
Publications of the Astronomical Society of Australia (PASA), Vol. 31, e023, 14 pages (2014).
C© Astronomical Society of Australia 2014; published by Cambridge University Press.
doi:10.1017/pasa.2014.18

A Framework for HI Spectral Source Finding Using
Distributed-Memory Supercomputing

Stefan Westerlund1,3 and Christopher Harris2

1ICRAR/University of Western Australia, M468 35 Stirling Highway, Crawley, WA 6009
2iVEC@UWA/University of Western Australia, M024 35 Stirling Highway, Crawley, WA 6009
3Email: stefan.westerlund@icrar.org

(Received October 2, 2013; Accepted March 7, 2014)

Abstract

The latest generation of radio astronomy interferometers will conduct all sky surveys with data products consisting
of petabytes of spectral line data. Traditional approaches to identifying and parameterising the astrophysical sources
within this data will not scale to datasets of this magnitude, since the performance of workstations will not keep up
with the real-time generation of data. For this reason, it is necessary to employ high performance computing systems
consisting of a large number of processors connected by a high-bandwidth network. In order to make use of such
supercomputers substantial modifications must be made to serial source finding code. To ease the transition, this work
presents the Scalable Source Finder Framework, a framework providing storage access, networking communication and
data composition functionality, which can support a wide range of source finding algorithms provided they can be applied
to subsets of the entire image. Additionally, the Parallel Gaussian Source Finder was implemented using SSoFF, utilising
Gaussian filters, thresholding, and local statistics. PGSF was able to search on a 256GB simulated dataset in under 24
minutes, significantly less than the 8 to 12 hour observation that would generate such a dataset.

Keywords: data processing– radio astronomy – source finding

1 INTRODUCTION

A critical stage of radio astronomy spectral-line image anal-
ysis is source finding, which identifies the galaxies present
in the image and determines their position and other pa-
rameters. As surveys increase in size, with larger fields of
view and greater resolution, they produce greater amounts of
data. For example, the HIPASS survey (Meyer et al. 2004)
produced a total of 22GB of image data. By comparison
the Widefield ASKAP L-band Legacy All-sky Blind surveY
(WALLABY) survey using the Australian Square Kilometre
Array Pathfinder (ASKAP) telescope is expected to produce
files of at least 256GB every 8 to 12 hours, with the entire all
sky survey likely to total several petabytes.

Using a traditional desktop computer to perform source
finding for these larger surveys is not feasible due to a num-
ber of factors, including processing rate, memory footprint
and storage bandwidth. Extrapolating from test results, pro-
cessing a 256GB image using a single computer could take
over 110 hours to process on a single machine, if it could
store the entire dataset in memory. The primary issue is that
the numerical performance is not fast enough to keep up
with the real-time data production of the telescope imaging

pipeline. In addition to meeting real-time performance, the
rate of source finding would ideally be significantly faster
than the rate of production. This would allow reprocessing
of the entire dataset should the source finder be improved
during the survey.

Memory issues can also slow a source finder. If the ma-
chine running the source finder has insufficient physical
RAM to store the data needed by the source finder, either
the excess data will be stored on the hard disk, making ac-
cess much slower, or the system will fail to allocate sufficient
memory, halting the program. It is possible to write a source
finder that only examines a portion of the image at a time,
reducing the memory required, but this involves processing
part or all of the image more than once. Because supercom-
puters have large amounts of memory available, it is more
efficient to process the whole image at once.

Bandwidth to data storage may also limit performance,
particularly if there is insufficient memory to hold the entire
image. A single consumer hard disk can reach read data rates
on the order of 100MB/s. To achieve higher bandwidths it
will be necessary to use multiple disks, such as a RAID array
or a parallel file system to have enough bandwidth available
to read in an image sufficiently quickly.

1

https://doi.org/10.1017/pasa.2014.18 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2014.18


2 Westerlund and Harris

In order to overcome these limitations, it is desirable to use
multiple machines working together on the problem. Mod-
ern supercomputers consist of a cluster of computing nodes,
where each node consists of one or more multi-core CPUs. A
fast network is employed to connect the nodes to each other,
and to a parallel file storage system. The scalability of the
program across these nodes is important because future sur-
veys will produce even greater amounts of data. It is desirable
for the program to be able to expand and make effective use
of a greater number of processors in order to search greater
amounts of data.

However, in order for a source finding program to make
use of such systems they must be written such that the data
and processing are partitioned across the nodes, with commu-
nication via the network, and using parallel file operations.
Additionally, specialised code libraries and application pro-
gramming interfaces must be used such as MPI (The MPI
Forum 1993), MPI-IO and OpenMP (OpenMP Architecture
Review Board 2008). Converting a serial program to run in
parallel can thus take a significant amount of effort.

This work describes the Scalable Source Finding Frame-
work (SSoFF), a framework with functionality to ease this
transition. SSoFF handles the distribution of processing by
dividing the image into portions and assigning them to a
three-dimensional grid of processes. Each process performs
the work required to search its portion of the image. SSoFF
provides routines that allow the processes to read and write
their portions of the image from the storage system, and
to exchange intermediary values with their neighbouring
processes.

With the functionality described above in place, existing
source finding analysis routines can be adapted to process a
portion of image data, and added to SSoFF. To demonstrate
this, the Parallel Gaussian Source Finder (PGSF) was built
using the framework. The analysis step of PGSF applies a
series of three-dimensional, Gaussian filters to the data. For
each filter, a threshold is applied based on the local data
around each voxel, and voxels are selected if they are above
the threshold for a set number of different filters. Addition-
ally, voxel weightings can optionally be used if available.

Section 2 provides a background to source finding in radio
astronomy. Section 3 presents each component of the frame-
work in detail. Section 4 then details the implementation
of PGSF. Section 5 provides benchmarking and correctness
testing result, which are then discussed in Section 6. Finally,
concluding remarks are included in Section 7.

2 BACKGROUND

A source finder can form part of a pipeline for reducing
and analysing data from telescopes. While the details of the
configuration of the pipeline are highly specific to the instru-
ment, survey and science goals, a general overview of the
main stages for a interferometric, spectral-line HI survey are
as follows. The first step is correlation, where the data from
the different receivers are combined into visibilities. The

imaging takes the calibrated visibilities and converts them
into an image through a Fourier transformation. The imaging
step also includes continuum subtraction, where unwanted
continuum emission is removed from the data, and deconvo-
lution, where sidelobes are removed from the image. Usually
the source finder sits at the end of this pipeline, taking the
images and searching them for sources, but in some cases
they can be used to search the visibilities. The objects that
are found are then measured to determine their properties, a
process called parameterisation. The parameterised sources
found by the source finder are then analysed to achieve the
desired science goals for the survey.

The main measure of merit of a source finder is its accu-
racy, which has two components, completeness and reliabil-
ity. Completeness is the fraction of the sources in the image
that have been found by the source finder. Reliability is the
fraction of sources reported by the source finder that are
real sources in the image. Independent of the source finding
accuracy is the accuracy of the parameterisation step.

The source finding framework presented in this work is
intended for spectroscopic images of neutral hydrogen (HI)
emission. A radio astronomy image, also known as a data
cube, breaks up the area of the sky being observed along
three dimensions. The first two are spatial dimensions that
denote the direction in the sky relating to a particular part
of the image. The third dimension is frequency, which gives
the frequency range of the observed radiation for a particular
element of the image. For nearby sources this value may also
be specified in terms of velocity, as frequency and velocity
are related through the Doppler effect from the radial velocity
of an object.

2.1 Source finding

The general process of searching an image is shown in
Figure 1. The first step of the program is to read the im-
age from storage into memory, in the input step. This also
involves any conversion of data to a format that the source
finder uses.

The analysis step applies a filter to the image, employs
an analysis algorithm, or some combination of the two. The
distinction used is that filtering techniques are algorithms that
are designed to enhance signals based on their characteristics
above the noise, whereas analysis techniques use statistical
techniques to calculate the likelihood that a particular voxel
is part of a real source. This step performs the bulk of the
work and has the greatest diversity among the current serial
source finding programs. MultiFind (Meyer et al. 2004)
searches for voxels that are above a threshold after Hanning
smoothing the data andTophat (Meyer et al. 2004) searches
for voxels that are above a threshold after convolving the data
with top hat filters of different channel widths. Duchamp
(Whiting 2012) uses a choice of smoothing or the à trous
wavelet transform to reduce noise. The 2D-1D Wavelet
source finder (Flöer & Winkel 2012) uses 2D-1D wavelet
transform to reduce noise, with the 2D transform operating

PASA, 31, e023 (2014)
doi:10.1017/pasa.2014.18

https://doi.org/10.1017/pasa.2014.18 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2014.18


A Framework for HI Spectral Source Finding 3

Figure 1. Source Finding Stages. The radio image is read by the source finder and analysed to create a measure that states the likelihood that each voxel
is part of a real source. The results of this analysis are used in the source formation step to select the set of voxels that are likely to be true sources, which
then merges the chosen voxels together to form objects. The positions of these objects and the original image data are used to determine the parameters of
the objects, and a confirmation step is applied to remove objects that appear to be false detections. The remaining objects and their parameters are produced
as the output to the program.

in the spatial dimensions and the 1D transform operating in
the spectral dimension. The Smooth Plus Cut (S+C)
source finder (Serra et al. 2012) applies a series of different
series of box filters, and takes the union of voxels that are
above the threshold for each filter. The Characterised
Noise HI (CNHI) source finder (Jurek 2012) uses the
Kuiper test to compare a test region of voxels to the noise
of the image to locate regions with different flux properties,
and the Gamma Finder (Winkel 2008) uses the Gamma
test to search for discontinuities in otherwise continuous,
noisy data.

Voxels that are considered likely to be part of a true detec-
tion are selected from the results of the filtering or analysis,
and then merged together to form objects in the source for-
mation step. For many filtering techniques, the selection of
voxels involves calculating a threshold in flux or signal-to-
noise ratio (SNR), and selecting voxels that have a value
greater than this threshold. Some analysis techniques may
effectively do this as part of their analysis algorithm.

The method used to decide whether or not to merge two
voxels or groups of voxels can significantly affect the output
of the source finder, particularly for sources that are only just
above the detection limit. This merging can cause two types
of errors, source confusion and source fragmentation. Source
confusion occurs when two or more real objects are consid-
ered by the source finder to be the same object. Although HI
sources are separated in three dimensions it is still possible
for confusion to occur, depending on the proximity of the ob-
jects and the resolution of the image. Source fragmentation
occurs when a source finder splits up a real object into two
or more objects.

The objects that have been created in the source formation
step are measured, using the original image data, to deter-
mine their parameters in the parameterisation step. These
parameters include the position, size and brightness of the
objects, and will be used to study the galaxies, and other ob-
jects, found in the image. Parameterisation can be considered
a separate, though related, problem to source finding, where
source finding involves locating the sources of emission in an
image, and parameterisation measures the properties of the
sources. Another reason that parameterisation may be con-
sidered as separate to source finding is that once the source
object positions are known, several different parameterisa-
tion techniques may be employed.

With the parameters of the objects known, the objects are
passed through a confirmation step. This component of the
program examines the properties of each object and removes
those whose properties suggest that they are likely to be false
detections. The objects that survive the confirmation step are
finally written out in the output step of the program.

There is limited work currently published on applying
source finding using HPC techniques. Whiting & Humphreys
(2012) describes Selavy, a parallelisation of the Duchamp
source finder. The framework presented in the following sec-
tion is intended to make such parallel source finders easier to
implement.

3 FUNCTIONALITY OF SSoFF

The Scalable Source Finding Framework (SSoFF) assists the
development of parallel HI spectral-line source finders for
High Performance Computing (HPC) systems by providing a
number of components. These include work distribution, file
IO, inter-process communication, statistics functions, voxel
merging, and program control. Each of these components are
described in greater detail in this section.

3.1 Work distribution

The basis of a parallel program is organising multiple pro-
cesses to work together and share a computational load. This
component of SSoFF arranges the processes into a three di-
mensional grid, with Nx, Ny and Nz processes in each dimen-
sion. The image data is divided along the same three axes,
right ascension, declination, and either frequency or velocity,
into a number of portions equal to the number of processes
along that side. That is, if the image has a total of Dx, Dy, and
Dz voxels along each size, then each process has dt voxels to
process with dx, dy, and dz voxels along each side, according
to the equations:

dt = dxdydz (1)

dx = Dx

Nx

(2)

dy = Dy

Ny

(3)

dz = Dz

Nz

(4)

PASA, 31, e023 (2014)
doi:10.1017/pasa.2014.18

https://doi.org/10.1017/pasa.2014.18 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2014.18


4 Westerlund and Harris

Figure 2. Data Distribution between Nodes. Each node has its own sec-
tion of the data cube, along with a portion from each adjacent node, so that
it can correctly process the data assigned to it. The colour of the data indi-
cates which node that data was assigned to. The white sections are padding
that is placed around the edge of the image, so that the edge nodes can
be processed in the same manner as the interior nodes. The division and
allocation of image data to the processes can be changed, which may affect
the computational performance of a source finder, but not its accuracy. The
data can also be partitioned along the spectral axis, which is not shown here
for clarity.

The amount of voxels per side may vary by one between
processes if the number of processes in the grid does not
evenly divide the number of voxels in the image. Each por-
tion of the image is assigned to its corresponding process to
be searched. This arrangement allows for analysis algorithms
that evaluate a voxel based on the properties of its surround-
ing voxels. The particular values of Nx, Ny, and Nz may be
set by the user of the program. The optimal values for perfor-
mance may vary depending on the analysis techniques used,
but it is often optimal to arrange them such that it minimises
the amount of extra data that the system needs to store.

When an analysis algorithm needs data from the neigh-
bours of a particular voxel, this means that processing the
voxels near the edge of an image portion will require im-
age data that has been assigned to a different process. This
information is provided by duplicating the voxel data from
the edge of one process to another, such that each process
holds a copy of the image data that is within a certain radius
of its assigned portion. This extra information is known as
halo data. Algorithms that use the halo data will require the
size of the halo to have a certain minimum size. If multiple
algorithms use the halo data, the halo must be large enough
for each of those algorithms. SSoFF provides data structures
for each process to store its assigned image data and halo
data as a three-dimensional array. This array data structure
is used for the initial image data, intermediate values and
the processed image. The manner in which the image data is
divided between processes and stored is shown in Figure 2.

3.2 File IO

SSoFF provides methods to transfer data between a stor-
age device, typically a hard drive, and the memory of the

program. These functions will read the data in from the stor-
age system and give each process its assigned portion of
the image. Currently, the framework supports reading from a
flat binary file, with three integers stating the size of the file
along each axis, followed by the specified number of single-
precision floating point numbers in row-major order. Support
for additional file formats can be easily added as needed to
SSoFF, because the file format is irrelevant to the framework
once the data has been loaded into the image data structure.

The image data structure and the file IO methods are also
capable of reading large files. Files greater than four giga-
bytes in size are too large to have each byte addressed using
a 32 bit integer, so programs using those to address a file
may be unable to properly read in and access the entire file.
This function also provides a convenient way to bypass a
limitation in MPI-IO, where it can only read in 2GB of data
per call. The data input function used by SSoFF avoids this
problem by using multiple MPI-IO function calls to read the
data. The data structures used by SSoFF to store the image
data are addressed using three 32-bit integers, so the entire
image can be accessed using integers as long as each side
length is less than 231 − 1 elements, the maximum value of
a signed integer. Alternatively, functions that use the data
structures provided by SSoFF may choose to access them
using a single 64-bit integer index.

The halo data for the edges of the cube is set to zero. When
using weighted calculations, this will automatically assign
those voxels a weight of zero. For unweighted calculations,
these voxels are treated the same as the voxels from the
image. The effect of the padded values is left to be considered
in future work.

There are two options of ensuring that each node has the
halo data it needs. Either the nodes read both their assigned
data and the halo data directly from the storage system, or
they read only their assigned data from storage, then use the
network to transfer the halo data. Because the same network
is used to transfer data from the storage system and inter-node
communication, both of these methods would result in the
same performance if the network is the bottleneck. However,
if the storage system is the bottleneck in the transfer, then
the second method will be faster because it reads less data
from storage. Therefore, the framework uses the network to
transfer the halo data, as covered in the next section.

3.3 Inter-process communication

Image analysis algorithms may require the image values
around a voxel, in order to evaluate that voxel. In order
for a process to analyse voxels near its border, it will re-
quire information that was assigned to its neighbouring pro-
cesses. SSoFF provides a function to copy data from one
process to the appropriate position in the halo data of its sur-
rounding processes, using the array data structures mentioned
above. The transfer is performed in three steps, as shown in
Figure 3. First the halo data in the x axis is transferred, to the
processes’ left and right neighbours. Once this is complete,

PASA, 31, e023 (2014)
doi:10.1017/pasa.2014.18

https://doi.org/10.1017/pasa.2014.18 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2014.18


A Framework for HI Spectral Source Finding 5

(a) StateInitial

(b) Transfer in x Direction

(c) Transfer in y Direction

Figure 3. Halo Communication. SSoFF transfers halo data in three steps,
one for each axis. The bold lines show the data transferred in each step.
The processes send the data they hold, as well as data that they received
in previous steps. Only the x axis and y axis transfers are shown here, the
framework also does a third transfer along the z axis.

data is transferred in the y axis, to the top and bottom neigh-
bours, including sending data that was received in the x axis
transfer. Finally, the data is transferred in the z axis, between
the front and back neighbours. Transferring data that was re-
ceived from other nodes, in addition to data from a process’s
own node, ensures that processes still get the data they need
even when they are not adjacent in the process grid.

The amount of data that is transferred by this function is
dependent on the size of the data, the size of the halo per
node, and the dimensions of the process grid. If the size of
the halo along each dimension is equal to Hx, Hy, and Hz, then
the amount of data transfer that occurs in when exchanging
halo data is Tx elements in the first, x axis, transfer step, Ty
elements in the second step and Tz elements in the third step
for a total of Tt elements transferred per node:

Tt = Nx + Ny + Nz (5)

Tx = Hxdydz (6)

Ty = (dx + Hx)Hydz (7)

Tz = (dx + Hx)(dy + Hy)Hz (8)

3.4 Statistics functions

Source finders often require statistical functions to provide
a measure of the probability that a voxel is part of a valid
source. SSoFF provides several statistics functions that oper-
ate across a distributed dataset. These include calculating the
mean and standard deviation of the dataset, for both weighted
and unweighted data. There is an option for global statistics,
that calculate the values based on the entire contents of the
array, and a local version that calculates the mean and stan-
dard deviation for each voxel individually based on the data
within a user-specified range that is Lx, Ly and Lz voxels in
size along the x, y, and z axes. Because the local statistics
calculations use data from the surrounding nodes, these func-
tions impose a minimum halo size equal to the range that the
local statistics are being calculated across. The global statis-
tics are calculated by each node determining the sum of its
own portion of the data then using MPI to perform a global
sum reduction across the different processes.

The calculation of the local statistics requires that the node
possesses the values surrounding a voxel up to the specified
range, so the halo size must be at least as large as the local
statistics size, and the program must perform a halo trans-
fer so that each process has the information it needs. Once
this transfer is complete, each node can calculate the indi-
vidual sum for each voxel. The mean, μw, and the standard
deviation, σw for weighted data are calculated as shown in
Equations (12) and (10), from the image data d and the
weights data w. In the case of unweighted data, the mean,
μu, and standard deviation, σu are calculated as in Equations
(17) and (15). With the mean and standard deviation values
known, they are used to calculate the z score for each voxel
in the data, as shown in Equations (9) and (14).

zw[x][y][z] = d[x][y][z] − μw[x][y][z]

σw[x][y][z]
(9)

σw[x][y][z] =
√

Sw[x][y][z]W [x][y][z] − μw[x][y][z]2

W [x][y][z]2
(10)

Sw[x][y][z] =
∑

ox

∑
oy

∑
oz

w[ix][iy][iz]d[ix][iy][iz]
2 (11)

μw[x][y][z] =
∑

ox

∑
oy

∑
oz

w[ix][iy][iz]d[ix][iy][iz] (12)

W [x][y][z] =
∑

ox

∑
oy

∑
oz

w[ix][iy][iz] (13)

zu[x][y][z] = d[x][y][z] − μu[x][y][z]

σu[x][y][z]
(14)

σu[x][y][z] =
√

Su[x][y][z]

C
− μu[x][y][z]2 (15)

PASA, 31, e023 (2014)
doi:10.1017/pasa.2014.18

https://doi.org/10.1017/pasa.2014.18 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2014.18


6 Westerlund and Harris

Su[x][y][z] =
∑

ox

∑
oy

∑
oz

d[ix][iy][iz]
2 (16)

μu[x][y][z] =

∑
ox

∑
oy

∑
oz

d[ix][iy][iz]

C
(17)

C = LxLyLz (18)

ix = x + ox, ox ∈
[
−Lx

2
,

Lx

2

]
(19)

iy = y + oy, oy ∈
[
−Ly

2
,

Ly

2

]
(20)

iz = z + oz, oz ∈
[
−Lz

2
,

Lz

2

]
(21)

The totals are calculated using moving sums, tracking three
values for Sw, W and μw. In order to minimise memory use
the statistics are performed in-place, overwriting the original
image values with the sigma value for each voxel. Small
additional buffers are used to store intermediate results. Each
of these temporary buffers are (dx + Lx − 1)(dy + Ly − 1)

Lz

2
elements in size. This is the smallest possible size of the
buffers because the algorithm overwrites the image data in
the x direction as it progresses, so previous values along the x
axis must be read from a buffer while following values can be
read from the image array. Both the weighted and unweighted
local statistics calculations use one buffer of floats to store
the original image information, and two buffers of doubles
to store the sums for the mean and standard deviation. The
weighted calculation requires an additional buffer of doubles
to store the summed weights.

The sums are first calculated as one-dimensional moving
sums along the z axis. When initialising these sums, one mul-
tiply is required to calculate the value of μw, two multiplies
to calculate the squared value for Sw and one addition each to
update the three values. This results in a total of six floating
point operations per voxel. Because the buffers are half the
size of Lz along the z axis each voxel is initialised twice,
so this initialisation requires twelve floating point operations
per voxel.

Once the moving sums have been initialised, it is executed
across the buffer data, adding in new values and subtracting
old values. This part of the algorithm requires twice as many
calculations as the initialisation due to subtracting previous
values but is only performed once per voxel. Therefore, per-
forming the moving sum across the z axis requires a total of
24 floating point operations per voxel. The z axis sums are
performed on all of a node’s assigned voxels plus a halo of Lx
voxels in the x axis and Ly voxels in the y direction, because
these values will be used in later sums. The number of z-axis
operations required to calculate the local statistics could be

reduced by using larger buffers, but this would come at the
cost of increased memory use.

Once the z axis sums are complete, the sums are performed
across the y axis, and then the x axis. These sums only re-
quire additions and subtractions, as all multiplications have
been performed in calculating the sums across the z axis.
Initialising these sums requires three operations per voxel,
one addition for each of the three values. The y-axis initial-
isation only needs to be performed once for each x-z line in
the image and is calculated over Ly voxels per line. Likewise,
the x-axis moving sum initialisation is performed once for
each y-z line in the image, across Lx voxels per line. Once
initialised, performing the moving sums requires six floating
point operations per voxel, as the previous values need to
be subtracted from the sum. The y-axis sums are calculated
across a node’s assigned voxels, and an additional halo in the
x axis. The x axis sums require no halo. With the sums calcu-
lated across the three axes, they are used to calculate the final
z value. This requires five floating point operations, three
divides and one square root per voxel assigned to a node.

The use of moving sums reduces the amount of computa-
tional effort required, but the statistics can still be a significant
portion of a source finder’s running time. The number of float-
ing point operations required per node for the local mean and
standard deviation for a weighted dataset is approximately
equal to Ow,t :

Ow,t ≈ Ow,z + Ow,y + Ow,x (22)

Ow,z = 24(dx + Lx − 1)(dy + Ly − 1)dz (23)

Ow,y = (dx + Lx − 1)(3Ly + 6dy)dz (24)

Ow,x = (3Lx + 6dx)dydz (25)

Calculating the local statistics in the unweighted case is
similar to the weighted case, but fewer operations are re-
quired. Only two sums are tracked, Su and the numerator of
μu, and the weights values don’t need to be multiplied into the
sums. This halves the number of operations required for the z
axis sums, and reduces the number of y and x axis operations
by a third. Calculating the final z score requires three floating
point operations, three divisions and one square root calcula-
tion per voxel. The total operation count per node to calculate
the local statistics in the unweighted case is equal to Ou,t :

Ou,t ≈ Ou,z + Ou,y + Ou,x (26)

Ou,z = 12(dx + Lx − 1)(dy + Ly − 1)dz (27)

Ou,y = (dx + Lx − 1)(2Ly + 4dy − 1)dz (28)

Ou,x = (2Lx + 4dx)dydz (29)

PASA, 31, e023 (2014)
doi:10.1017/pasa.2014.18

https://doi.org/10.1017/pasa.2014.18 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2014.18


A Framework for HI Spectral Source Finding 7

3.5 Source formation

A source finder must decide which voxels in an image are
considered part of a legitimate source of emission and to col-
lect these voxels into data objects that represent these sources.
These are two separate but related tasks, called selection and
merging. SSoFF provides functionality to perform these tasks
in a parallel environment.

Selecting voxels is often done by applying a threshold
to a dataset. This framework allows for thresholding across
both the image array data structure, and across a sparse image
dataset in the form of a hash map. These functions use a flood
fill algorithm to pick the voxels that are above the threshold,
and merge adjacent voxels into source objects.

The flood fill merges source objects within a single process
but sources may be split across multiple processes. SSoFF
merges these objects using a multi-step procedure. First each
process sends the positions of voxels along its borders to
its neighbouring processes. This is used to find where source
objects are split between processes. Each part of a split object
is given a destination process. The destination for a split
source object is the process with a part of that object, that has
the lowest index in the process grid. The destination process
index is propagated across the different parts of a split source,
from process to process, to ensure that each part of the source
is sent to the same process.

3.6 Program control

There are a number of settings that can be changed to control
how a source finder searches an image. These may include
the choice of certain algorithms instead of others, and values
to be used inside algorithms, in addition to specifying the
data files to be used. SSoFF provides functionality to read
in parameters from a file, using key-value pairs of strings
to provide information. This also makes it easier to add new
functions to a source finding program, as they can be added to
the main routine and then check the contents of the parameter
file to decide which functions to use at run time. The options
can be used to specify values used inside the functions, such
as the size of filters, or the value of the threshold to use when
selecting voxels.

The framework makes use of several libraries to provide
this functionality. MPI is used for the basis of the paralleli-
sation, and to communicate data between processes. Sim-
CList is used for linked lists, which are used to store col-
lections of voxels and source objects, which vary in size
depending on the contents of the dataset. uthash is used
for hash tables, which are used to store sparse voxel informa-
tion, and to store parameter file information. These libraries
do not prevent source finders from using other libraries.

The functions described in this section provide a toolkit
for writing a parallel source finder and can perform common
source finding tasks in a parallel environment. Through this
functionality, SSoFF reduces the difficulty of implementing
additional functionality to a parallel source finder. The use

of this framework is demonstrated in the next section, where
it is used to implement a source finder.

4 IMPLEMENTATION of PGSF

This section describes the Parallel Gaussian Source Finder
(PGSF), a parallel source finder for HI spectral line images
implemented using SSoFF. The analysis is based on the use
of three-dimensional Gaussian filters, and voxels are selected
if they are above the threshold for a set number of different
filters. Sources constructed from these voxels are then subject
to a confirmation step where only the sources whose spectral
extent is is greater than the user-specified cut-off are written
to the catalogue. PGSF can make use of an arbitrary number
of processes, up to the number of voxels in the image being
searched. This source finder can also process large files, lim-
ited by the memory of the nodes used to search the image and
to a maximum size of 231 − 1 voxels in each dimension. It
processes an image that consists of single-precision floating
point numbers, but it can be easily extended to other data
types. The details of PGSF are described below.

The analysis algorithm used to inspect the image is a se-
ries of Gaussian filters probing different scales. It is based
on the algorithm used by the S+C source finder (Serra et al.
2012) but has been expanded to run across parallel data, us-
ing SSoFF. A set of Gaussian filter templates are convolved
with the data and the weights, as shown in Equation (30)
for the weighted convolution where Fx, Fy and Fz are the di-
mensions of the filter template. If weights are unavailable an
unweighted convolution is used, as shown in Equation (31).
As in the local statistics calculations, the output of the fil-
ter is only calculated for the voxels that have been assigned
to a process, not for the process’s halo values. As a result,
filter output is only calculated once for values in the since
the output for values in the halos are either calculated by the
adjacent node that is responsible for that region, or not at
all for the values outside the image. Additionally, the filter-
ing process requires that the halo be at least the size of the
largest filter used. When a process is filtering the edges of
its assigned image data it uses the halo image values, and
weights values if they are available, that were loaded in the
input step of the program.

cw[x][y][z]

=

∑
px

∑
py

∑
pz

d[ jx][ jy][ jz] f [px][py][pz]w[ jx][ jy][ jz]∑
px

∑
py

∑
pz

w[ jx][ jy][ jz]
(30)

cu[x][y][z] =
∑

px

∑
py

∑
pz

d[ jx][ jy][ jz] f [px][py][pz] (31)

jx = x + px, px ∈
[
−Fx

2
,

Fx

2

]
(32)

PASA, 31, e023 (2014)
doi:10.1017/pasa.2014.18

https://doi.org/10.1017/pasa.2014.18 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2014.18


8 Westerlund and Harris

jy = y + py, py ∈
[
−Fy

2
,

Fy

2

]
(33)

jz = z + pz, pz ∈
[
−Fz

2
,

Fz

2

]
(34)

For each filter the selection criteria used is a threshold
equal to the mean plus a user-specified constant multiplied
by the standard deviation, where the local mean and standard
deviation are calculated from the filtered image, as in Whiting
& Humphreys (2012), using the local statistics functions of
the framework. A count is kept for each voxel each time that
voxel’s filtered value above the threshold for a filter. After all
of the filters have been applied, voxels are selected if their
count is above a second user-defined threshold.

If a filter has a size of Fx, Fy and Fz elements, then the
weighted version requires 4DxDyDzFxFyFz total floating point
operations for that filter. This includes one multiply to com-
bine the filter value and the weight for a voxel, one multiply
to combine the filter weight value to the image value, one
addition to update the sum of the convolution, and an ad-
dition to update the sum of the filter weight for that voxel.
The unweighted version requires a total of 2DxDyDzFxFyFz
operations, one multiply to combine the filter value and the
image data value and one addition to update the sum of the
filter values. This filtering does not require any data transfer
between nodes beyond what is done reading in the image.

PGSF currently allows for arbitrary filter templates to be
applied to the data. Ideally, a set of filter templates would
be used that cover all possible sources, whilst limiting the
amount of processing needed. Such an optimal set of filter
templates has yet to be determined. Instead, a series of three-
dimensional Gaussian functions are used. The sizes of these
filters can be set by the user.

The parameterisation of the sources is performed once
they have been selected and merged by SSoFF. Because the
data file format used by this program only stores the flux
of the image, that is, the format stores no metadata, only
a subset of the parameters can be determined. Performing
a complete parameterisation of sources is considered to be
outside the scope of this work. The parameters given by this
program are the position of an object, as a flux-weighted
mean in units of the array indices, the peak flux of the object
and the sum of its flux across its voxels, and the width of the
object along the spectral axis. PGSF also handles re-reading
the information from the image cube when it is needed, to
parameterise sources that contain voxels that were received
from other nodes during the source formation step.

The confirmation of sources makes use of the parame-
terisation information to confirm or reject potential sources.
PGSF rejects sources that are below a user-specified channel
width. This is because most legitimate sources have a spec-
tral width that is significantly larger than the channel width
of a spectral-line image, so sources that have a small channel
width are likely to be noise peaks or interference. For exam-
ple, the thinnest galaxy in the HIPASS Catalogue Meyer et al.

(2004), J1336-29 has a velocity width of 30.4km/s 1 com-
pared to the WALLABY survey, which will have a spectral
resolution of 4km/s Koribalski & Staveley-Smith (2009). The
framework allows for more complex confirmation techniques
to be added. The confirmed sources and their parameters are
written to the output catalogue.

PGSF can scale to search larger images, up to datasets
that are 231 − 1 elements along each side. The number of
processes to be used by the source finder has a upper limit
equal to the number of voxels in the image, and a lower
limit set by memory limits. Each process has a copy of its
assigned portion of the image, including the halo data, which
is (dx + Hx)(dy + Hy)(dz + Hz) elements per process. A sec-
ond array data structure of the same size is used to store the
filtered image, and optionally a third data structure to store
the weights information of the image. Additional memory is
used when calculating the statistics, as mentioned above, and
a variable amount of memory is needed to store the source
detections. The accuracy and computational performance of
this program is measured in the next section.

5 TESTING

Several tests were employed to measure the correctness of
PGSF. The first set of tests were performed to ensure that
the program was working correctly. The second set of tests
shows the accuracy of the source finder for different sources.
Finally, the third set of tests analyse the suitability of the
program for processing large datasets. The primary machine
used to test the program was the Epic@Murdoch supercom-
puter. This system has 800 nodes, each possessing two six-
core Intel Xeon X5660 CPUS, 24GB of RAM and a QLogic
IBA7322 QDR Infiniband interconnect. The MPI library used
was OpenMPI version 1.6.3.

The correctness of the program was examined using unit
testing. These tests do not concern the overall accuracy of
the program. Rather, they show that the framework functions
work correctly. Each function used in PGSF was individually
tested for correctness. The correctness for the program as a
whole was demonstrated by running the source finder on a
2GB simulated data cube and comparing the output to the
expected results, which were obtained by executing a single-
threaded implementation of the program on the same image.
The results were found to be identical.

The accuracy of PGSF was demonstrated by executing the
source finder on a pair of simulated data cubes, one contain-
ing point sources and one containing extended sources. These
are the images used in Popping et al. (2012). Point sources
are objects whose spatial extent is smaller than the resolu-
tion of the instrument used to observe them, whilst extended
sources are those who are spatially larger than the resolution
of the instrument. In practice, both types of sources have

1 Using the measure W max
50 .

PASA, 31, e023 (2014)
doi:10.1017/pasa.2014.18

https://doi.org/10.1017/pasa.2014.18 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2014.18


A Framework for HI Spectral Source Finding 9

spectral sizes significantly larger than the channel width of
the telescope. This test used a series of filters that are 1,
3, 5 and 9 pixels wide in the spatial dimensions and 9, 17,
33, 65 and 129 channels wide in the spectral dimension. For
the data cube used, these filters are 10”, 30”, 50” and 90”
in spatial size, and 659kHz, 1.24MHz, 2.42MHz, 4.76MHz
and 9.45MHz in spectral size. In all, 20 different filters were
used with a total of 29, 348 filter elements between them.
For each filter, a threshold equal to four standard deviations
above the mean is applied to the filtered data. As in Whit-
ing & Humphreys (2012), the mean and standard deviation
for a voxel are calculated from a range 101 voxels wide in
right ascension and declination, and a single voxel wide in
frequency. Detected voxels were merged into the same ob-
ject if they were within 5 voxels spatially and 80 frequency
channels of another voxel in that object. The final selection
of voxels were those that were above the threshold for 13 or
more filters, and had a spectral width of at least 10 channels.

Both test images have corresponding mask files that show
where the real sources exist in the image. These masks, com-
bined with the original image data, were converted into cata-
logues using an external parameterisation script, as described
in Jurek (2012). These catalogues are used as the reference
point for the sources that are in the images. The program
was then run on the two images and produced its own mask
file for each image. These mask files were also converted
into catalogues by the parameterisation script. Using an ex-
ternal script allows for a more detailed parameterisation of
the sources than that provided by the algorithms currently
implemented in the program.

The detected catalogues were cross-matched against the
reference catalogues using the Source Finder Accuracy Eval-
uator (SFAE) (Westerlund, Harris, & Westmeier 2012). The
accuracy of the source finder can be seen in the results of
the cross-matching, as shown in Figure 4. Figures 4a and 4b
show the accuracy of the source finder for point sources, and
Figures 4c and 4d show the accuracy for extended sources.
These are based on the point-source and extended-source
simulated cubes, respectively. Figures 4a and 4c use the ref-
erence catalogue for the peak flux values and source counts,
whilst Figures 4b and 4d use the results of the source finder
for their values.

PGSF is intended for use on images of the same size as
those that will be used in the WALLABY survey. The size
of these images will depend on the configuration of the tele-
scope, but a likely data size is approximately 256GB, con-
sisting of 2048 × 2048 spatial values and 16, 384 frequency
channels, with each value stored as a four-byte floating point
number. This image will not have polarisation information,
but it may have a weighting cube, for an additional 256GB.
Data from ASKAP is not yet available, so a placeholder
image was created from a 64GB simulated image2. This

2 This image is available from http://www.atnf.csiro.au/people/Matthew.
Whiting/ASKAPsimulations.php, Set #7, made by combining the “line-
emission only” and “weights” spectral images.

simulated image has sufficient spectral resolution, but fewer
spectral channels, so the placeholder cube was created by
concatenating the simulated cube four times, along the fre-
quency dimension.

Running the program with 768 cores across 64 nodes took
2 hours 19 minutes and 10 seconds, consuming 1781 core-
hours. The system reported that the CPU utilisation was 99%.
The rate at which the program can search an image and the
manner in which it scales with the number of processors is
shown in Figure 5. This figure can be used to estimate the
processing time for images of different sizes and includes
the processing speed as determined from the original 64GB
simulated image, for comparison.

The processing time here is the mean time across ten runs
of PGSF per node size. The exception is the file input time,
which is treated separately from the other values, because
it can vary greatly from one run of the program to another,
depending on the amount of storage system bandwidth being
consumed by other programs at that time. It is also possible
for the image data to be stored in the cache of the storage
system, which will cause subsequent runs to have an unusu-
ally fast input step. In practice, the program will experience
congestion from other users but it is unlikely that the source
finder will need to be run multiple times in succession, so it is
unlikely for the image data to already be in the cache. For the
purpose of demonstrating the scaling of the program with the
number of cores used, the file input time was fixed to a value
equal to the median time across different core counts that
were not unusually small. Additionally, a small fraction of
runs failed to complete, due to one or more of the nodes they
were allocated either failed the MPI_Init() function, or
they timed out and were terminated by the scheduling system.
These are treated as outliers, and their data is not included
here. These issues are considered further in the Discussion
section.

The time required to search the images is broken down
in Figure 6, with each section as detailed in the method
section and the addition of two additional steps. These are
the startup time and the shutdown time, which are included
for completeness. These record the time taken to start and
initialise the program, and the time taken to clean up and
shutdown the program, respectively.

6 DISCUSSION

The suitability of a source finder for processing large HI
spectral images is determined by a number of factors. The
accuracy of the source finder is important as it determines the
scientific usefulness of the results. The practicality of using
the source finder to process large images is dependent on the
computational performance of the source finder. As the size
of the images increases the computational resources required
to process them also increases, making the scalability of the
source finding program a crucial aspect of its performance.
The memory requirements of a program are also relevant, as
they set the lower limit on the amount of resources required

PASA, 31, e023 (2014)
doi:10.1017/pasa.2014.18

https://doi.org/10.1017/pasa.2014.18 Published online by Cambridge University Press

http://www.atnf.csiro.au/people/Matthew.Whiting/ASKAPsimulations.php
http://www.atnf.csiro.au/people/Matthew.Whiting/ASKAPsimulations.php
https://doi.org/10.1017/pasa.2014.18


10 Westerlund and Harris

0

0.2

0.4

0.6

0.8

1

1 2 5 10 20
0

20

40

60

80

100

120

140

160

180

200
C

om
pl

et
en

es
s

N
um

be
r

of
R

ef
er

en
ce

So
ur

ce
s

in
B

in

Catalogue Peak SNR

Completeness
Number of Objects in Bin

(a) Point Source Completeness

0

0.2

0.4

0.6

0.8

1

1 2 5 10 20
0

20

40

60

80

100

120

140

160

180

200

R
el

ia
bi

lit
y

N
um

be
r

of
D

et
ec

te
d

So
ur

ce
s

in
B

in

Detected Peak SNR

Reliability
Number of Objects in Bin

(b) Point Source Reliability

0

0.2

0.4

0.6

0.8

1

1 2 5 20
0

50

100

150

200

250

C
om

pl
et

en
es

s

N
um

be
r

of
R

ef
er

en
ce

So
ur

ce
s

in
B

in

Catalogue Peak SNR

Completeness
Number of Objects in Bin

(c) Extended Source Completeness

0

0.2

0.4

0.6

0.8

1

1 2 5 20
0

20

40

60

80

100

120

140

R
el

ia
bi

lit
y

N
um

be
r

of
D

et
ec

te
d

So
ur

ce
s

in
B

in

Detected Peak SNR

Reliability
Number of Objects in Bin

(d) Extended Source Reliability

Figure 4. Source Finder Accuracy. These plots show the completeness and reliability of PGSF for different sources. The abscissa is the peak SNR of the
bins, equal to the peak flux of a source, divided by the image’s RMS value. The reference catalogue’s value for the peak SNR is used for the completeness
plots and the detected catalogue’s value is used for the reliability plots. The histogram shows the completeness and reliability for the sources in that bin,
with the error bars showing a one-sigma error calculated using bootstrap resampling. The dotted green line shows the number of sources in each bin. The
point source results were obtained from an image that contained only point sources, likewise the extended source results were obtained using an image that
contained only extended sources. These values were obtained using a threshold of fourσ , and voxels that were above that threshold for 13 different filters.

to process an image of a particular size. PGSF’s performance
in these measures is discussed below.

6.1 Accuracy

The accuracy of PGSF has been measured through the use
of unit testing, and by testing the program using a simu-
lated image. The accuracy with respect to finding sources is
demonstrated in Figure 4. For point sources the program has
good accuracy for both completeness and reliability above
a peak SNR of 5, although the reliability is greater than the
completeness. Below a peak SNR of five the accuracy drops
greatly. This is due to a large number of noise peaks being
detected in the cube with a peak SNR of around 2–5. The

completeness for sources with high SNR is less than 100%
because some true detections are being rejected due to their
small spectral widths. The extended sources are detected with
a slightly higher accuracy than the point sources, achieving
good accuracy down to a peak SNR of around 4. The dif-
ference in accuracy between point and extended sources is
likely because the point sources are small compared to the
filters used, whilst the extended sources are a closer match
to the filters used.

The completeness and reliability can be improved by us-
ing filter templates that better match the data being searched,
using a more optimal set of parameters. The parameters used
were selected to demonstrate the computational performance
of the program. The accuracy results for a source finder are

PASA, 31, e023 (2014)
doi:10.1017/pasa.2014.18

https://doi.org/10.1017/pasa.2014.18 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2014.18


A Framework for HI Spectral Source Finding 11

50

200

500

100

1000

0001001 00500205

P
ro

ce
ss

in
g

Sp
ee

d
(G

B
/h

ou
r)

Number of Nodes (12 Cores per Node)

256GB Image 64GB Image

Figure 5. The amount of data that the program can process per unit of time.
This data is based on the use of 29,384 filter values in the convolution and
either a 64GB or a 256GB file. The data size only includes the image data,
not the weights data. This figure shows the rate at which the performance of
the program scales with the number of cores used.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

64 80 96 128 160 192 256 384 512 768

R
un

ni
ng

T
im

e
(S

ec
on

ds
)

Number of Nodes (12 Cores per Node)

Startup
Input

Filtering/Analysis
Selection
Merging

Parameterisation
Confirmation/Rejection

Output
Shutdown

Figure 6. The processing time as a function of the number of nodes and
cores used. The minimum number of nodes is set by the amount of memory
needed. The program needs enough nodes to ensure that there is sufficient
memory to store the entire data set. The different colours denote different
tasks in searching the image.

highly dependent on the parameters used, even a good detec-
tion algorithm can perform poorly with an inappropriate set
of detection parameters. The values for the optimum parame-
ters may also vary from one dataset to another. The extended
sources are highly fragmented, particularly along the fre-
quency axis, so a large merging width along the frequency
axis was used. Whilst the merging radius along the frequency
axis used was valid for the test data set being used, for real
data a smaller radius is more appropriate, in order to prevent
different objects from being merged into the same detection.
The point sources are more compact, so these sources could
be merged together correctly with a smaller merging radius.

6.2 Computational performance

Testing the program shows that it can process a data cube
in 24 minutes using 9, 216 processing cores, although pro-
cessing the data using 768 cores uses less resources, at the
cost of taking 2 hours and 19 minutes time. The survey time
for WALLABY has yet to be finalised, but is expected to be
eight to twelve hours per image. This means that the program
can successfully search a WALLABY-sized image in signif-
icantly less time than the image takes to produce. Whether
or not the entire image processing pipeline can create and
analyse an image in less time than the observation used to
produce the image will still depend on the performance of
the other components in the pipeline, and the computational
resources employed. It is still beneficial to improve the per-
formance of the source finding program further as it can
reduce the computing resources required to perform the sur-
vey or allow those resources to be used for other tasks in the
image production pipeline.

In addition to the whole processing time Figure 6 also
identifies the components of PGSF that are the most time-
consuming. Most of the steps consume a negligible amount
of time. The filtering takes up the vast majority of the time,
proportional to the number and size of the filters used, show-
ing that this is the section that can benefit the most from
optimisation, and that using additional nodes is effective in
reducing the filtering time.

The time taken to read in the image from disk can vary
greatly. The amount of time taken to read in the 256GB file
varied from 9 seconds to 46 minutes, 39 seconds. The dif-
ference in times is primarily caused by the extent to which
the data is already in the system’s cache from a previous
run, and the extent to which other programs are access-
ing the storage nodes and using the network bandwidth.
Across all runs that weren’t outliers, PGSF took an average of
14 minutes and 41 seconds to read the file in, and this value
is dependent on the bandwidth of the storage system not the
number of cores used. Including outliers, the average time to
read the file was 10 minutes and 46 seconds.

If PGSF were to be used as part of an image production
pipeline, as opposed to a single program, then the file input
time may be irrelevant if the image is already in memory
from the previous steps of the pipeline. Depending on the
manner in which the data is distributed after the previous
step of the pipeline, the source finder may need to transpose
or otherwise rearrange the data into a format that it can use.
This rearrangement would itself take time, but it would not
be limited by the storage system.

The other steps in the program can also have variations in
processing time from one run to the next. Steps that involve
communication can be slowed by other programs using the
available bandwidth. Computation can vary in time due to
differences in process scheduling on CPUs. The greatest dif-
ferences in time from one run to the next, apart from the
file input step, can be seen in the analysis step, because
it is the longest. The convolution algorithm used has no

PASA, 31, e023 (2014)
doi:10.1017/pasa.2014.18

https://doi.org/10.1017/pasa.2014.18 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2014.18


12 Westerlund and Harris

communication, and minimal overhead, so the time taken
should be inversely proportional to the number of cores used.

6.3 Scaling

It is important to analyse the manner in which the process-
ing speed of PGSF varies with the number of cores used to
process the data, as this is the most straightforward way of
increasing the speed of the program. The data processing rate
as a function of the number of processing cores is shown in
Figure 5. It demonstrates that the speed generally increases
as the number of cores increases, but the speedup is less than
linear.

The single greatest consumption of processing time is the
analysis step, which consists almost entirely of performing
the convolution. This function is proportional to the number
of voxels in the image multiplied by the total number of filter
elements used. The other notable time-consuming steps in
the program, reading the image into memory and calculating
the mean and standard deviation, both have a time complexity
that is proportional to the size of the image. Because all of the
steps that take a considerable amount of time are proportional
to the size of the image, the processing speeds shown in
Figure 5 can be used to estimate the time the program will
take to search images of other sizes, when using the same
number and speed of processors and the same number of filter
elements. This is demonstrated by also running the program
on the original 64GB image, and observing that it achieves
the same processing speed. The scaling of processing time
against the image size will hold until the image is large
enough that the computer system used to search it no longer
has enough memory to store all the data structures needed by
the program.

As the number of cores varies, it is possible for the main
bottleneck of the program to occur in different components.
In the sizes shown, the main bottleneck is the filter con-
volution algorithm. This algorithm has no communication
between processes, the total amount of processing is con-
stant with the number of processes, and its processing can
be evenly divided between processes, so it will scale linearly
with the number of cores used.

There is a potential for a bottleneck to form when reading
the image in from storage. This step is limited by the band-
width between the storage system and the compute nodes. If
the data is stored in a distributed manner, and the network
bandwidth is sufficient, then increasing the number of stor-
age nodes would increase the bandwidth available to read the
data and so increase the speed of the program. However, if
the machine only has a limited number of storage nodes, the
increasing the number of compute nodes used to process the
image will not increase the rate at which the data is read and
so the input time will remain constant. Additionally, the input
step may take significantly longer if other programs on the
supercomputer are using the storage system bandwidth at the
same time as the source finder. The input step is the primary

reason the processing speed increases less than linearly with
the number of nodes.

The next potential bottleneck is in the local statistics func-
tion. This method requires that the halo data be exchanged
once per filter used. The amount of data transfer grows larger
in proportion to the total image size as the number of nodes
increases. The computational work required stays constant as
the number of nodes increases and is linearly parallelisable.
As the number of processes used increases, the proportionally
larger data transfer may come to dominate the computation.
This per-filter data transfer could be avoided by having each
node filter its own halo data, which would also involve in-
creasing the size of the halo data to include both the range
of the local statistics and the size of the filter. However, this
implementation would significantly increase the amount of
processing required, as there would be a constant amount of
halo data per process that would need filtering, in addition to
that node’s portion of the image. The extra computation could
cost more time than avoiding the data transfer saves, depend-
ing on the relative processing and network bandwidth of the
machine being used. Another alternative is to use a global
calculation for the mean and standard deviation. Although
this method results in a different value for the threshold, it
requires significantly less data transfer.

There is also a potential bottleneck in the functions that
merge voxels into sources, and then parameterise them. The
point at which the merging and parameterisation become
significant contributers to the overall runtime of the program
will vary with the settings used to run the source finder. The
time spent filtering the data and performing statistics calcu-
lations depends on the size and number of the filters used
and the input time is dependent on the size of the image data.
In comparison, the time spent merging and parameterising
sources depends on the number of detected voxels, which
will in turn depend on the image data being searched, the
parameters used to filter the image and particularly the de-
tection thresholds used. Additionally, an increased number of
detections require additional memory to store their informa-
tion, which can potentially consume all the available memory
on a machine and force data into swap space, significantly
slowing the entire program.

In practice these functions are not a concern because they
normally take a very small component of the overall time of
the program. The program must detect an extremely large
number of voxels for these segments to take a large portion
of the processing time, in which case the number of objects
found is so large that the vast majority of them are likely
to be false detections. For example, the WALLABY survey
is expected to find around 1, 000 detections per image. This
figure is the result after the confirmation step, so a greater
number of possible detections will pass through the voxel
merging and parameterisation steps. Testing on Epic using
the 256GB image resulted in PGSF finding 560, 544 voxels
across 13, 172 sources post-confirmation, with the thresh-
olding, voxel merging and parameterisation steps combined
taking 0.4 − 2.3% of the total running time, depending on

PASA, 31, e023 (2014)
doi:10.1017/pasa.2014.18

https://doi.org/10.1017/pasa.2014.18 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2014.18


A Framework for HI Spectral Source Finding 13

the run. Thus PGSF should be capable of dealing with the
number of sources expected from the WALLABY survey. In
testing, this issue occurred primarily when using a particu-
larly low detection threshold for the filters, but depending
on the image data it is also possible for extended sources to
have enough voxels that merging and parameterising them
consumes a significant amount of processing time.

The scalability information of the program also suggests
the optimal number of nodes to use when running PGSF.
For example, increasing the number of nodes from 80 to
512 nodes, a times 6.4 increase in computing resources, de-
creases the running time by a factor of 3. If a cube needs
to be searched quickly it would be reasonable to use a large
number of nodes to reduce the processing time, at the cost of
consuming a greater number of core-hours. If a longer delay
is acceptable then it would be more efficient to use the mini-
mum number of nodes per job. To search 1, 000 WALLABY
images would take less than 139 hours if the source finder
were to use all 800 nodes of the Epic supercomputer, with 10
jobs executing in parallel on 80 nodes each. In comparison,
it would take approximately 397 hours of processing using a
single 768 node job at a time.

The load is balanced by distributing the image evenly
between the different processes. The most time-consuming
tasks are reading in the data, convolving the data with the
filters, and calculating the mean and standard deviation. The
time required for a process to complete these tasks is propor-
tional to the size of the image data assigned to that process,
so the computational effort is evenly balanced between the
nodes. Other functions are less evenly balanced. The time
required by the thresholding algorithm increases with the
number of voxels that are above the threshold. This value is
data dependent, so it will not necessarily be balanced. More
importantly, the time taken by the merging and parameterisa-
tion steps is proportional to the number of voxels and sources
held by those nodes. Each node processes the sources that
were found in its portion of the image, after merging sources
that are present among multiple nodes. This means that the
load balance of these steps is dependent on the distribution
of potential sources across the image data. In practice, for the
data tested these tasks take so little time that any load imbal-
ance has little effect on the overall run time of the program.
For a more complex parameterisation algorithm it may be
beneficial to run the parameterisation, and consequently the
confirmation task, in a separate program that better balances
the work required between the nodes used.

6.4 Memory

The memory requirements for the program are approximately
three times the size of the image being searched, or four times
when using the weighted version of the algorithms. There are
three data structures that consume almost all of the memory
required by the program. The first two are the original copy
of the image and the filtered copy of the image. Each one
requires an amount of memory equal to the size of the image

being searched, with a small amount of extra memory for the
halo values. The third major use of memory is keeping track
of the voxels and the number of different filters for which
they are above the threshold. The actual amount of memory
required depends on the data set, as memory is only required
for voxels that are above the threshold for at least one filter.

Searching a larger image will require extra memory pro-
portional to the increase in size of the image. This means that
searching a larger image will require a proportionally larger
number of nodes to supply the memory. The additional nodes
would also provide additional computational power, but due
to inefficiencies in scaling searching a larger image using a
proportionally larger number of nodes would be slower than
searching the original image.

A small fraction of runs for the 256GB image file failed to
complete. This issue primarily affected the runs with small
numbers of nodes, at 96 nodes and above no problems were
encountered. Measuring the individual processes it appears
that slowdowns occur in functions such as the filtering, where
there is no communication and a uniform expected process-
ing time. It is suspected that this is caused by some of the
physical RAM in a node being unavailable to the source
finder processes, which caused data for the source finder to
be pushed into swap space. Jobs for the affected node sizes
were also tested on Fornax, a smaller cluster with similar
architecture but more memory per node. These issues were
not encountered on that system.

This slowdown can be seen in Figure 6 where the selection
time is significantly higher for 64 nodes than for the other
node sizes. The extra time appears in the selection step be-
cause that is where the halo transfer occurs. During the halo
transfer nodes must wait for their surrounding nodes for the
data transfer to finish, so if one node is slow then its neigh-
bours will wait for it in this step. In future work, it would be
beneficial to add fault tolerance to the source finder to avoid
or compensate for these problems.

7 SUMMARY

The Scalable Source Finding Framework detailed by this
work provides an method for constructing parallel source
finders, so that they can make use of HPC architecture. This
was demonstrated by using SSoFF to write PGSF, which is
capable of searching large images. Further algorithms can
be implemented using SSoFF with limited concern for a dis-
tributed dataset, provided they operate on a local area of
the image. There are some limitations the SSoFF and the
presented source finder. The scalability of the framework is
limited by the communication needs of the source finder,
and the file input speed is limited by the bandwidth of the
storage system independent of the processing nodes, which
may significantly slow down the overall speed of searching
an image. PGSF keeps memory overhead relatively low, at
two to four times the size of the image, but with a large im-
age file this can still impose a large memory requirement on
the processing system. It is possible to reduce this memory

PASA, 31, e023 (2014)
doi:10.1017/pasa.2014.18

https://doi.org/10.1017/pasa.2014.18 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2014.18


14 Westerlund and Harris

requirement, but only at the cost of reading additional in-
formation from storage, slowing the program. Finally, other
algorithms implemented using SSoFF will carry their own
computational and communications costs, which will affect
the processing speed of a source finder. Overall, SSoFF pro-
vides a suitable framework for writing source finders that
make use of parallel HPC systems.

7.1 Future work

There are a number of additions that could be made to SSoFF.
Most notable is support for different file formats for the im-
age data, such as FITS or HDF5. These are not yet included
because the WALLABY survey has yet to finalise the file
format they will use. With additional file formats the frame-
work could also read in the metadata of an image, for use
in parameterisation. Additionally, the time taken to read in
file data and the manner in which it varies could be consid-
ered in greater detail in future work. The statistics functions
could be expanded to include median-based statistics func-
tions, for more robust calculations. The voxel merging code
can be improved with the use of a more sophisticated method
for choosing the voxels to merge into a single object.

PGSF can also be improved in a number ways, indeed
as a framework SSoFF is designed to ease the addition of
functionality to a source finder. Different analysis techniques
could be used to select voxels. The performance of the con-
volution algorithm shown could be improved by porting it
to an accelerator device, such as a Graphics Processing Unit
(GPU). The parameterisation algorithm could be improved,

particularly with the use of metadata, and the confirma-
tion step could use more complex criteria for its decision
making.

ACKNOWLEDGEMENTS

The authors thank Russell Jurek for his assistance with parameteri-
sation and Tobias Westmeier for his assistance in preparing this pa-
per. This work was supported by iVEC through the use of advanced
computing resources located at iVEC@Murdoch and iVEC@UWA.

REFERENCES

Flöer, L., & Winkel, B. 2012, PASA, 29, 244
Jurek, R. 2012, PASA, 29, 251
Koribalski, B. S., & Staveley-Smith, L. 2009, Proposal for WAL-

LABY: Widefield ASKAP L-band Legacy All-sky Blind surveY,
Available from http://www.atnf.csiro.au/research/WALLABY/
proposal.html, Last Visited 9 September 2011

Meyer, M., et al. 2004, MNRAS, 350, 1195
OpenMP Architecture Review Board. 2008, OpenMP Application

Program Interface Version 3.0
Popping, A., Jurek, R., Westmeier, T., Serra, P., Floer, L., Meyer, M.,

& Koribalski, B. 2012, PASA, 29, 318
Serra, P., et al. 2012, MNRAS, 422, 1835
The MPI Forum. 1993, in Proceedings of the 1993 ACM/IEEE con-

ference on Supercomputing, Supercomputing ’93 (New York,
NY, USA: ACM), 878–883

Westerlund, S., Harris, C., & Westmeier, T. 2012, PASA, 29, 301
Whiting, M., & Humphreys, B. 2012, PASA, 29, 371
Whiting, M. T. 2012, MNRAS, 421, 3242
Winkel, B. 2008, PhD thesis, Universität Bonn

PASA, 31, e023 (2014)
doi:10.1017/pasa.2014.18

https://doi.org/10.1017/pasa.2014.18 Published online by Cambridge University Press

http://www.atnf.csiro.au/research/WALLABY/proposal.html
http://www.atnf.csiro.au/research/WALLABY/proposal.html
https://doi.org/10.1017/pasa.2014.18

