laser decreases due to
scattering of the ground state polaritons with hot elec-
trons. It should be mentioned that experimental evi-
dences of the efficiency of electron scattering on
polariton relaxation were recently ascertained  [83] [84]
[85].

Finally, we propose a model GaN-based microcavity
containing 9 GaN quantum wells (QWs) of 4 monolayer
width each embedded inside the 3 λ/2 Al0.1Ga0.9N
microcavity  (see figure 11)   [68]. The cavity is sand-
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wiched between Al0.2Ga0.8N/Al0.9Ga0.1N Bragg mir-

rors having 11 pairs of λ/4 layers (upper mirror) and 14
pairs of λ/4 layers (bottom mirror). The structure is
intended to be grown on a GaN substrate. An alternative
possibility is to grow an oxide dielectric mirror on the
top of the sample. The QWs are grouped by triplets at
each antinode of the electric field of the microcavity
eigenmode. All the parameters we use in the calculation
are those of existing structures. Namely, the QW exciton
energy (3543 meV), oscillator strength (0.6 meV) and
inhomogeneous broadening (8 meV) are taken from
Ref.  [86], although reduced inhomogeneous widths are
now available. A single exciton resonance is considered.
The refractive indices of AlGaN are taken from Ref.
[87] [88]. The polariton dispersion relation of the micro-
cavity for small wave vectors and for zero detuning
between the exciton and the cavity mode is obtained by
the scattering state method as shown on figure 3-b. A
remarkable fact is that the vacuum-field Rabi-splitting
between upper and lower polaritons exceeds 90 meV in
our system which is larger than in any other semicon-
ductors microcavity. Thus, the strong coupling in GaN
microcavities is convincingly retained at room tempera-
ture which is one of the most important conditions for
realisation of room-temperature polariton lasers. 

Figure 12 shows the equilibrium distribution func-
tions of the exciton-polaritons in our cavity at the cw

non-resonant excitation density of (a) 1000 W/cm2 or

(b) 40000 W/cm2. A free electron density of 1011 cm-2 is
assumed. The dynamics of the distribution function is
found as a solution of equation (9.1). The discrete nature
of the reciprocal space is taken into account for the low-
est energy states corresponding to k=0, k=2π/R, .... At
the small excitation density (a) the population of the
polariton ground state n0 is approximately unity, mark-

ing the threshold to the bosonic amplification regime.

For a large excitation density (b), n0 ≈ 104. In this case

the Bose condensation of the MC polaritons is definitely
achieved, as one concludes when comparing the curve
(b) with the Bose-Einstein distribution function of the
exciton-polaritons for µ=0 (dashed line). The radiative
efficiency of the laser versus pumping power is pre-
sented in the inset. It shows a clear threshold amplifica-
tion at the extremely low power of 100 mW and a
quantum efficiency close to 50%. Smaller area devices
have a correspondingly smaller threshold power, so we
envisage thresholds below 1mW. This simulation shows
that a new generation of optoelectronic devices called
polariton lasers based on the Bose-condensation of MC
polaritons, can be realised with use of n-doped micro-
cavities based on GaN materials. The model polariton
laser we have considered here is based on current tech-

nologies and shows an extremely low threshold power at
room temperature and a high quantum efficiency.

10 Conclusions

In this article we have reviewed and commented on
experimental and theoretical works performed to evi-
dence light-exciton strong coupling and polariton lasing
or polariton transition to a superfluid phase in semicon-
ductor microcavities. Our main conclusions are as fol-
low:

1. Cavity polaritons seem to be much more suitable
than excitons weakly coupled to light for observa-
tion of bosonic effects because they are much less
sensitive to structural imperfections of real struc-
tures. Exciton-polaritons do behave as weakly inter-
acting bosons as it has been experimentally proved
by Saviddis and Baumberg  [15]. A few weeks ago, a
coherence buildup in a non resonantly pumped
microcavity has even been reported  [48]. This result
still needs to be confirmed.

2. Cavity polaritons cannot Bose condense because
they are 2D particles. They are subject to the Koster-
litz-Thouless phase transition towards a superfluid
phase and to local quasi-condensation permitting
polariton lasing with critical temperatures larger
than 300 K in large band gap semiconductors micro-
cavities. These effects cannot be observed for bulk
polaritons.

3. The size of quasi-condensation droplets at their per-
colation transition strongly depends on temperature
and concentration of polaritons at the transition
points. In the most usual experimental situation of
rather low polariton concentration and low tempera-
ture, the local BEC within the laser spot takes place
before the KT transition.

4. One of the most important obstacles on the way
towards realisation of a working polariton laser is
the kinetic blocking of the polariton relaxation ("bot-
tleneck effect"). Our simulations show that this
effect can be suppressed if a low concentration of
free electrons is introduced in the system because of
an efficient electron-polariton scattering present in
this case. Also, at room temperature, if the strong
coupling regime holds, polariton relaxation with
acoustic phonons is expected to be much more effi-
cient than at low temperatures.

5. Cavity polariton quasi-condensation is not only a
fundamental effect, but it has quite important appli-
cation perspectives. A polariton laser is strictly
speaking a zero threshold laser. Strong non-linear
effects based on bosonic properties of cavity polari-
tons could form the physical basis of a future gener-
ation of optoelectronic devices.
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6. Gallium nitride seems to be one of the most suitable
materials for realisation of room-temperature polari-
ton lasers. Other candidates could be CdSe, ZnO and
organic materials.
It is worth mentioning that there remains still a long

way to go before experimental realisation of a polariton
laser and building of its complete theory. From the
experimental point of view the main steps are the fabri-
cation of cavities that would exhibit strong exciton-light
coupling at room temperature and the systematic study
of the kinetics of polariton relaxation both in doped and
undoped cavities. An improvement of mirrors quality
increasing polariton lifetime would also be extremely
helpful. From the theoretical point of view, the quantum
theory of polariton lasing should be developed in order
to describe formation of the coherent state at k=0, the
coherence of light emitted by condensed polaritons and
spin relaxation in the Bose-gas of polaritons. The role of
exciton localisation and scattering in microcavities
should be clarified.
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APPENDICES

1 Transfer matrix method for a light wave 
propagating in a planar structure

Here we describe the transfer matrix method to obtain
the solution of the wave-equation for light propagating
in planar structures. Most frequently, bases of tangential
components of electric and magnetic fields and ampli-
tudes of light waves propagating in positive and negative
directions are considered. In these two bases the transfer
matrix looks different. Note, that a variety of similar
techniques is used to solve Maxwell or Schroedinger
equations in planar structures, in particular, the scatter-
ing matrix method is a common encounter. We do not
use this method in the paper and do not describe it here.

appendix1.1 Basis of tangential components of 
electric and magnetic fields

Consider a light-wave propagating along z-direction in a
media characterized by a refractive index n homoge-
neous in the xy plane but possibly z-dependent. The
wave equation reads in this case:

,                                           (A1)

 

where k0 is the wave-vector of light in vacuum. We
will chose two linearly independent solutions of Equa-
tion (A1) y1(z), y2(z) subject to the set of boundary con-
ditions:

,       

(A2)

 

where k = k0n. The transfer matrix  across the
layer of width a is according to our definition a  2×2
matrix with the following elements:

; 

 ,                                (A3)

 
If n is a constant across the layer a,

, and

.                                             (A4)

 
It is easy to check that for a vector

 ,                                          (A5)

 
where E(z), H(z) are the amplitudes of electric and

magnetic field of any light wave propagating in z direc-
tion in the structure under study, the condition if ful-
filled:

 .                                               (A6)

 

Note that  is continuous at any point of the
structure that follows from Maxwell boundary condi-
tions. In particular it is continuous at all interfaces
where n is changing abruptly. Thus a transfer matrix
across a structure composed by m layers can be found as

,                                                          (A7)
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where  is the transfer matrix across the i-th layer.
The product’s order in (A7) is essential.

The transfer matrix across a layer can be expressed
via reflection r and trasmission t coefficients of this
layer. If reflection and transmission coefficients for light
incident from right-hand side and left-hand side on the
layer are the same (symmetric case realized, in particu-
lar, in a QW embedded in a cavity) condition (A6)
yields:

                                           

(A8)

 
In (A8) the first equation is written for the light inci-

dent from the left and the second equation is written for
the light incident from the right. nis the refractive index
of the surrounding media. It allows to express the matrix

 as:

.                          (A9)

 

appendix1.2 Basis of amplitudes of light-waves 
propagating towards z=+∞ and z=-∞.

A solution of Equation (A1) can be formally represented
as:

E(z) = E+(z) + E−(z) ,                                           (B1)

 

where E+(-)(z) is the complex amplitude of light-
wave propagating in positive (negative) direction. One

can define the transfer matrix  by its property:

 .                                           (B2)

 
Consider a few particular cases. 

If the refractive index n is constant across the layer
a, the transfer matrix has a simple form:

.                                            (B3)

 
The transfer matrix across an interface between a

media having the refractive index n1 and a media having
the refractive index n2 is

.                                        (B4)

 
It can be obtained with use of the condition (B2)

applied to the light waves incident from the left side and
right side of the interface and bearing in mind the well-
known expressions for the reflection and transmission
coefficients of interfaces. In a similar way, the transfer
matrix across a symmetric object (QW embedded in the
cavity, for instance) can be written as:

,                                                (B5)

 
where r and t are amplitude reflection and transmis-

sion coefficients of the object.

appendix1.4 Photonic bands of 1D periodic struc-
tures.

Consider an infinite structure whose refractive index is
homogeneous in the (xy)-plane and its dependence on
the coordinate z is a periodical function having a period
d. The shape of this function is not essential, we will

only assume that a transfer matrix  across the period
of the structure can be written as a product of a finite
number of matrices of the type ((A4)). Let an electro-
magnetic wave propagate along the z-direction. For this
wave 

,                                                (C1)

 

where  is defined by (Equation (A5)). Accord-
ing to Bloch's theorem, it can be written as:

,                                             (C2)
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where UE,H(z) have the periodicity of the structure

and Q is, in general, a complex number. Note that the

factor eiQz is the same for electric (E) and magnetic (H)
fields in a light wave because in the normal incidence

case they are linked by: .

Substitution of ((C2)) into ((C1)) yields 

,                                              (C3)

 

thus eiQd is an eigen-value of the matrix  and,
therefore

,                                                 (C4)

 

where  is an identity matrix. Resolving equation
(C4) we will use an important property of the matrix

which follows from equation (A4) and equation
(A7):

.                                                        (C5)

  Thus we reduce equation (C4) to  

1 − (T11 + T22) eiQd + e2iQd = 0,                                         (C6)

 

and Tij are elements of the matrix . Multiplying

all terms by e-iQd we finally arrive to:

 cosQd = (T11 + T22)/2.                                            (C7)

  Right part of this equation is frequency-dependent.
Frequency bands for which  

|(T11 + T22)/2| ≤ 1                                                 (C8)

 
are allowed photonic bands. In them Q is purely real,

and the light wave can propagate freely without attenua-
tion. Conversely, the bands for which

|(T11 + T22)/2| > 1                                                 (C9)

 
are usually called stop-bands or optical gaps. In

them Q has a non-zero imaginary part which determines
the decay of propagating light-waves. All this is com-
pletely analogous to conventional crystals. Eqs. ( (C7),
(C8),  (C9)) are valid also in the oblique incidence case

while the form of the matrix  is sensitive to the angle
of incidence, and band boundaries shift as one changes
the incidence angle.

REFERENCES
[1]  C. Weisbuch,  M. Nishioka,  A. Ishikawa,  et Y. Arakawa,
Phys. Rev. Lett. 69, 3314 (1992).  
[2] L.C. Andreani, in Confined Electrons and Photons, Ed.
By E. Burstein and C. Weisbuch, Plenum Press, New York,
1995, p. 57
[3] L.C. Andreani, F. Tassone, and F. Bassani, Solid State
Commun. 77, 641 (1991)
[4] E.L. Ivchenko, Fiz. Tverd. Tela 33, 2388 (1991) [Sov.
Phys. Solid State 33, 1344 (1991)]
[5]  P. G. Savvidis,  J. J. Baumberg,  R. M. Stevenson,  M.
Skolnick,  D. M. Whittaker,  J. S. Roberts, Phys. Rev. Lett. 84,
1547 (2000).  
[6]  J. J. Hopfield, Phys. Rev. 112, 1555 (1958).  
[7] V.M. Agranovich, Sov. Phys. JETP 37, 307 (1960)
[8] V.M. Agranovich, and V.L. Ginzburg, Spatial Dispersion
in Crystal Optics and the Theory of Excitons (Interscience
Publ., London, 1966)
[9]  D. Frolich,  A. Kulik,  B. Uebbing,  A. Mysyrowicz,  V.
Langer,  H. Stolz,  W. von der Osten, Phys. Rev. Lett. 67, 2343
(1991).  
[10] G. Panzarini, and L.C. Andreani, Solid State Commun.,
102, 505 (1997)
[11]  E. Hanamura, Phys. Rev. B 38, 1228 (1988).  
[12]  D. S. Citrin, Phys. Rev. B 49, 1943 (1994).  
[13]  D. Gammon,  E. S. Snow,  B. V. Shanabrook,  D. S.
Katzer,  D. Park, Phys. Rev. Lett. 76, 3005 (1996).  
[14] E.L. Ivchenko and A.V. Kavokin, Sov. Phys. Solid State,
34, 1815 (1992)
[15] R.Houdre, R.P.Stanley, U.Oesterle, M.Ilegems, and
C.Weisbuch, J. de Physique IV, Coll. C5, 3, 51 (1993)
[16]  D. M. Whittaker, Phys. Rev. Lett. 80, 4791 (1998).  
[17]  A. V. Kavokin, Phys. Rev. B 57, 3757 (1998).  
[18]  A. Imamoglu,  J. R. Ram,  S. Pau et Y. Yamamoto, Phys.
Rev. A 53, 4250 (1996).  
[19] A. Imamoglu, J. R. Ram, Phys. Lett. A, 214, 193, (1996)
[20]  R. Huang,  Y. Yamamoto,  R. André,  J. Bleuse,  M.
Muller,  H. Ulmer-Tuffigo, Phys. Rev. B 65, 165314 (2002).  
[21] H. Deng, G. Weihs, C. Santori, J. Bloch, and
Y.Yamamoto, Science 298, 199 (2002)
[22]  M. Aihara,  T. Iida, Phys. Rev. Lett. 77, 3597 (1996).  
[23] E.L. Ivchenko and G.E. Pikus, Superlattices and Other
Heterostructures: Symmetry and Optical Properties, Springer-
Vierlag, 1995
[24] H. Haug and S.W. Koch, Quantum Theory of the Optical
and Electronic Properties of Semiconductors ,  World
Scientific, 1990
[25]  B. Deveaud,  F. Clérot,  N. Roy,  K. Satzke,  B. Sermage,
D. S. Katzer, Phys. Rev. Lett. 67, 2355 (1991).  
[26] E.L. Ivchenko, M.A. Kaliteevski, A.V. Kavokin, and A.I.
Nesvizhskii, J. Opt. Soc. Am. B 13, 1061 (1996)
[27] V. Savona, L.C. Andreani, P. Schwendimann, and A.
Quattropani, Solid State Commun. 95, 859 (1995)
 MRS Internet J. Nitride Semicond. Res. 8, 3 (2003). 21
 © 2003 The Materials Research Society

57/S1092578300000466 Published online by Cambridge University Press

https://doi.org/10.1557/S1092578300000466


https://doi.org/10.15
[28] A.V. Kavokin and M.A. Kaliteevski, Solid State
Commun. 95, 859 (1995)
[29]  M. Julier,  J. Campo,  B. Gil,  J. P. Lascaray,  S.
Nakamura, Phys. Rev. B 57, R6791 (1998).  
[30] S.A. Moskalenko, Fiz. Tverd. Tela 4, 276 (1962)
[31]  I. M. Blatt,  K. W. Boer,  W. Brandt, Phys. Rev. 126, 1691
(1962).  
[32] L.V. Keldysh and Kozlov, Sov. Phys. Sol. JETP, 36, 1193
(1968)
[33]  H. Haug,  E. Hanamura, Phys. Rev. B 11, 3317 (1975).  
[34] C. Comte and P. Nozières, J. Physique (Paris) 43,1069
(1982)
[35] Yu.E. Lozovik and V.I. Yudson, Pis'ma Zh. Éksp. Teor.
Fiz. 22, 26 (1975) [JETP Lett. 22, 26 (1975)]
[36] Yu.E. Lozovik and V.I. Yudson, Zh. Éksp. Teor. Fiz. 71,
738 (1976) [Sov. Phys. JETP 44, 389 (1976)]
[37] Yu.E. Lozovik and V.I. Yudson, Solid State Commun. 18,
628 (1976)
[38] Bose Einstein Condensation, Edited by A. Griffin D.W.
Snoke and S. Stringari, Cambridge University Press, (1995)
and references therein
[39] D. Snoke, S. Denev, Y. Liu, L. Pfeiffer, K. West, Nature
418, 754 (2002)
[40]  Yu. E. Lozovik,  I. V. Ovchinnikov, Phys. Rev. B 66,
075124 (2002).  
[41] L. V. Butov, C. W. Lai, A. L. Ivanov, A. C. Gossard, D. S.
Chemla, Nature, 417, 47 (2002)
[42]  L. V. Butov,  A. L. Ivanov,  A. Imamoglu,  P. B.
Littlewood,  A. A. Shashkin,  V. T. Dolgopolov,  K. L.
Campman,  et A. C. Gossard et al, Phys. Rev. Lett. 86, 5608
(2001).  
[43]  S. G. Tikhodeev, Phys. Rev. Lett. 84, 3502 (2000).  
[44] N.D Mermin and H. Wagner, Phys. Rev. Lett. 22, 1133
(1966)
[45]  P. C. Hohenberg, Phys. Rev. 158, 383 (1967).  
[46] S. Coleman, Comm. Math. Phys. 31,259 (1973)
[47] J.M. Kosterlitz and D.J. Thouless, J. Phys. C 6, 1181
(1973)
[48] D. S. Fisher and P.C. Hohenberg, Phys. Rev. B 37, 4938
(1988)
[49] Yu E. Lozovik, O.L. Bergmann and A.A. Panfinov, Phys.
Status Solidi B 209, 287, (1998)
[50]  Z. G. Koinov, Phys. Rev. B 61, 8411 (2000).  
[51] For a recent review, see for example M. S. Skolnick et al,
Mater. Sci. Eng. C, 19, 407 (2002)
[52]  F. Tassone,  C. Piermarocchi,  V. Savona,  A.
Quattropani,  P. Schwendimann, Phys. Rev. B 56, 7554 (1997).  
[53]  L. S. Dang,  D. Heger,  R. Andre,  F. Boeuf,  R.
Romestain, Phys. Rev. Lett. 81, 3920 (1998).  
[54]  P. Senellart,  J. Bloch, Phys. Rev. Lett. 82, 1233 (1999).  
[55] P. Senellart, J. Bloch, B. Sermage, and J.Y. Marzin, Phys.
Rev. B 62, R16263 (2000)
[56]  F. Tassone,  Y. Yamamoto, Phys. Rev. B 59, 10830
(1999).  
[57]  F. Boeuf,  R. André,  R. Romestain,  Le Si Dang,  E.
Péronne,  J. F. Lampin,  D. Hulin,  A. Alexandrou, Phys. Rev.
B 62, R2279 (2000).  

[58]  A. Alexandrou,  G. Bianchi,  E. Péronne,  B. Hallé,  F.
Boeuf,  R. André,  R. Romestain,  Le Si Dang, Phys. Rev. B 64,
233318 (2001).  
[59]  R. M. Stevenson,  V. N. Astratov,  M. S. Skolnick,  D. M.
Whittaker,  M. Emam-Ismail,  A. I. Tartakovskii,  P. G.
Savvidis,  J. J. Baumberg,  J. S. Roberts, Phys. Rev. Lett. 85,
3680 (2000).  
[60] M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. Adré, Le
Si Dang, S. Kundermann, A. Mura, G. Bongiovanni, J.L.
Staehli, and B. Deveaud, Nature 414, 731 (2001)
[61]  P. G. Savvidis,  C. Ciuti,  J. J. Baumberg,  D. M.
Whittaker,  M. S. Skolnick,  J. S. Roberts, Phys. Rev. B 64,
075311 (2001).  
[62] N.N. Bogoliubov, J. Phys. USSR, 11, 23 (1947); N.N.
Bogoliubov, Lectures on Quantum Statistics, Vol 1 Quantum
Statistics, Gordon and Breach Science Publisher, New-York,
London, Paris, (1970)
[63] V.A. Zagrebnov and J. B. Bru, Phys. Rep. 350, (2001)
and ref. therein
[64]  P. G. Lagoudakis,  P. G. Savvidis,  J. J. Baumberg,  D. M.
Whittaker,  P. R. Eastham,  M. S. Skolnick,  J. S. Roberts,
Phys. Rev. B 65, 161310 (2002).  
[65]  M. D. Martin,  G. Aichmayr,  L. Viña,  R. André, Phys.
Rev. Lett. 89, 77402 (2002).  
[66] A. Kavokin et al. Unpublished
[67]  P. R. Eastham,  P. B. Littlewood, Phys. Rev. B 64, 235101
(2001).  
[68]  G. Malpuech,  A. Di Carlo,  A. Kavokin,  J. J. Baumberg,
M. Zamfirescu,  P. Lugli, Appl. Phys. Lett. 81, 412 (2002).  
[69]  M. Zamfirescu,  A. Kavokin,  B. Gil,  G. Malpuech,  M.
Kaliteevski, Phys. Rev. B 65, 161205 (2002).  
[70]  G. Malpuech,  A. Kavokin,  A. Di Carlo,  J. J. Baumberg,
Phys. Rev. B 65, 153310 (2002).  
[71]  A. V. Soroko,  A. L. Ivanov, Phys. Rev. B 65, 165310
(2002).  
[72]  D. Porras,  C. Ciuti,  J. J. Baumberg,  C. Tejedor, Phys.
Rev. B 66, 085304 (2002).  
[73]  D. R. Nelson,  J. M. Kosterlitz, Phys. Rev. Lett. 39, 1201
(1977).  
[74] See e.g. K.M. Khalatnikov, An introduction to the theory
of superfluidity (Benjamin, New York, 1965)
[75] G. Khitrova, H.M. Gibbs, F. Jahnke, M. Kira, S.W. Koch,
Rev. Mod. Phys. 71, 1591 (1999)
[76] G. Mapuech and A. Kavokin, Semicond., Sci. and
Technol, Topical Review, 16, R1-R23, (2001)
[77] A. Kavokin, G. Malpuech, and W. Langbein, Sol. St.
Com. 120 (7-8): 259, (2001)
[78] R. Butté et al., , Phys. Rev. B 65 205310, (2002)
[79]  A. I. Tartakovskii,  et al., Phys. Rev. B 60, R11293
(1999).  
[80]  A. I. Tartakovskii,  et al., Phys. Rev. B 62, R2283 (2000).  
[81]  E. A. Uehling,  G. E. Uhlenbeck, Phys. Rev. 108, 1175
(1932).  
[82] F.P. Laussy et al, unpublished
[83] A.I Tartakovskii et al. Paper presented at ICPS 26th,
unpublished
[84] P.G. Lagoudakis et al. paper presented at ICPS 26th,
unpublished
22  MRS Internet J. Nitride Semicond. Res. 8, 3 (2003).
 © 2003 The Materials Research Society

57/S1092578300000466 Published online by Cambridge University Press

https://doi.org/10.1557/S1092578300000466


https://doi.org/10.15
[85] E. Cohen et al., paper presented at ICPS 26th,
unpublished
[86]  M. Zamfirescu,  B. Gil,  N. Grandjean,  G. Malpuech,  A.
Kavokin,  P. Bigenwald,  J. Massies, Phys. Rev. B 64, R121304
(2001).  
[87]  D. Brunner,  H. Angerer,  E. Bustarret,  F. Freudenberg,
R. Höpler,  R. Dimitrov,  O. Ambacher,  M. Stutzmann, J.
Appl. Phys. 82, 5090 (1997).  
[88]  M. J. Bergmann,  U Ozgur,  H. C Casey,  H. O. Everitt,
J. F. Muth, Appl. Phys. Lett. 75, 67 (1999).  

FIGURES

Figure 1. Typical microcavity structures. The central cavity
layer having a thickness equal to an integer number of half-
wave-lengths of light at the exciton resonance frequency is
sandwiched between two Bragg mirrors. A quantum well (a), or
several quantum wells (b) are embedded at the antinodes of the
cavity mode electric field in order to provide the strongest
coupling to light. 

Figure 2. Reflection spectra of a GaN-based microcavity
calculated for different detunings between the cavity mode and
the exciton resonance. One can clearly show the anti-crossing
of the polariton eigen states. 

Figure 3. Energy versus in-plane wave vector for the exciton-
polariton modes in a GaN-based microcavity similar to the one
described in ref  [68] for the cases of positive (a), zero (b), and
negative (c) detuning between the cavity photon mode
frequency and the exciton resonance. 

Figure 4. Electric field of a light-wave penetrating into a typical
Bragg mirror. Refractive indices of its quarter-wave layers are
nA=1.6, nB=2.6. 

Figure 5. Dashed line : Dispersion relation of uncoupled
photons and excitons in a semi-infinite semiconductor. Solid
line : Dispersion relation of bulk exciton-polaritons in the
regime of strong exciton-light coupling. One can see that there
is no lower branch ground state. 
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Figure 6. a) Dashed line : Dispersion relation of uncoupled
photons and excitons in a GaAs microcavity. Solid line :
Dispersion relation of microcavity polaritons in the strong-
coupling regime in a typical GaAs-based cavity. b) Dispersion
relation of polaritons in a model GaN-based microcavity. The
arrows sketch exciton relaxation paths trough their interaction
with acoustic phonon and their blocking in the bottleneck
region. c) Scheme of the experiment performed in  [5]. A short
pumping laser pulse creates a polariton population at the
inflexion point of the lower polariton branch dispersion. A
probe pulse illuminates the cavity under normal incidence
within a short delay with respect to the pump. It seeds the
ground polariton state, stimulating the resonant polariton-
polariton scattering. 

Figure 7. Phase diagrams for GaAs (a), CdTe (b), GaN (c), and
ZnO (d) based microcavities.  
 Vertical and horizontal dashed lines show the limits of the
strong-coupling regime imposed by the exciton thermal
broadening and screening, respectively. Solid lines show the
critical concentration Nc versus temperature of the polariton

KT phase transition. Dotted and dashed lines show the critical
concentration Nc for quasi condensation in 100 µm and 1 meter

lateral size systems, respectively. The thin dotted line
symbolizes the limit between vertical cavity surface emitting
laser (VCSEL) and light-emitting diode regimes.  

Figure 8. Distribution function of polaritons at 10 K when non-

resonantly pumped with a power of 4.2 W/cm2. Results are
shown for (a) polariton-acoustic phonon scattering (dotted), (b)
as (a) plus polariton-polariton scattering (dashed) , and (c) as
(b) plus polariton-electron scattering (solid). The thin dotted
line shows the equilibrium Bose distribution function with zero
chemical potential. 

Figure 9. Polariton occupation of the k=0 state vs time for (a)

excitation powers of 0.42 W/cm2 (dashed), 4.2 W/cm2 (dotted),

168 W/cm2 (solid). The pump is turned on at t=0. The
corresponding total polariton equilibrium densities are

7.0×1010 cm-2, 1.3×109 cm-2 and 1.3×1010 cm-2. (b) As (a) for

a pump power of 0.42 W/cm2 and electron doping of 2.5 ×109

cm-2 (dashed), 1010 (dotted), 4×1010 cm-2 (solid). 
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Figure 10. Radiative efficiency vs power absorbed in the

microcavity at 10 K, for (a) a doped cavity, ne=1010 cm-2, (b)

an undoped cavity, and (c) as (a) but including the effects of
electron gas heating. The dotted part of the curve (b)

corresponds to a calculated exciton density >5×1010 cm-2. 

Figure 11. Schematic proposed GaN-based polariton laser. 

Figure 12. Solid lines: exciton-polariton kinetic distribution
functions of the GaN microcavity under non-resonant cw
optical pumping at 300 K. The pump power densities used are

(a) 1000 W/cm2 and (b) 40000 W/cm2. Black points and open
circles show the values of the distribution function for the
lowest energy states (assuming the exciting light spot is 50 µm

radius) for pump densities of  1000 W/cm2 and 40000 W/cm2,
respectively. Dashed line shows the Bose-Einstein polariton
distribution function of the same microcaity assuming a
vanishing chemical potential. Inset shows the radiative
efficiency of the polariton laser versus the pumping power
density at 300 K. 
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