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Abstract: General-purpose computing on graphics processing units (GPGPU) is dramatically changing the

landscape of high performance computing in astronomy. In this paper, we identify and investigate several key

decision areas, with a goal of simplifying the early adoption of GPGPU in astronomy. We consider the merits

of OpenCL as an open standard in order to reduce risks associated with coding in a native, vendor-specific

programming environment, and present aGPU programming philosophy based on using brute force solutions.

We assert that effective use of new GPU-based supercomputing facilities will require a change in approach

from astronomers. This will likely include improved programming training, an increased need for software

development best practice through the use of profiling and related optimisation tools, and a greater reliance on

third-party code libraries. Aswith any new technology, those willing to take the risks andmake the investment

of time and effort to become early adopters of GPGPU in astronomy, stand to reap great benefits.
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1 Introduction

Over the last few decades, astrophysical computation has

benefited greatly from Moore’s Law increases in pro-

cessing speed — in essence, a doubling of central pro-

cessing unit (CPU) speed every two years. Once a code

has been implemented, astronomers have been able to

access greater processing power by taking advantage of

improved hardware as it becomes available, but with

minimal additional code development. Unfortunately, as

single-core CPU speeds have plateaued (see Barsdell

et al. 2010, Figure 1), this scientific software development

‘free lunch’ is coming to an end. However, a radical

change in computing architecture is providing orders-of-

magnitude improvements in performance, and opportu-

nities exist for astronomers to benefit.

The graphics processing unit (GPU) has appeared as a

viable, low-cost alternative to traditional CPU computa-

tion. Indeed, most modern computers now contain a GPU,

either as part of the main system board or as a peripheral

graphics card, and graphics hardware performance is

doubling on 6–9 month timescales. In simplest terms, a

GPU is a low-cost, highly-parallel coprocessor with a

high memory bandwidth, which supports single- and

double-precision floating point calculations via an

instruction set. Whereas much of the physical chip area

of a CPU is devoted to control logic and low latency cache

memory, GPUs maximise the number of processing units

that can be accommodated on a chip.

The gradual change in computer graphics architectures

from a high-cost, fixed-function rendering pipeline for

graphics-only tasks (early 1980s), to configurable, and

ultimately programmable, low-cost formats (i.e. GPUs),

led to a recognition that non-graphics computation on

these devices was possible (Fournier & Fussell 1988;

Kirk & Hwu 2010). The notion of general-purpose com-

puting onGPUs (GPGPU) has now changed the landscape

of scientific computation across a broad range of disci-

plines (Tomov et al. 2003; Venkatsubramanian 2003;

Owens et al. 2005).

Timely access to high-performance computing (HPC)

infrastructure is a critical ingredient required for astron-

omy to progress, particular in the fields of numerical

computation and signal processing. Astronomers have

been quick to capitalise on the new hardware-accelerated

approach to computation (e.g. Nyland et al. 2004, 2008;

Schaaf & Overeem 2004; Elsen et al. 2007; Hamada &

Iitaka 2007; Portegies Zwart et al. 2007; Schive et al.

2007;Wayth et al. 2007; Belleman et al. 2008; Ford 2008;

Harris et al. 2008; Moore et al. 2008; Szalay et al. 2008;

Aubert et al. 2009; Ord et al. 2009; Aubert & Teyssier

2010; Thompson et al. 2010) with most authors reporting

speed-ups of O(10)–O(100) times the single-core alter-

natives. Indeed, these early successes in astronomical

GPGPU have motivated major investments in hybrid
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CPUþGPU supercomputing infrastructure, including

the Kolob cluster at the University of Heidelberg,1 the

170 teraflop/s2 Silk Road facility3 operated by theNAOC,

and the planned Australian GPU Supercomputer for

Theoretical Astrophysics Research (gSTAR) with a

design goal of ,600 teraflop/s.

The dramatic processing speed-ups that can be

achieved by moving computation from the CPU to a

GPU do not come without costs. Early use of GPUs for

scientific computation required code to be written in

graphics card–native shader languages [e.g. Portegies-

Zwart et al. (2007) used Cg for an N-body implementa-

tion] such that an arbitrary computation needed to be

recast as if it were a graphics computation relating to

shading pixels and polygon vertices. While the advent of

the CUDA programming library for NVIDIA hardware

and the OpenCL standard from the Khronos Group has

somewhat simplified the task of writing GPU-specific

code, in general, adoption of GPUs requires a fundamen-

tal change in algorithm design and implementation. Most

critically, the move from straightforward, single-core

CPU sequential programming to complex, many-core

massively parallel stream processing may call for radical

redevelopment of software, rather than simply porting

code to a new architecture and recompiling (e.g. Owens

et al. 2005; Che et al. 2008; Christadler & Weinberg

2010; Larus & Gannon 2010). A detailed analysis of

HPC systems and applications used by members of the

European PRACE Consortium (Simpson, Bull & Hill

2008), which included astrophysical codes, highlighted

the need to rewrite key algorithms and kernels to scale

software effectively to the many-thousand processing

cores of petaflop/s systems; the additional work required

to optimse codes for hardware accelerators; and the need

for additional personnel to undertake the coding effort.

While these findings were not directly addressing GPU

computing in astronomy, they are representative of the

challenges that face astronomers who hope to take advan-

tage of the massively-parallel processing paradigm.

HPC is currently navigating a ‘multi-core corner’,

marking a transition between past (single-core) and future

(many-core) architectures. Indeed, new multi-core tech-

nologies are appearing at a rapid rate: the trend is to see

products from competing vendors leapfrog each other

in processing speed and features supported (e.g. more

processing cores, greater memory bandwidth, error-

correcting memory, simultaneous execution of multiple

kernels) in the rush to maximise market uptake through

ever lower ‘price-per-performance’. While the GPUmar-

ket is dominated by two vendors, NVIDIA and AMD,

these are not the only options for parallel coprocessors.

Both the Cell architecture, used in Sony’s PlayStation 3

game console, and field-programmable gate arrays

(FPGA) offer similar order-of-magnitude speed-ups com-

pared to CPU for certain classes of problems. Notwith-

standing its use as the processor of choice for the world’s

first petaflop/s supercomputer, Roadrunner,4 the future of

Cell is uncertain. In astronomy, FPGAs are better-suited

to digital signal processing and radio astronomy applica-

tions, rather than general purpose computation.We do not

discuss either of these multi-core options further, but

focus our attention on GPUs.

In this paper, we consider two key questions that early

adopters of GPGPU in astronomy will need to address:

choice of programming language (section 2), as this has

an impact on the astronomer’s ability towrite any code for

GPU, and selection of starting point for implementation

(section 3), which may benefit from a return to ‘brute

force’ solutions. In section 4, we comment on some

additional factors that must also be considered by early

adopters: numerical precision; code optimisation and

profiling; and opportunities to use third-party GPU soft-

ware libraries. We present our concluding remarks in

section 5.

The choice of suitable problems for implementation on

GPUs is beyond the scope of this work, and is addressed

in detail in Barsdell et al. (2010). For the remainder of

this paper, we assume that the reader’s code/algorithm

of interest has already been identified as suitable for a

GPU. Additionally, it is not our intention to describe all of

the features of GPU architectures or discuss general

programming techniques for massively parallel proces-

sors. Instead, we refer the interested reader to Owens et al.

(2005),5 Che et al. (2008) and Kirk & Hwu (2010). For

CUDA code developers, there are resources such as the

GPU Gems series.6

Successful utilisation of the GPGPU paradigm in

astronomy relies on one main ingredient: software. The

somewhat sobering reality is that existing CPU-only

codes will not run on GPUs without either adaptation,

re-writing, or a greater reliance on third-party software

libraries. A critical question that early adopters ofGPGPU

will need to consider is how to best utilise their limited

resources (e.g. time, personnel) in order to have science-

ready GPU codes.

2 Software Development Kits for GPU Programming

A compiler and driver library is required for developing

and using GPU program code. The compiler is a standard

C or Cþþ compiler supporting a small set of language

extensions that are used to declare and define functions

(kernels) that execute on the GPU, while the driver library

provides standard C or Cþþ functions for launching or

executing kernels and managing the memory on GPUs.

1
http://kolob.ziti.uni-heidelberg.de/.

2
1 flop¼ 1 floating-point operation; 1 flop/s¼ 1 floating-point

operation/second.
3
http://silkroad.bao.ac.cn/.

4
http://www.lanl.gov/.

5
Published prior to the release of CUDA, some of the implementation

issues they raise have been resolved.
6
Online versions of volumes 1–3 are freely available from http://

developer.nvidia.com/page/home.html.
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2.1 CUDA and OpenCL

The NVIDIA Compute Unified Device Architecture

(CUDA)7 is the prevailing Software Development Kit

(SDK) that provides a compiler and driver library for

GPUs.8 GPU programs written using this SDK are cus-

tomarily referred to as CUDAprograms; hereafter, we use

CUDA to refer interchangeably to the language exten-

sions and to the SDK itself. CUDA was released in June

2007 and with very few exceptions (e.g. Portegies Zwart

et al. 2007) has been the enabling technology for the direct

application ofGPUs in astronomy. CUDAhas become the

de facto standard SDK for astronomy computation as it is

relatively mature and robust, has a large user community,

and comes with extensive documentation and sample

code. CUDA works with all modern NVIDIA GPUs and

has been used to derive worthwhile speed-ups in codes

throughout astronomy as reviewed in section 1 of this

paper.

CUDA is not without shortcomings. CUDA programs

execute only on NVIDIA GPU hardware: using the

CUDA SDK as a development platform forces one to

choose NVIDIA hardware for execution. Not only are

other GPU vendor solutions (e.g. AMD/ATI graphics

cards) incompatible with CUDA, other generic coproces-

sor hardware (e.g. Sony/IBM Cell BE processors) and

standard multi-core CPU processors also lack CUDA

support. Importantly, the CUDA language extensions are

not an openly-defined standard: NVIDIA can change the

CUDA capabilities and interface without notice and at

their sole discretion.

The Open Computing Language (OpenCL)9 is a new,

open standard that addresses these two deficiencies.

OpenCL defines a hardware-agnostic application pro-

gramming interface (API) for general-purpose computing

on GPU hardware. The OpenCL standard is developed

and maintained by the Khronos Group10 (who also

publish the OpenGL standard), but implementations of

OpenCL are provided by third parties, typically hardware

vendors. At the time of writing, several major OpenCL

implementations are available, variously supporting the

four contemporary monolithic processor architectures:

� NVIDIA OpenCL supports NVIDIA GPUs and x86

CPUs.

� AMD OpenCL supports AMD (ATI) GPUs and x86

CPUs.

� Apple OpenCL supports AMD (ATI) and NVIDIA

GPUs and x86 CPUs.

� IBM OpenCL supports the POWER, Cell Broadband

Engine, and x86 processors.

It is necessary to choose a particular OpenCL imple-

mentation to build and execute OpenCL codes, but in

contrast to CUDA code, standard-compliant OpenCL

code should compile and execute with any OpenCL

implementation, and is therefore hardware- and vendor-

agnostic.

The OpenCL driver interface and kernel language

extensions are very similar to those of CUDA. Indeed,

the changes required to convert a simple CUDA code to

an OpenCL code are usually limited to the initialisation

and memory copy operations, and minor syntax differ-

ences in the kernel(s). Instances where more substantial

work might be needed are highly-optimised CUDA

kernels, or kernels requiring or using intricate memory

operations for reasons related to performance or problem

size.

Considering that OpenCL is an open standard devel-

oped by an industry consortium, and that several OpenCL

implementations are already available from the main-

stream processor vendors, we contend that OpenCL is

more future-proof than CUDA, and is an attractive choice

for GPU development.

2.2 Performance

Being more general than CUDA, OpenCL cannot express

features specific or unique to a particular processor.

Moreover, there will be GPU kernels that run faster when

written in a hardware-native API, particularly if the code

undergoes extensive optimisation for a particular GPU

family. However, for practical use of GPUs in astronomy,

we favour generality and longevity of code over the last,

say, ten per cent performance gain. With this in mind, we

now examine the relative performance of OpenCL and

CUDA.

References to CUDA in the astronomy research litera-

ture outnumber those to OpenCL. On 2010 June 17, the

SAO/NASA Astrophysics Data System Abstract Service

(Astronomy and Astrophysics Search option) returned 51

articles with the text ‘CUDA’ in the abstract, but only four

articles with the text ‘OpenCL’. Of these, two report on

explicit performance comparison between CUDA and

OpenCL on the same hardware. For the calculation of

gravitational wave source models, Khanna & McKennon

(2010) measure identical performance for CUDA and

OpenCL on an NVIDIA Tesla GPU. Karimi et al.

(2010) compare implementations of a Monte Carlo simu-

lation for a quantum spin system, using an NVIDIA

GeForce GTX-260 GPU. Examining the relative differ-

ence in run-times (their Figure 5) shows that performance

does depend on the problem size, with variations up to

70%, but decreasing to 10–20% as the complexity of the

simulation increases. SiSoftware, a UK-based company

providing benchmarking software, have also reported

on OpenCL performance compared to CUDA.11 They

find arithmetic and memory performance to be within

7
NVIDIA CUDA: http://www.nvidia.com/object/cuda_

home_new.html.
8
Other architecture-specific SDKs include theATI Stream SDK (AMD)

for programming ATI Radeon GPUs and the Cell Broadband Engine

SDK (IBM).
9
Khronos OpenCL: http://www.khronos.org/opencl/.

10
Khronos: http://www.khronos.org/.

11
SiSoftware CUDA and OpenCL comparison: http://www.

sisoftware.info/?d=qa&f=gpu_opencl&l=en&a=.
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5 per cent for CUDA compared to OpenCL on NVIDIA

hardware.

To address the lack of published OpenCL performance

measures within physics and astronomy, we undertook

our own simple comparison of CUDA and OpenCL

performance for a basic N-body kernel. Our N-body

GPU kernel implements the standard, direct-force calcu-

lation for an N-particle system evolving in its own

gravitational potential; force integration is applied on

the CPU by the classic FORTRAN driver program

NBODY1 (Aarseth 1999). Numerous GPU kernels that

implement the N-body direct force calculation exist,

including sample codes shipped with the NVIDIA CUDA

and AMD OpenCL SDKs. For this work we wrote our

own kernel, which sacrifices some speed for algorithm

clarity.

To use a GPU kernel from NBODY1 we wrote a

wrapper function in the C language to replace the inline

FORTRAN force calculation code. Three versions of the

wrapper function were produced: a CPU version using a

manual conversion of the FORTRAN code to C; a GPU

version using our own CUDA kernel and driver code; and

a GPU version using our own OpenCL kernel and driver

code. TheCUDAandOpenCL kernels and driver code are

algorithmically and functionally identical; differences in

the code are only present due to syntactic requirements

of the kernel compilers, and the different initialisation,

memory management and kernel execution functions as

provided by the APIs.

A summary of the direct force N-body kernel is as

follows: device (GPU) memory for particle positions

(3-vectors), particle forces (3-vectors) and particle

masses (scalars) is allocated once only, on the first call

to the force calculation wrapper function. On every call,

current values of the particle positions and masses are

copied to the device memory, and the force calculation

kernel is invoked. We divide the work up so that the total

force on a single particle Fi is calculated by the single

thread with thread index i; within this thread the

component forces (the forces from individual particles)

are calculated sequentially for a block of particles B at a

time, whose positions and masses are copied to the fast,

sharedmemory on theGPU. The same block of particlesB

is used by other threads (iþ 1, iþ 2, y) running con-

currently to calculate the (partial) integrated forces on

other single particles Fiþ1, Fiþ2, y.

We executed our GPU-enabled NBODY1 code over a

range of particle number (N) sufficient to show scaling

behaviour, and on three GPU systems:

� MAC8800: an Apple Mac Pro workstation and

NVIDIA 8800GT graphics card, using NVIDIA-

supplied CUDA version 2.3, and Apple-supplied

OpenCL [version includedwith SnowLeopard 10.6.2];

� SMTESLA: a Supermicro Linux workstation with

NVIDIA GT200 (Tesla C1060) card, using NVIDIA-

supplied CUDA (with OpenCL) version 2.3; and

� PCRADEON: a PC clone workstation with AMD ATI

Radeon HD 5970 graphics card,12 using AMD-

supplied ATI Stream SDK 2.01 with OpenCL.

Figure 1 presents our results. We note that the domain

of N values explored here does not fully utilise the

capabilities of the GPUs. The performance index is the

real-world time taken to reach the same simulation time

(50Myr), scaled by (N/1000)3/2. We are illustrating per-

formance comparisons rather than how performance

scales with N. On the MAC8800 system, the OpenCL

kernel executed at least as quickly as the CUDA kernel,

and typically was slightly quicker by up to 15 per cent. On

the SMTESLA system, the CUDA kernel was faster than

the OpenCL kernel by between 40 and 55 per cent. These

results are not surprising : Apple Inc. markets OpenCL

as a major performance feature of the Snow Leopard

operating system, and has evidently delivered a mature

OpenCL implementation that is competitive with CUDA.

Figure 1 Performance index [measured execution time scaled by (N/1000)3/2] for the NBODY1 code using CUDA (MAC8800-CU,
SMTESLA-CU) and OpenCL (MAC8800-CL, SMTESLA-CL, PCRADEON-CL) kernels to directly calculate the interparticle forces, for
varying system sizes. Lower performance index is better.

12
Only one of the twoGPUs on the Radeon card were used in these tests.
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On the Linux-based SMTESLA system, the OpenCL

implementation is significantly younger than CUDA;

the MAC8800 results make it reasonable to expect the

NVIDIA OpenCL implementation to mature and become

competitive with CUDA on the Linux platform. In any

case, the performance difference between CUDA and

OpenCL on the SMTESLA system is relatively minor

when one considers that the OpenCL implementation on

the SMTESLA system already out-performs an OpenMP

implementation of the kernel executing on an Intel Xeon

E5345 2.33GHz processor with four processing cores, by

50 times.

Results for the PCRADEON system running

NBODY1 using an OpenCL kernel are also shown in

Figure 1: its performance is within 10 per cent of that of

the OpenCL kernel executing on the SMTESLA system.

Considering that the ATI HD 5970 card retails for less

than half the price of the Tesla C1060 card, and we have

only used one of its two GPUs in this test, this is an

outstanding result. Using both GPUs on the ATI HD 5970

can be expected to deliver performance at the level of the

SMTESLA system using a CUDA kernel, for jobs that fit

in the smaller memory (o2GB) of the ATI card. There

is clearly now a choice of hardware and software vendor

for scientific computing using GPUs. Choosing OpenCL

does not bestow a significant13 performance degradation

compared to CUDA, and opens up additional options in

GPU hardware for astronomy.

3 A GPU Programming Philosophy

Having considered the merits of CUDA and OpenCL for

developing GPU-enabled astronomical software, we now

consider a related question: for a given computational

problem that has been identified as suitable for a GPU

which version of the algorithm should be written or

adapted for GPU?We present here a GPU-programming

philosophy based on brute-force implementations.

3.1 Benefits of Brute Force

As a starting point for our GPU programming philosophy,

we consider results from Thompson et al. (2010) and Bate

et al. (2010) for the specific case of gravitational micro-

lensing ray-shooting. Microlensing is the study of the

gravitational deflection of light by compact lens masses

within more massive, extended, lens galaxies; ray-

shooting is a computational technique that follows light

rays backwards from an observer, through a system of

lenses that deflect the light rays, and onto a grid in the

source plane. This grid, or magnification map, is then

used to make statistical comparisons with microlensing

observations.

The ‘industry standard’ ray-shooting method for

single-core CPUs uses a sophisticated tree code

(Wambsganss 1990, 1999). A tree hierachy is used to

approximate the mass distribution as a collection of

pseudo-lenses, in order to avoid the computational

requirements of a direct summation over all lenses. This

approach was originally introduced to microlensing two

decades ago due to the unfeasibly long processing times

(i.e. months to years) that the conceptually simpler brute-

force computation using all lenses would require on the

best single-core CPUs available at the time. However,

ray-shooting is inherently parallel— each light ray can be

deflected independently of all other light rays, and the

deflections due to each microlens add linearly — thus

making it an ideal candidate for a GPU implementation.

Today, a high-resolution brute force calculation can be

achieved in a matter of hours on a GPU. Moreover, with

an NVIDIA Tesla S1070 unit, Thompson et al. (2010)

achieved billion-particle microlensing calculations at

over 1 teraflop/s and runtimes of a few days.

Bate et al. (2010) compared the single-core tree code

(CPU-T) with the brute force approach on GPU (GPU-D

where D¼ direct) over a range of astrophysically-

motivated parameter space. Overall, runtimes using

GPU-D were found to be no worse than for CPU-T:

indeed, for certain combinations of parameters, GPU-D

was faster by a factor of a few. The implementation time

for GPU-D using CUDA was quite short — a matter of

weeks — compared to the anticipated time of several

months to implement a working, optimised tree code.14

What we infer from this case is that a naı̈ve, simple

to implement, and more accurate brute-force solution is

highly competive with a clever, complex, fast, trusted,

industry standard code. Since its first release, the CPU-T

code has not required significant modification in order to

achieve faster processing times. Instead, it has been able

to rely almost solely on the Moore’s Law increase in

processing speed (and a corresponding growth in CPU

memory at reduced cost). However, the plateau in CPU

clock rates means that no additional performance

improvement can occur for CPU-T in its present form.

GPU-D is now ready to take advantage of the anticipated

increases in GPU speeds in the years ahead, with no

additional code development required. The massively

parallel GPU architecture means that a brute force

approach that was not feasible even a decade ago is now

highly competitive with the algorithmically-complex

approach. However, the latter was the only approach that

was feasible for single-core CPU computing.

The Bate et al. (2010) result suggests an intriguing

approach to GPU programming that we encourage other

early adopters to consider. In order to adapt code to GPU,

the two main alternatives are:

1. Take existing code and port it as is to GPU. This is

likely to be a time-consuming task, as many aspects of

complex implementations do not match well with the

13
i.e. the difference between OpenCL and CUDA kernel execution

performance is typcially a factor or 10–100 smaller than the the gain

achieved by using GPUs instead of CPUs.

14
We note that at the time of code development, OpenCL had not been

publically released, hence our choice of CUDA.

Astrophysical Supercomputing with GPUs 19

https://doi.org/10.1071/AS10019 Published online by Cambridge University Press

https://doi.org/10.1071/AS10019


hardware architecture and memory management

requirements of current GPUs; or

2. Think about what the code is currently doing and

why [e.g. using an algorithm analysis approach as in

Barsdell et al. (2010)].

If the latter reveals that a complex algorithmwas being

used in order to overcome a pre-existing hardware (i.e.

single-core CPU) limitation, consider the advantages of a

brute force approach. Thismay entail looking back to how

a problem was originally posed, and taking the simple

solution — provided it exhibits the required massive

parallelism in computation that is suited for GPU.

Significant processing speed-ups can be obtained by

going beyond a naı̈ve implementation, but at the same

time, a simple algorithm may yield unexpected speed-

ups by over-computing. A case in point is the pairwise

force calculation in direct N-body gravity simulations:

saturation of GPU threads can be achieved by introdu-

cing additional particles with zero mass, and by expli-

citly calculating the pairwise forces Fij and Fji, even

though Fij¼Fji (Belleman et al. 2008). Aubert &

Teyssier (2010) describe their use of an explicit time

integration method for solving the equations of radiative

transfer, taking advantage of GPU acceleration to

remove a limitation that this approach would otherwise

introduce.

Based on experiences so far, simple code that is more

accurate, more intuitive, and easier to implement for

GPU, may result in runtimes that are already no worse

than the best currently available (i.e. single-core) codes.

We propose that brute-force techniques are a sensible

starting point for early adoption, where the programmer

does not need to be as aware of computer science

techniques, using algorithms that will hopefully map to

a more obvious implementation on GPU, and which can

be achieved over a short period of time (see section 3.3).

In the longer term, once programmers have mastered the

details of stream processing, and if the speed-up offered

by a brute force solution is still not sufficient or scales

poorly with the problem size, more sophisticated solu-

tions can of course be implemented.

3.2 Brute-force Multi-dimensional Minimisation

To further test this philosophy, we consider a common

task in astronomy: finding the global minimum of a

multi-dimensional dataset. Standard techniques, such as

steepest descent, simulated annealing or the simplex

method (described below), attempt to limit the number of

function evaluations required to obtain the minimum.

While convergence to a solution can occur rapidly, there

is no certainty that the globalminimumhas been obtained,

rather than a local minimum. Moreover, solutions are

often strongly dependent on the starting point for eva-

luation. Whereas techniques exist to find starting values

that bracket the location of a minimum for one-

dimensional functions, no such bracketing techniques

exist for the general multi-dimensional case.

3.2.1 Downhill Simplex Minimisation

A popular multi-dimensional minimisation technique

is the downhill simplex method (DSM), introduced by

Nelder & Mead (1965). A practical implementation of

this algorithm is is provided with the GNU Scientific

library (GSL15) as the function gsl_multimin_

fminimizer_nsimplex. DSM is a very general multi-

dimensional minimisation algorithm, as it does not

depend on knowledge of the derivatives of a function

(such as is required for the steepest descent algorithm),

and hence is appropriate for a wider range of applications.

DSM works as follows: based on an initial guess at a

solution, p0, an additional N vectors are generated using a

stepping vector, s. An N dimensional simplex is con-

structed from these Nþ 1 vectors as vertices, and the

function evaluated at each vertex. A set of geometrical

transformations are applied to the simplex in an attempt to

span the minimum value, at which point the simplex

contracts in size. This process is continued iteratively

until a stopping criterion is reached.

As a demonstration of the difficulties associated with

using DSM, consider the following well-behaved func-

tion in two-dimensions:

f ðx; yÞ ¼ sinðxÞ cosðyÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:0þ x2 þ y2
p ð1Þ

which is plotted in Figure 2. As the visualisation ably

demonstrates, there is one unique global minimum in the

Figure 2 Surface representing the function f ðx; yÞ ¼
½sinðxÞ cosðyÞ�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:0þ x2 þ y2
p

. A rainbow colour-range (blue to
red) is used to highlight function values. Three-dimensional visua-
lisation is perhaps the easiest way to identify global minima and
maxima for (well-behaved) two-dimensional functions!

15
http://www.gnu.org/software/gsl.
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range x A [�10, 10], y A [�10, 10], at (x, y)¼ (�1.11,

0.0) and a number of local minima.

We implemented a wrapper for the DSM function in C,

and ran 104 iterations with random starting values for

(x, y) over the range [�10, 10]. Total runtime for 104DSM

solutions on a Xeon 5138 processor16 at 2.33GHz was

0.4 s. Figure 3 shows the distribution of minima returned

by the simplex routine. While DSM does indeed find the

global minimum, it only achieves this in 5% of cases.17

Next, we trial a 5-dimensional function

gðx; y; z; v;wÞ ¼ sinðxÞ cosðyÞ sinðzÞ cosðvÞ sinðwÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2 þ y2 þ z2 þ v2 þ w2
p ; ð2Þ

which cannot be visualised as easily as equation (1).

However, by noting the symmetries x2 z2w and

y2 v, we can consider the function:

hðuÞ ¼ sin3ðuÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 3u2
p ; ð3Þ

which has a minimum at u¼�1.36672, and deduce that

there are four global minima at (y, v)¼ (0, 0) and (x, z, w)

as listed in Table 1. As before, the DSM code was exe-

cuted 104 times. Average runtime (over 10 runs) on the

same CPU architecture as used previously was 1.97 s. For

the five-dimensional function, one of the four global

minima was only found in 0.03% of cases.

As a simple modification, we enable the code to find

successively lower values. Starting with an initial guess,

DSMconverges to aminimum value. A new starting point

is chosen, and the solution is compared to the previous

best minimum. This process continues until no lower

minimum has been found after 100 iterations. This change

increased the runtime to 5.23 seconds (average over 10

runs), and resulted in one of the four global minima being

found in 0.13% of runs.

An alternative strategy is to reduce the range for

starting guesses, although in general, we might not know

a priori what an appropriate (reduced) range is. Here, by

choosing starting values in the range [�5, 5], and using

the additional iteration step, our code returns a correct

global minimum in 3.7% of runs. A secondary effect here

is a slight reduction in runtimes (4.8 s).

We have now demonstrated the difficulties with using

an approximate method, such as DSM, for minimimisa-

tion of a well-behaved function. Our intent is not to

Figure 3 Distribution of minima found by GSL simplex routine for minimisation of equation (1), with starting values in the range [�10, 10] for
(x, y). Results based on executing code 104 times. The actual global minimum is only found in ,5% of runs.

Table 1. Global minima of the five-dimensional function of
equation (2) occuring when y5 v5 0

x z w f(x, y, z, v, w)

�1.36672 1.36672 1.36672 �0.365412

1.36672 �1.36672 1.36672 �0.365412

1.36672 1.36672 �1.36672 �0.365412

�1.36672 �1.36672 �1.36672 �0.365412

16
A single processor of a 2 quad-core Clovertown Processor.

17
We note that a naı̈ve use of the Mathematica Minimize func-

tion also returns an incorrect global minimum value f(1.4454,

28.89434)¼�0.284.

Astrophysical Supercomputing with GPUs 21

https://doi.org/10.1071/AS10019 Published online by Cambridge University Press

https://doi.org/10.1071/AS10019


provide a detailed analysis of how to improve perfor-

mance of DSM, but to present a starting point for

considering an alternative minimisation technique suita-

ble for GPU: brute-force computation over a search

domain.

3.2.2 Brute-force Minimisation

In brute-force method (BFM) minimisation, function

values are evaluated on a grid of points in multi-

dimensional parameter space. The resulting array of

function values is searched or sorted to identify the

minimum (or minima). The principal characteristic of

this approach is that the quality of the solution — how

close the result is to the real minimum (or minima) —

depends on the resolution of the grid. In general, a finer

grid yields a grid point (or set of grid points) closer to the

true global minimum (minima). However, for real-world

minimisation, minima will rarely align exactly with a grid

point and consequently, unlike DSM, the BFM on its own

may not yield the exact minimum.

What BFM can do is identify the location, with known

uncertainty of one-half of the grid spacing in each direc-

tion, of physically meaningful minima. By this we mean

minima that are smooth with respect to the selected grid

resolution, or put another way, minima that are well-

behaved over the neighbouring grid cells. A sharp nega-

tive spike, confined in the multi-dimensional parameter

space to a hypervolume smaller than a grid cell, cannot

reliably be identified by brute force; i.e. high-frequency

features may be missed by the sampling of the parameter

space.

Happily, for many real-world minimisation problems,

especially those using measured data, it is actually quite

reasonable and straightforward to set a physically mean-

ingful resolution for searching parameter space. For

example, consider fitting a Gaussian profile to a radio

continuum image of a galaxy, with the position, width and

amplitude parameters of the Gaussian to be determined.

In most cases, position will be over-sampled at one-tenth

of the resolution (beam size) of the image (although for

extremely bright sources needing the best astrometry this

could be refined); width would be sufficiently sampled

in multiples of one-fifth the beamsize; and amplitude in

multiples of one-fifth of the image noise. While this

sampling implies a desired precision in the final fit, if

subdividing the grid much finer than this yields substan-

tially different solution(s), it is likely to be due to

unphysical artefacts in the image (e.g. sharp spikes from

interference or noise outliers, which are not convolved

with the observing beam) rather than genuine signals of

interest.

Minima found by brute-force sampling of parameter

space can be used in their own right, or used as initial

guesses for a method like DSM which could refine the

solution (i.e. move it off the grid and towards the exact

minimum). BFM minimisation can easily accommodate

a priori conditions on the parameter search space, such as

invalid regions (which can bemasked out from the search)

or parameters requiring varying resolution (e.g. using log

sampling).

To explore the feasiblity of BFM minimisation using

GPUs, we implemented the evaluation of equation (2)

over a defined parameter space using an OpenCL kernel

and driver program. For simplicity, all five variables were

sampled over the domain (�5, 5) sampled at N points; a

total of N5 function evaluations are required. For a given

triplet (xi, yj, zk), the kernel was programmed to sequen-

tially evaluate the function over all (v, w), a total of N2

evaluations, and return the vector (xi, yj, zk, vmin,wmin) and

value gmin(xi, yj, zk) where the minimum function value

was identified for the triplet (xi, yj, zk). The kernel was

deployed over a 3-dimensional work blockB of size (N,N,

N), itself divided into work groups of size (N, 1, 1). The

driver program received N3 values of gmin(x, y, z) at the

completion of the kernel invocation, and used sequential

CPU code to identify the globalminimumand its location.

We measured the time taken to evaluate the test

function for N in the range 32–160. We used the MAC-

8800 and PCRADEON systems as previously described,

as well as a quad-core Intel Nehalem i7 930 Xeon system

(PCXEON4) running a standalone C implementation

(five nested loops over the x, y, z, v, w parameter axes)

of the brute force calculation.18 Figure 4 presents the

results. For this compute-bound problem, the PCRADEON

system (using 1 GPU) outperforms the PCXEON4

system by around 25 times, and can evaluate the function

(g) at a rate of ,109 evaluations per second. Using both

GPUs on the PCRADEON system would double this

speed.

As previously noted, equation (2) has multiple

minima, yet it is highly improbable that the grid used by

the BFM exactly aligns with any of them. However,

provided the grid is sampled finely enough, BFM mini-

misation will identify a point close to one of the four

global minima as the minimal point on the grid, hereafter

Pb. As the sampling of the grid increases (i.e. as N

increases) the overall expectation is that Pb, and the

function evaluated at that point, g(Pb), will approach the

position and value of (one of) the global minima respec-

tively. However this approach is not necessarily piece-

wise continuous because the minimum function

evaluation on the grid will likely flip-flop from side to

side of a local or global minimum as N is increased.

Figure 5 illustrates the convergence towards an accep-

table solution for the test function with increasing sub-

division of parameter space — for NC 100, the global

minimum value is accurate to ,0.5 per cent and the

position is within,1 per cent of one of the known global

minima positions. In the real world, with e.g. measure-

ment noise and resolution effects added to this dataset, N

would be sensibly limited by known properties of the data.

18
The standalone C implementation was a single-core code; we report

quad-core timings by assuming perfect scaling which is reasonable for

this task.
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To compare the standard downhill simplex method to

the brute-force approach for minimising the test function,

we consider what can be achieved by each method in 10 s:

� DSM (on the Xeon 5138 CPU) has a 7.7 per cent strike

rate in identifying exactly one of the four globalminima

(i.e. it has a 92.3 per cent likelihood of not identifying

one of the global minima!); and

� BFM (on the PCRADEON-CL system) identifies a

lowest value within 0.7 per cent of the known global

minimum value, lying closer than 1.2 per cent of the

diagonal length of the parameter space to one of the

known global minima locations.

While BFM minimisation could be re-run at higher

resolution in a sub-volume of parameter space around

minima found on lower resolution grid(s) to improve the

accuracy of its results, a hybrid DSM-BFM method is

obviously suggested. For example, using the,100 lowest

points found in the brute force evaluation of the function g

over the 5-dimensional parameter space with N¼ 64 as

initial guesses for the downhill simplex method, we

obtain a method which can readily identify all four global

minima for the function g, exactly, in just a few seconds.

Our intent in this section has been to demonstrate that

a brute force approach is a practical starting point for a

GPU, which gives a significant speed-up compared to

a CPU (Figure 4), and may indeed overcome some of

the existing limitations with the optimised alternatives.

Implementating BFM minimisation using CUDA or

OpenCL is straightforward, whereas efficient coding of

a more complex minimisation algorithm for a GPU is

likely to be a time-consuming task — and would result in

the same issues with identifying local rather than global

minima. The brute force approach could indeed be used

in a multi-scale fashion to obtain higher accuracy. For

example, for each local minimum, the brute-force evalua-

tion could be repeated on a higher-resolution local grid, or

it could be used to provide starting points for an alter-

native techinque.

3.3 Time to Science

Since there is an overhead in preparing code to run

effectively and optimally on GPU, it is worth considering

howmuch time is spent on programming versus the actual

speed-ups. For the astronomer, whose primary interest is

their ability to advance knowledge through computation,

rather than advancing knowledge of the computational

technique, we can consider a ‘time to science’, Tscience, to

aid decisions regarding adoption of GPU:

Tscience ¼ Tlearn þ Timplement þ Trun þ Tanalyse: ð4Þ

Here, Tlearn is the time taken to learn the fundamentals of a

programming approach (CPU or GPU), Timplement is the

time to implement a specific programmatic solution, Trun
is the run-time of the code, and Tanalyse is the time taken to

Figure 5 Convergence of BFM minimisation to the value and
location of a global minimum of equation (2) as a function of the
grid side length N. The value offset is expressed as a percentage of
the target minimum value; the position offset as a percentage of the
diagonal length of the 5-dimensional parameter space.

Figure 4 Measured execution time for the brute-force evaluation of equation (2) on aN5-cell grid for a quad-core Xeon processor (PCXEON4)
and OpenCL (MAC8800-CL, PCRADEON-CL) kernels. Lower execution time is better.
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analyse the outputs in preparation for future work or

publication. AGPGPU approach is desirable or beneficial

in cases where Tscience(GPU)oo Tscience(CPU), but can

we estimate how each factor is likely to contribute?

The most apparent advantage of GPGPU, and the most

significant factor in Tscience, is the expectation that

TrunðGPUÞ � TrunðCPUÞ: ð5Þ

This has been demonstrated for a growing range of GPU-

astronomy applications, with 10–100� speed-ups in

processing time. If this condition is not met, there is little

to be gained from a GPU implementation.

For a given number of outputs, we expect that

TanalyseðGPUÞ � TanalyseðCPUÞ; ð6Þ

as the analysis time should not be affected by the com-

putational runtime. If we consider a scenario where faster

GPU runtimes are used primarly to produce more outputs

than are possible with CPU, then the total analysis time

will grow.

Based on our experiences, we suggest that

TlearnðGPUÞ4 TlearnðCPUÞ; ð7Þ

and may indeed be

TlearnðGPUÞ � TlearnðCPUÞ: ð8Þ

In general, the average astronomer-programmer does not

have training in parallel programming techniques — we

anticipate that this situation may be resolved in the years

ahead as multi- and many-core programming makes its

way into undergraduate courses, but this may be a major

factor in the short term. While it has been possible for

many code-writing astronomers to remain unaware of

the hardware configuration of a CPU (beyond knowing

the total available memory), optimising code for GPUs

requires a more complete knowledge of issues such as

available memory bandwidth, and appropriate allocation

of data between register, device and shared memory

spaces (e.g. Che et al. 2008; Christadler & Weinberg

2010).

Regardless of architecture, we assert that:

TimplementðsimpleÞ � TimplementðcomplexÞ ð9Þ

namely that is faster and easier to implement a simple

brute-force solution than to code a more complex algo-

rithm. As our initial investigations suggest, such an

approach can still result in:

TrunðGPU-simple codeÞ 	 T runðCPU-complex codeÞ:
ð10Þ

Assessing the combined effects of these factors is

challenging. However, we suggest that Tscience will be

smaller for simple-to-implement brute-force GPU codes

in many cases, despite the overheads in learning to use

appropriate GPU programming techniques. Of course, as

with traditional CPU programming, these techniques only

need to be learnt once, and can then be applied to a range

of computational problems in the future. In the same way

that single-core CPU codes have benefitted fromMoore’s

Law, once a simple GPU code is available, it can also

take advantage of the anticipated processing speed-ups

that will occur in future generations of GPU hardware,

regardless of whether additional time/effort is invested to

develop a more optimised ‘complex on GPU’ solution.

4 Other Considerations

We now briefly comment on several additional factors

that early adopters should be aware of: issues of perfor-

mance and precision, tools to aid in profiling and

optimising code, and the role of third-party GPU-code

libraries and GPU-enhanced programming environments.

4.1 Performance, Precision and Optimisation

Graphics processing generally only requires single-

precision floating point calculations, but astronomy com-

putations may require double-precision computation in

order to achieve sufficient numerical accuracy. Presently,

there is a big performance difference between single-

precision (SP) and double-precision (DP) computation, as

GPU hardware has fewer DP processors. In some cases,

DP emulation can be achieved by packing a DP value

(64 bit) into two SP floats (32 bit), resulting in a two

times increase in precision — this approach was used by

Gaburov et al. (2009) in their SAPPORO N-body code.

This is likely to only be a short-term limitation for GPUs,

as increased DP performance is under consideration by

GPU vendors (e.g. while SP speeds have increased

overall, in the move from the NVIDIA Tesla S1070 to the

newer Fermi hardware, DP speeds have improved from

1/8 to 1/2 the SP rates). An additional factor that may limit

longer calculations is the availability of error-correcting

memory (ECC), which is able to mitigate failures due to

memory errors from interference (including cosmic rays)

or hardware problems [see Schroeder et al. (2009) for an

empirical study]. NVIDIA’s Fermi cards now support

ECC, but with a slight decrease in processing perfor-

mance when this mode is enabled, and a reduction in the

amount of allocatable GPU memory.

Writing working GPU code is not the same as writing

optimised, efficient GPU code. A simple GPU implemen-

tation of a parallel algorithm, such as those presented

here, may require several iterations in order to reach a

sufficiently optimised version. Improvements by factors

of 2–10� in speed can be achieved quickly, but reaching

100� does require effort and expertise. Tools such as the

CUDA occupancy calculator19 can help to improve speed

through improved use of GPU memory spaces and ensur-

ing that all stream processors are being highly utilised.

19
http://developer.nvidia.com.
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Wecaution that quoted peak speeds forGPU hardware are

primarily for graphics-like calculations (e.g. dual issuing

of a multiplication and addition per clock cycle for single-

precision). A more realistic outcome is to achieve about

1/4 to 1/2 of the quoted peak performance, at best, but it is

strongly problem-dependent.

Whilemany astronomer-programmersmay be familiar

with techniques for debugging code, they may be less

aware of the existence or importance of code profiling.

A software profiler examines run-time characteristics of

codes, including memory allocation, time spent executing

functions, and the frequency of their execution. Profiling

can help identify code sections that may benefit from

optimisation. CUDA and both the NVIDIA and AMD

OpenCL implementations provide visual profilers as

part of their SDKs. Investing time learning to use these

tools effectively may have a beneficial impact on

Tscience(GPU).

4.2 Third-party Libraries and Programming

Environments

From our own experience, there is a general trend for

astronomers to re-implement code or algorithms that may

already exist in third-party libraries. Obvious exceptions

to this include the use of the FFTW20 Fourier transform

libraries, the PGPLOT graphics subroutine library

library,21 and code fragments or implementations from

Numerical Recipes Software.22 A growing number of

GPU-oriented libraries are now available, including the

CUDA Data parallel Primitives Library (CUDPP23) that

provides primitives for common tasks like sorting and

building data structures, and CUFFT — NVIDIA’s own

CUDA FFT library.

Alternatives to programming code in CUDA or

OpenCL that are optimised for execution on a GPU

include GPU-enabled enhancements to widely used inter-

active environments and scripting languages such as the

Interactive Data Language (IDL),24 Mathematica,25 and

the Python programming language.26 For example, the

CUDA-based GPULib by Tech-X Corporation27 allows

IDL scripts to access a GPU for common mathematical

functions and processes (e.g. interpolation, correlation and

parallel geneneration of random numbers). Similarly,

PyCUDA28 and PyGPU29 are two implementations that

enable GPU computing within Python. Moreover,

compiler-based solutions, such as the HMPP Work-

bench,30 aim to hide the details of GPU code development

through the use of OpenMP-like directives in standard

codes. Aswith the case of choosingOpenCL in preference

to CUDA, there is likely to be some processing overhead

in using one of these solutions, but they do provide a

simpler, high-level access to GPU that may be preferable

for many types of applications.

5 Concluding Remarks

In this paper, we have highlighted some of the benefits

and limitations of early adoption of GPGPU for astron-

omy. While there are risks and significant effort may

be required to prepare codes, in many cases the benefits

will outweigh the limitations. A preferred outcome for

astronomers is a majority of time and effort spent on

scientific outcomes rather than software development.

The promise of the OpenCL standard is to provide

opportunities for hardware-agnostic coding. OpenCL

seems to present a good amount of flexibility for imple-

mentation, rather than using a native API (such as CUDA

for NVIDIA), without a significant decrease in processing

speed. Furthermore, we suggest that for certain classes

of scientific computations a step backwards to consider

simple, brute-force solutions that were not feasible for

CPU may in fact reduce software development times.

The resulting codes may already be ‘no worse’ than the

best single-core alternatives, and may even be more

accurate, or overcome limitations of existing optimised

approaches. Lessons learnt in starting with brute-force

solutions can then help researchers to determinewhether a

longer-term solution does indeed warrant the effort of

implementing a more sophisticated alternative.

While running codes faster may be an end in itself,

faster computation means that there is more time to

explore parameter space. This might include running

models with different parameters, or running repeat

models with different random seeds in order to build up

a more robust statistical sample. Additionally, GPUs

provide opportunities to tackle computational problems

that are still not feasible on single-core CPUs or tradi-

tional multi-core computing clusters at a greatly reduced

cost.

Not all applications require GPUs, so some time and

effort should be invested in understanding the types of

problems that will really receive the greatest benefit. For

example, telescope control software does not parallelise

well, if at all, but the highly parallel nature of Fourier

transformation, used extensively in astronomy, makes it

an ideal candidate for GPGPU. Indeed, there are pro-

blems, such as the conceptually simple process of gen-

erating a histogram from data values, that are easy to

implement on a CPU, but which become unnecessarily

complex when a parallel solution is attempted. Com-

putational tasks compatible with a stream processing

20
http://www.fftw.org.

21
http://www.astro.caltech.edu/,tjp/pgplot.

22
http://www.numerical-recipes.com/.

23
http://code.google.com/p/cudpp/.

24
http://www.ittvis.com/ProductServices/IDL.

aspx.
25

http://www.wolfram.com/products/mathematica.
26

http://www.python.org/.
27

http://www.txcorp.com/products/GPULib/.
28

http://mathema.tician.de/software/pycuda.
29

http://www.cs.lth.se/home/Calle_Lejdfors/pygpu. 30
http://www.caps-enterprise.com.
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paradigm (i.e. many individual data-streams requiring

identical computations) are candidates for moving from

the CPU to the GPU. Fortunately, a high degree of

data parallelism is present in many astronomy scenarios

(e.g. the use of the CLEAN algorithm in radio astronomy,

which takes advantage of data parallelism in the spectral

domain).

Identification of relevant astronomy computations is

the first step towards implementation on GPU. Barsdell

et al. (2010) propose an approach based on algorithm

analysis, whereby common processing tasks are matched

to a taxonomy of algorithms. Despite its obvious applica-

tion to GPGPU development, this approach may provide

insight into improvements and optimisation for single-

core and multi-core CPU codes. An improved under-

standing of the parallelism in existing astronomy codes

and algorithms can lead to simple optimisation, such as

identifying sections of code that would benefit from the

trivial parallelisation on multi-core architectures possible

with OpenMP. Indeed, in some cases, the simpler shared-

memory programming model provided by OpenMP

may provide a sufficient processing improvement without

resorting to a GPU solution. For a code to be moved to a

GPU, rather than using OpenMP on a modern quad-core

architecture, it typically needs to present a 20–30 speed-

up over the single-core solution. The counter-argument is

that GPUs remain significantly cheaper on a $/gigaflop

basis than a sufficiently multi-core computer (e.g. 424

cores) that would provide the same processing

performance.

We emphasise that skills in parallel or stream proces-

sing programming techniques are not widespread among

astronomy graduates or graduate students, and the ‘super-

visor teaching the student to code’ may no longer be

feasible. It is often a difficult decision to choose between

spending limited research resources on direct (travel,

graduate student stipends, postdoctoral salaries) versus

indirect research costs (programmers who may not have,

nor actually seek, scientific training). However, it will not

be feasible for astronomers to prepare for GPU-based

HPC facilities without some investment in training on

parallel programming techniques.

The long-term role of the GPU is still unknown:

whether they will remain as a computational coprocessor,

or if multi-core CPUs will grow to become more GPU-

like. There may be other radical changes in hardware in

the years ahead, such as the experimental 48-core Intel

single-chip cloud computer announced in 2009. The

recent demise of Intel’s Larabee consumer GPU chip, a

hybrid CPU and GPU, with features such as cache

coherency across all cores and greater flexibility in

computation, may have delayed resolution of this issue

for at least a few more years. While these short-term

changes may lead to some redundancy in code develop-

ment effort, awareness of the fundamental differences

between CPU and GPU programming and execution

should provide insight into problem solving for future

highly parallel architectures.Moreover, we anticipate that

the move to astronomical GPGPU may not be limited to

HPC facilities, but will ultimately encompass desktop and

notebook supercomputing.

GPGPU represents a natural new direction for astro-

physical HPC. Adoption of a radical new processing

architecture, and the corresponding required change in

approach to software development, is worthwhile if our

understanding of the universe advances at an accelerated

rate. We remain enthusiastic about the prospects for

GPGPU in astronomy.
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