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Abstract

We propose a stock market model with chartists, fundamentalists and market makers. Chartists chase stock
price trends, fundamentalists bet on mean reversion, and market makers adjust stock prices to reflect cur-
rent excess demand. Fundamentalists’ perception of the stock market’s fundamental value is subject to
animal spirits. As long as the stock market is relatively stable, fundamentalists neutrally believe in a nor-
mal fundamental value. However, fundamentalists optimistically (pessimistically) believe in a high (low)
fundamental value when the stock market rises (falls) sharply. Our framework may produce boom-bust
stock market dynamics that coevolve with waves of optimism and pessimism for parameter settings that
would ensure globally stable stock market dynamics in the absence of animal spirits. Responsible for such a
surprising outcome is the destabilizing nature of temporarily attracting virtual fixed points, brought about
by animal spirits.
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virtual fixed points; periodic attractors
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1. Introduction

Stock markets are excessively volatile and subject to strong boom-bust dynamics. As is well
known, the vagaries of stock markets can have serious consequences for the real economy. The
Great Depression and the Global Financial Crises are just two particularly tragic examples. See
Galbraith (1994), Reinhart and Rogoff (2009), Kindleberger and Aliber (2011) and Shiller (2015)
for detailed historical accounts. Fortunately, models with heterogeneous interacting agents have
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proven to be useful frameworks for better understanding the complex behavior of stock mar-
kets. This line of research, pioneered by Zeeman (1974), Beja and Goldman (1980), Day and
Huang (1990), Chiarella (1992), Lux (1995) and Brock and Hommes (1998), studies the inter-
play between chartists, fundamentalists and market makers. Chartists are typically modeled as
traders who bet on a continuation of the current stock price trend.! Their positive feedback trad-
ing tends to destabilize stock markets. Fundamental traders believe in mean reversion. Buying
(selling) undervalued (overvalued) stocks tends to stabilize stock markets. Market makers medi-
ate the transactions of chartists and fundamentalists out of equilibrium, adjusting stock prices to
reflect current excess demand. Faced with positive (negative) excess demand, market makers raise
(lower) the stock price. These three model components result in dynamical systems whose math-
ematical and numerical analysis advances our understanding of the functioning of stock markets.
See Dieci and He (2018) and Axtell and Farmer (2024) for reviews.

To obtain clear-cut analytical insights into the functioning of stock markets, a branch of this
line of research has started to investigate more stylized representations of stock markets. For
instance, Huang and Day (1993), Tramontana et al. (2010, 2013) and Jungeilges et al. (2021,
2022) show that the trading behavior of heterogeneous speculators, who rely on piecewise-linear
trading rules, may give rise to complex bull and bear market dynamics. The dynamics of this “first-
generation” class of stock market models is due to one-dimensional piecewise-linear maps. More
recently, Anufriev et al. (2020), Dieci et al. (2022) and Gardini et al. (2022a,b,c) have initiated
a “second-generation” class of stock market models in which two-dimensional piecewise-linear
maps govern stock market dynamics. This new approach not only allows for a richer modeling of
the trading behavior of stock market participants—its mathematical properties, which have been
little studied, yield insights that may ultimately help policymakers design more efficient stock mar-
kets.? In this paper, which belongs to the latter research area, we generalize the stock market model
by Gardini et al. (2022¢). Moreover, we provide a thorough analytical and numerical treatment of
the dynamic properties of our new framework. In doing so, we hope to advance this important
line of research in both economic and mathematical terms.

Let us briefly recall the model setup by Gardini et al. (2022¢). Their stock market model is
populated by market makers, chartists and fundamentalists. Market makers quote stock prices
with respect to speculators’ excess demand, chartists bet on the persistence of stock price trends,
and fundamentalists presume that stock prices revert toward their fundamental values. However,
fundamentalists’ perception of the stock market’s fundamental value is subject to animal spir-
its. Gardini et al. (2022c) consider two generic sentiment states. Fundamentalists optimistically
(pessimistically) believe in a relatively high (low) fundamental value when the stock market
increases (decreases). A third non-generic sentiment state applies when the stock market is at rest.
Fundamentalists then display a neutral attitude where they correctly perceive the fundamental
value of the stock market. A two-dimensional piecewise-linear discontinuous map with essentially
two branches—reflecting fundamentalists’ optimistic and pessimistic sentiment—determines the
dynamics of their stock market model. Gardini et al. (2022¢) prove that the mere presence of
animal spirits may compromise the stability of stock markets. Instead of converging to its true
fundamental value, the stock price either approaches a nonfundamental fixed point or oscillates
permanently around its fundamental value. Given their ability to generate endogenous dynam-
ics, their work offers new explanations for the excessively volatile boom-bust behavior of stock
markets.?

In our stock market model, we assume that fundamentalists’ perception of the fundamental
value depends on three generic sentiment states. Fundamentalists neutrally believe in a normal
fundamental value as long as the stock market is relatively stable, while they optimistically (pes-
simistically) believe in a high (low) fundamental value when the stock market rises (falls) sharply.
As a result, the dynamics of our stock market model is due to a two-dimensional piecewise-linear
discontinuous map with three branches—representing fundamentalists’ optimistic, neutral and

https://doi.org/10.1017/51365100524000439 Published online by Cambridge University Press


https://doi.org/10.1017/S1365100524000439

Macroeconomic Dynamics 3

pessimistic sentiment. Assuming that fundamentalists’ sentiment may also be neutral is more
reasonable and has far-reaching consequences for the behavior of stock prices.

One important novel property of our stock market model is that a locally stable real fixed point,
where the stock price equals its fundamental value, may coexist with at least one periodic attrac-
tor, where the stock price oscillates around its fundamental value. When exogenous shocks hit the
stock market, the coexistence of such attractors can yield intriguing attractor switching dynamics,
e.g. alternating episodes of calm and turbulent stock price fluctuations. In this respect, knowledge
about the properties of the basins of attraction of the coexisting attractors, e.g. how the behav-
ior of certain trader types affects their size, is important from an economic policy perspective,
and we explore how to compute their boundaries. Moreover, we exemplary show how to derive
explicit expressions for bifurcation curves that mark the existence regions of periodic attractors.
Economically, this means not only that we can rigorously prove that our stock market model can
generate excessively volatile boom-bust dynamics, but also that we can analytically characterize
how the behavior of the different trader types shapes its dynamics.

What is truly remarkable is that our stock market model can produce everlasting stock market
fluctuations for parameter combinations that would ensure a globally stable stock market in the
absence of animal spirits. This has to do with the fact that our modeling of animal spirits gives
rise to two temporarily attracting virtual fixed points, located above and below the stock market’s
fundamental value. To be able to appreciate the destabilizing nature of temporarily attracting vir-
tual fixed points, let us briefly preview how endogenous dynamics may arise in our stock market
model. Note first that our stock market model collapses to a simple linear chartist-fundamentalist
model when fundamentalists are not subject to animal spirits. The unique fixed point of the under-
lying two-dimensional linear map, where the stock price reflects its fundamental value, is globally
stable, provided that chartists and fundamentalists do not trade too aggressively. Depending on
the relative market impact of chartists and fundamentalists, the stock price then approaches its
fundamental value in a monotonic, cyclical or alternating manner. For ease of exposition, let us
assume that the relative market impact of chartists and fundamentalists is such that the stock price
monotonically approaches its fundamental value.

Then, treated separately, each of the three linear branches of our stock market model with
animal spirits possesses a unique fixed point, associated with a monotonic convergence path.
Consequently, stock prices would converge to a high, normal or low fixed point if fundamentalists’
sentiment were permanently optimistic, neutral or pessimistic. However, fundamentalists’ senti-
ment is time varying. Suppose that the stock price increases strongly. Fundamentalists are then
optimistic and believe in a high fundamental value. As a result, their trading behavior ensures that
the stock price monotonically approaches its upper virtual fixed point. Since the rate of adjustment
to the upper virtual fixed point automatically decreases as the stock price approaches it, the attract-
ing nature of the upper virtual fixed point is self-defeating. Because the stock price increase has lost
momentum, fundamentalists’ sentiment becomes neutral and they start to believe in a normal fun-
damental value. Now the trading behavior of fundamentalists forces the stock price downwards.
As we will see, this downward movement of the stock price may be so strong that fundamentalists
become pessimistic, prompting them to believe in a low fundamental value. Consequently, the
stock price monotonically approaches its lower virtual fixed point, albeit only for some time. As
the rate of convergence to the lower virtual fixed point slows, fundamentalists’ sentiment recovers
and the stock price reverses direction once again. Fundamentalists are briefly neutral, but quickly
become optimistic again as the stock price begins to rise more rapidly.

From an economic perspective, our analysis reveals that a bidirectional feedback process
between stock prices and animal spirits may create boom-bust stock market dynamics that coe-
volve with waves of optimism and pessimism. Importantly, we are able to identify the forces
at work in our stock market model. Indeed, our mathematical analysis makes clear how such
dynamics are a consequence of the destabilizing nature of temporarily attracting virtual fixed
points. This is not only a new explanation for the excessively volatile boom-bust behavior of
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stock markets—our analysis reveals that such dynamics may occur for parameter settings that
are usually associated with stable stock market dynamics.

The rest of our paper is organized as follows. In Section 2, we develop our stock market model.
In Sections 3 and 4, we derive our main analytical and numerical results. In Section 5, we conclude
our paper. Appendices A to D contain a number of technical remarks and derivations.

2. Astock market model with animal spirits

Our stock market model is populated by three types of market participants: market makers,
chartists and fundamentalists. In Section 2.1, we formalize the behavior of each type of market
participant. In Section 2.2, we demonstrate that their trading behavior implies that the stock mar-
ket’s law of motion corresponds to a two-dimensional piecewise-linear discontinuous map with
three branches. As we will see, each branch of this map reflects one of three possible generic sen-
timent states of fundamentalists. In Section 2.3, we show that the key building blocks of our stock
market model are consistent with empirical observations.

2.1. Model Setup

Let us turn to the details of our stock market model. We assume that market makers adjust the
stock price with respect to the order flow of chartists and fundamentalists. The orders placed by
chartists and fundamentalists in period t are denoted by D¢ and D, respectively. Market makers
follow a simple linear price-adjustment rule and quote the stock price for period ¢ + 1 as

Py =Py + a(Df + D). (1)

Parameter o > 0 indicates the strength with which market makers change the stock price from
period t to period t + 1 for a given excess demand. According to (1), market makers increase
(decrease) the stock price when the buy orders placed by chartists and fundamentalists exceed (fall
short of) their sell orders. Market makers keep the stock price constant when the excess demand
of chartists and fundamentalists is equal to zero. The latter, of course, is a prerequisite for a fixed
point.

Chartists seek to exploit stock price trends. Since chartists bet on the persistence of stock price
trends, we formalize their technical trading rule as

Df = B(P; — Pr_y). 2)

Parameter 8 > 0 indicates how aggressively chartists react to their technical trading signal.
Note that chartists place buy orders when the stock market is rising and sell orders when the
stock market is falling. Chartists do not receive trading signals when the stock price remains con-
stant. Together with the behavior of market makers, it is clear that a fixed point requires that
fundamentalists do not trade when the stock market is at rest.

Fundamentalists believe that the stock price moves in the direction of its fundamental value.
To compute the fundamental value of a stock market, fundamentalists need to form an opinion
about the future state of the economy. Fundamentalists’ evaluation of the stock market’s funda-
mental value—a truly difficult task—is subject to Keynesian animal spirits. In general, Keynes’
(1936, 1937) famous notion of animal spirits means that people display a collective, (apparently)
spontaneous and significant shift in sentiment, say a general reversal from a pessimistic attitude
to an optimistic attitude, upon which they act. In line with Shiller (2015, 2019), we assume that
fundamentalists optimistically believe in an excessively high fundamental value when the stock
market rises sharply, and pessimistically believe in an overly low fundamental value when it falls
sharply. Fundamentalists’ attitude is neutral when the stock market is relatively stable, prompting
them to believe in an intermediate (normal) level of the fundamental value. Fundamentalists thus
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perceive the stock market’s fundamental value as

Fo if P,—DPi_1>h
Fe={F" if —-h<P,—P_y<h, 3)
FP lf Pt—Pt_1<—h

where F°, F" and FP represent fundamentalists’ optimistic, neutral and pessimistic perceptions
of the stock market’s fundamental value, respectively, with F® > F" > FP.* Moreover, parameter
h > 0 controls when these three sentiment regimes apply.”

Based on these considerations, we assume that fundamentalists derive their orders via the
fundamental trading rule

Df =y (F; — Py). )

Parameter y > 0 reflects how aggressively fundamentalists react to the stock market’s current
mispricing. Accordingly, fundamentalists place buy orders when they perceive an undervalued
stock market and sell orders when they perceive an overvalued stock market. Fundamentalists are
inactive when they do not perceive mispricing. Note that this is the case when the stock price is
either equal to F°, F" or FP. However, neither F° nor F can be a real fixed point of the stock
market—fundamentalists’ sentiment becomes neutral when the stock price is at rest, prompting
them to believe in F”. As a result, our stock market model possesses a unique real fixed point,
where stock prices are given by F”, and two so-called virtual fixed points, given by F° and FP.

Our modeling of fundamentalists’ animal spirits lays the foundation for a bidirectional
feedback process between stock price dynamics and animal spirits: fundamentalists’ sentiment
depends on the last stock market change, which in turn depends on the order flow of chartists and
fundamentalists. In Section 3, we explain under which conditions this relationship can trigger
sentiment-driven boom-bust stock market dynamics.

2.2. The model’s map

For simplicity, let us assume that F” reflects an unbiased view of the true fundamental value of the
stock market, that is F” = F, while F® = F" 4 d and FP = F" — d represent biased views. Since the
market makers’ price-adjustment parameter o merely scales the market impact of chartists and
fundamentalists, let us furthermore replace the aggregate parameters o and ay with the new
parameters b and ¢, respectively. Combining (1) to (4) then reveals that the stock price in period
t + 1 adheres to

(1+b—c)P,—bP_+c(F+d) if Pi—Pi_1>h
Pryy={ (1+b—c)Pr—bP_1 +cF if —h<P—Pi_1<h. (5)
(1+b—c)Pi—bP_y+c(F—d) if P—Py<-—h
Obviously, the dynamics of our stock market model depends on three competing sentiment
regimes, namely optimism, neutrality and pessimism, each of which is associated with a differ-
ent linear branch. Since it is convenient to express our stock market model in deviation from its
fundamental value, let us next define x; = P; — F. This allows us to transform (5) into
(I1+b—c)x—bx—y+cd if X — X1 >h
Xt41 = (l—i—b—c)xt—bx,_l if —h<x;—x—1<h. (6)
(I+b—c)xy—bxm1—cd if  x—x1<—h
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For ease of exposition, in the following we will still regard x; as the stock price (instead of
constantly referring to x; as the stock price in deviation from its fundamental value). Essentially,
this implies that the fundamental value of the stock market is equal to F = 0 and, consequently,
that fundamentalists’ perceptions of the fundamental value are equal to F" =0, F° =d and FP =
—d. Introducing the auxiliary variable y; = x;_;, we finally arrive at a two-dimensional piecewise-
linear discontinuous map that governs the dynamics of our stock market model, namely

(1+b—c)x—by+cd if x—y>h
¥=1(14+b—c)x—by if —h<x—y<Hh,

Tc: (1+4b—c)x—by—cd if x—y<-—h

7)
y=x

where the prime symbol stands for the unit time advancement operator. In general, parameters b,
¢, d and h are positive. Note that rescaling x: =x/h,y: =y/handd: = d/hreveals that parame-
ter h is a scaling factor. Instead of fixing h = 1, however, we keep parameter h due to its economic
relevance. Nevertheless, our main focus will be on parameters b, ¢ and d. Recall that Gardini et al.
(2022¢) study a related stock market model with two generic sentiment states, that is optimism
and pessimism. By adding a neutral attitude as a third generic sentiment state, our setup can be
considered more general. To understand the transition from two to three generic sentiment states,
we restrict our attention to the case d > h > 0.°

2.3. Discussion

A few comments are in order before we start with our analysis. While our stock market model is
rather stylized, it captures a number of crucial forces that determine the dynamics of stock prices.
The empirical work by Evans and Lyons (2002), Lillo et al. (2003) and Bouchaud et al. (2009) indi-
cates that order flow is the key driver of asset price changes. Models that capture this aspect via
a market maker scenario include Day and Huang (1990), Farmer and Joshi (2002) and Schmitt
and Westerhoff (2021). Questionnaire studies by Menkhoff and Taylor (2007) and laboratory evi-
dence by Hommes (2011) reveal that actual financial market participants rely on technical and
fundamental trading rules to determine their speculative orders. Murphy (1999) provides a gen-
eral survey of technical trading. Studies that model the behavior of chartists in a similar way to
us include Gaunersdorfer and Hommes (2007), Franke and Westerhoff (2012) and Scholl et al.
(2021). A classic reference for fundamental analysis is Graham and Dodd (1951). Model-theoretic
formalizations similar to our setup include Lux (1995), Brock and Hommes (1998) and LeBaron
(2021). Animal spirits, as put forward by Keynes (1936, 1937), play an important role in eco-
nomics. See Pigou (1927), Minsky (1975), Akerlof and Shiller (2009) and Franke and Westerhoft
(2017) for a discussion. Our modeling of animal spirits follows Brock and Hommes (1998), de
Grauwe and Kaltwasser (2012), Cavalli et al. (2017), Campisi et al. (2021) and, of course, Gardini
etal. (2022c). Overall, it can be argued that the key building blocks of our stock market model are
consistent with empirical observations.

3. Analytical and numerical results

In this section, we present our main analytical and numerical results. In Section 3.1, we first study
the behavior of a simple linear benchmark stock market model. In Section 3.2, we then discuss a
number of general properties of our stock market model. In Sections 3.3 to 3.4, we finally illustrate
the functioning of our stock market model for three specific parameter regions.
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3.1. Asimple linear benchmark stock market model

Let us first explore a simple linear benchmark scenario. In the absence of animal spirits, the
complete map T¢ simplifies to the reduced map

Te: {x:(l-l—b—c)x—by, ®)

) =x

The unique fixed point of the two-dimensional linear map Ty is the origin, say Pr = (0, 0). At
this fixed point, the stock price is properly aligned with its fundamental value. The global stability
of this fixed point depends on the two eigenvalues of the Jacobian matrix

v —b
()
10
with v=1+ b — c. They are A1 =0.5(v + v/v? — 4b) and A, = 0.5(v — ~/v?> — 4b), respectively.
Furthermore, the determinant and the trace of the Jacobian matrix J are equal to detJ = b and
tr] = v. As is well known, we can conclude that the eigenvalues of the Jacobian matrix J are inside
the unit circle when the three stability conditions (i) 1+ tr/ +det] >0, (i) 1 —trJ +det] >0
and (iii) 1 — det J > 0 are jointly met.” If this is the case, then the fixed point P = (0, 0) is glob-
ally stable. It is straightforward to check that in the feasible parameter domain defined by b > 0
and ¢ > 0, the eigenvalues of the Jacobian matrix J satisfy the condition |A12| < 1 in the so-called

stability box
S=RiUR,UR;={(b,c): 0<b<1,0<c<2(1+b)}, (10)
where regions Rj, R, and Rj3 of stability box S have the following properties. In region
R1={(b,c):O<b<1,0<c<1+b—2\/5}, (11)

the eigenvalues are real and positive, implying a monotonic convergence of the stock price to its
fundamental value. In region

R2={(b,c):0<b<1,1+b—2\/g<c<1+b+2«/5}, (12)

the eigenvalues are complex conjugate, implying a cyclical convergence of the stock price to its
fundamental value. In region

Rs={(bc): 0<b<1,1+b+2Vb<c<2(1+0)}, (13)

the eigenvalues are real and negative, implying an alternating convergence of the stock price to its
fundamental value. Figure 1 portrays stability box S and its three regions R;, R, and R3 for 0 <
b < 1.1and 0 < ¢ < 4. Combinations of parameters b and ¢ located inside stability box S guarantee
that the stock price will return towards its fundamental value, while those located outside stability
box S produce divergent stock price dynamics.

Figure 2 illustrates our analytical results for map Tr. The black line in the top left panel shows
the evolution of the stock price in the time domain, assuming that b= 0.1 and ¢ = 0.1; the red
line depicts the stock market’s fundamental value. Since this parameter combination is located
inside region R;, the stock price monotonically approaches its fundamental value. The black line
in the top right panel shows the stock price path for b = 0.8 and ¢ = 0.2. As can be seen, the stock
price exhibits dampened cyclical motion when the market impact of chartists and fundamentalists
is located inside region R,. The black line in the bottom left panel visualizes a simulation of the
stock price based on b =0.1 and ¢ = 2.1. Since this parameter combination is located in region R3,
we observe a zigzag adjustment path. Stock prices explode when parameters b and ¢ are located
outside stability box S. For b= 0.1 and ¢ = 2.21, for instance, the amplitude of the zigzag path of
the stock price increases, as reported in the bottom right panel.
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R3

parameter ¢
N

Ra

R4

0 0.25 0.5
parameter b

o
~l
(4]
-

Figure 1. Stability box S of map Tg. Parameter combinations located inside regions Ry, R, and R3 yield a monotonic, cyclical
and alternating convergence towards the stock market’s fundamental value, respectively. Parameter combinations located
outside stability box S produce divergent stock price dynamics.

We can thus conclude that—in the absence of animal spirits—the stock price will always con-
verge to its fundamental value, provided that the trading behavior of chartists and fundamentalists
does not become too aggressive. The latter means that parameters b and ¢ must be located inside
stability box S.

3.2. General properties of our stock market model

Before we characterize the behavior of our complete stock market model in detail, it is helpful to
discuss a number of general properties of map Tc.

First, we can divide the (x, y)-state space into three areas, each representing a different senti-
ment regime. See Figure 3 for an example. In the lower right part of the (x, y)-state space, that is
below the straight line y = x — h, map

X=(1+b—c)x—by+cd

Tr: ,
y =X

(14)

applies. In this area, fundamentalists optimistically believe in a high fundamental value since the
stock price strongly increases. In the upper left part of the (x, y)-state space, that is above the
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0.10¢ 0.10
0.05¢ [\ 0.05
x 0.00¢ x  0.00 \//\\_/'_“‘
-0.05+ -0.05
-0.10| ; . ; . -0.10
1 10 20 30 40 1 10 20 30 40
time time
0.10¢ 0.10
0.05} 0.05
x 0.00t | = 0.00
-0.05+ -0.05
=010 . -0.10|
1 10 20 30 40 1 10 20 30 40
time time

Figure 2. Stock market dynamics for map Tg. The black lines show the evolution of the stock price in the time domain; the
red line marks fundamentalists’ correct perception of the stock market’s fundamental value. The four panels are based on
b=0.landc=0.1,b=08andc=0.2,b=0.1andc=2.1and b=0.1and c = 2.21, respectively. Initial conditions are given
by x =0.05and y =0.

straight line y = x + h, map

X=(1+b—c)x—by—cd

Ty: ,
Yy =x

(15)

applies. In this area, fundamentalists pessimistically believe in a low fundamental value since the
stock price strongly decreases. In the strip between these two straight lines, map

X=(1+b—c)x—by

To: ,
y =x

(16)

applies. In this area, stock prices are relatively stable. Hence, fundamentalists are neutral and
believe in a normal fundamental value. As we will see, Figure 3 is key to understanding the func-
tioning of our stock market model. Since the dynamics of our stock market model is governed
by a map with two dimensions, knowledge about the current coordinates of (x,y) = (x4, y;) =
(xt, x¢—1) = (Pt — F, P;_1 — F) allows us to immediately conclude which of the three maps T, Ty
and To are responsible for determining the next stock price. Clearly, this is the beauty of two-
dimensional maps; they give us a clear understanding of the system’s dynamics in the (x, y)-state
space.
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0.40¢

map Ty
(pessimism)
0.20¢

map To

(neutral)

> 0.00}

-0.20 ¢
map T,

(optimism)

-0.40¢

—0:40 -0.20 0.00 0.20 0.40
X

Figure 3. Areas in (x, y)-state space where maps T, Ty and Tp apply. In the area of map T, fundamentalists are optimistic.
In the area of map Ty, fundamentalists are pessimistic. In the area of map Tp, fundamentalists are neutral. Note that the real
fixed point Po = (0, 0) and the two virtual fixed points P, = (d, d) and Py = ( — d, —d) are located inside the area of map To.

Second, map T is identical to map Tr. Hence, the fixed point of map To, say Po = (0, 0), has
the same coordinates as the fixed point of map Tr. Of course, the fixed point Po = (0, 0) is also a
fixed point of map T¢. Importantly, however, the global stability results that we have established
for the fixed point Pr = (0, 0) of map Tr may now only hold locally for the fixed point Po = (0, 0)
of map T¢. The following should be noted:

« Proposition 1 in Appendix A states a sufficient condition for which the fixed point Pp =
(0, 0) of map T is globally attracting. Figure 4, based on d = 0.05 and h = 0.01, provides an
example. For this parameter constellation, the fixed point Pp = (0, 0) of map T is globally
attracting for parameter combinations located inside (the green) region G (the sufficient
condition requires that ¢ < 0.2 — 0.25b). To establish globally stable stock markets, policy-
makers need to implement measures that force parameters b and ¢ inside region G, e.g. by
conducting transactions that counter those of chartists and fundamentalists.

« Proposition 2 in Appendix B states a sufficient condition for which the fixed point Pp =
(0, 0) of map T coexists with one or more cyclical attractors. In Figure 4, this is the case for
¢ > 1/3. Proposition 2 furthermore characterizes the basin of attraction of the fixed point
Po = (0,0) of map T in the presence of coexisting attractors. To be more precise, we can
conclude from Proposition 2 that the basin of attraction of the fixed point Po = (0, 0) of
map Tc belongs to a quadrilateral region Q with vertices (x7, y7), (x{;» ¥{)» ( — X[, —)])
and (—x{, —y(), where (x7,y7)=(h(1+b)/c,xf —h) and (x7},y{;) = (h(1 = b)/c,
x{; + h). Let us return to Figure 4. For parameter combinations located inside (the blue)
region E, the basin of attraction of the fixed point Pp = (0, 0) of map T¢ is equal to region
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Figure 4. Properties of map T¢ in the (b, c)-parameter plane. Green region G: the real fixed point is globally attracting. Blue
region E: the basin of attraction of the real fixed point is equal to the quadrilateral region Q. Yellow regions U: the basin of
attraction of the real fixed point is smaller than the quadrilateral region Q. Orange region A: the basin of attraction of the real
fixed point may be smaller or larger than the quadrilateral region Q. White region C: coexistence of chaotic and divergent
dynamics. Gray region D: divergent dynamics. Remaining parameters: d = 0.05 and h = 0.01.

Q. For parameter combinations located inside one of the two (yellow) regions U, the basin
of attraction of the fixed point Pp = (0, 0) of map T is smaller than region Q. For param-
eter combinations located inside (the orange) region A, the basin of attraction of the fixed
point Po = (0, 0) of map T¢ may be smaller or larger than region Q. As long as the stock
price remains inside the basin of attraction of the fixed point Pp = (0, 0) of map Tg, its
trajectory will describe a cyclical, monotonic or alternating adjustment path towards its
fundamental value, depending on whether parameters b and ¢ are located inside regions
Ry, Ry and R3, respectively. The dynamics we have witnessed in Figure 2 for map T thus
also holds for map T¢, assuming that the stock price remains in the vicinity of its fixed
point Po = (0, 0).

Sections 3.3 to 3.5 discuss the economic implications of these results in more detail.

Third, the fixed points of maps T7, and Ty are given by P; = (d, d) and Py = ( — d, —d), respec-
tively. While the fixed point Py = (d, d) represents an overvalued stock market, the fixed point
Py = (— d, —d) signifies an undervalued stock market. Since these fixed points are located on the
diagonal of the (x, y)-state space, as evidenced in Figure 3, they do not belong to the area where
their maps apply. For this reason, the fixed points P = (d, d) and Py = ( — d, —d) are virtual fixed
point for map T¢. Put differently, map T has three fixed points, which we will call the optimistic
virtual fixed point Py = (d, d), the real fixed point Pp = (0, 0), and the pessimistic virtual fixed
point Py = (—d, —d).

https://doi.org/10.1017/51365100524000439 Published online by Cambridge University Press


https://doi.org/10.1017/S1365100524000439

12 L. Gardini et al.

Fourth, virtual fixed points may have a significant impact on stock market dynamics, as
revealed by the following thought experiment. Recall first that maps T; and Ty have the same
Jacobian matrix and thus the same eigenvalues as map T, implying that their fixed points share
the same stability properties. Let us assume, for simplicity, that parameters b and ¢ are located
inside region R;. As a result, the stock price will converge monotonically to a virtual fixed point
as long as its trajectory remains inside the area where its map applies. Suppose that the stock price
monotonically approaches the optimistic virtual fixed point. Since the stock price change asso-
ciated with a convergence to this fixed point decreases over time, the stock price will eventually
leave this area. This causes a regime change, which may initially result in a movement towards the
real fixed point. Suppose that this regime change is associated with a sharp movement towards
the real fixed point, a movement that exceeds parameter h. Then there is another regime change,
and the stock price moves monotonically toward the pessimistic virtual fixed point, albeit only
for a few time steps, as the rate of adjustment automatically slows down over time. Importantly,
the virtual fixed points of map T¢ are temporarily attracting but any convergence towards them
is eventually self-defeating. As long as the stock price does not get stuck in the basin of attraction
of the real fixed point, the existence of virtual fixed points provides the stage for sentiment-driven
boom-bust stock market dynamics. We can observe this cycle-generating mechanism in regions
Ry, R, and R3, as made clear in Sections 3.3 to 3.5.

Fifth, numerical evidence suggests that stability box S is almost completely filled with families of
different types of stock price cycles. The two-dimensional bifurcation diagram depicted in Figure 5
is a first example. Parameters b and c are varied as in Figure 1, while the remaining parameters are
set to d = 0.05 and h = 0.01. The initial conditions are given by x = 0.025 and y = 0.% Different
colors indicate numerically detected stock price cycles with different periods. For instance, the
large red, blue, green and yellow areas in the left part of the two-dimensional bifurcation diagram
represent parameter combinations that lead to period-4, period-6, period-8 and period-10 stock
price cycles, respectively. Moreover, the (smaller) cyan, pink and brown areas in the middle part of
the two-dimensional bifurcation diagram reflect parameter combinations that give rise to period-
3, period-5 and period-7 stock price cycles, respectively. Parameter combinations that yield cycles
with a lag larger than n = 42 are marked purple. Black areas stand for parameter combinations for
which the stock price convergences to the real fixed point. White areas mark parameter combina-
tions that yield chaotic stock price dynamics. Gray areas reflect parameter combinations that are
associated with divergent dynamics. Qualitatively similar images are obtained for different values
of parameters d and h, provided that d > h > 0.

Sixth, map Tc is symmetric with respect to the real fixed point Pp=(0,0). Since
To(—x,—y)=—Tol(x,y) and Ty(— x, —y) = —Tr(x, y), it follows that the trajectory starting at
point ( — xo, —yp) is symmetric with respect to the real fixed point Po = (0, 0) to the trajectory
of point (xp, yo). This means that any invariant set A of map T is symmetric with respect to the
real fixed point Po = (0, 0) or an invariant set A’ exists that is symmetric to A with respect to the
real fixed point Pp = (0, 0). Hence, any odd-period cycle has a symmetric companion odd-period
cycle. Since Figure 5 reports multiple instances of odd-period cycles, this is a first indication that
our stock market model may give rise to coexisting cyclical attractors. In Sections 3.3 to 3.5, we
will see that there are further forms of coexisting periodic attractors, e.g. odd-period cycles may
coexist with one or more even-period cycles. From the next remark, it follows that all existing
cycles in stability box S are attracting.

Seventh, the fact that maps T, Tp and Ty have the same Jacobian matrix J leads to an impor-
tant property with respect to the stability or instability of all possible existing cycles of map Tc.
In fact, a cycle of period 7 is a fixed point of the n-th iterate of map T¢. Its stability is therefore
determined by the eigenvalues of matrix J”, which in turn are given by A} and A}. In particular,
for all combinations of parameters b and c located inside stability box S, map T¢ cannot have
unstable cycles. Since this also rules out the existence of divergent dynamics for all combinations
of parameters b and ¢ located inside stability box S, we can still define that parameter region as a
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Figure 5. Two-dimensional bifurcation diagram in the (b, c)-parameter plane for map T¢. Differently colored areas mark
periodicity regions of different cycles (areas that produce cycles with a period larger than n = 42 are marked purple). Black
areas mark parameter combinations that result in a convergence to the real fixed point. White areas mark parameter combi-
nations that lead to chaotic dynamics. Gray areas mark parameter combinations that yield divergent dynamics. Numerical
observations rely on initial conditions x = 0.025 and y = 0. Remaining parameters: d = 0.05 and h = 0.01.

stability region for map T¢. For all combinations of parameters b and ¢ not located inside stability
box S, map T¢ cannot have stable cycles.

Eighth, Figure 5 reports numerical evidence for the existence of attracting cycles. In a math-
ematical companion paper, Gardini et al. (2023a) explain how to derive analytical expressions
for the bifurcation boundaries of different types of families of cycles. While they study a differ-
ent stock market model, their mathematical techniques also apply to our map. Based on their
insights, Figure 6 exemplarily portrays analytically determined bifurcation boundaries of two
qualitatively different locally stable period-6 stock price cycles in the (b, ¢)-parameter plane for
map Tc. Parameters b and ¢ are varied as in Figures 1, 4 and 5, while the remaining parameters
are set to d = 0.05 and & = 0.01. The area between the two cyan curves marks the existence region
of a period-6 stock price cycle that involves all three branches of map T¢. Note that the existence
region of this period-6 stock price cycle covers parts of regions R;, R, and Rj3. Clearly, this proves
that our stock market model is able to produce endogenous stock market dynamics in regions Ry,
R; and R;3. The area between the two purple curves marks the existence region of a period-6 stock
price cycle that only involves two of the three branches of map Tc. Note that the existence region
of this cycle is entirely located inside region R,. Obviously, both period-6 stock price cycles coexist
in the area between the two cyan and the two purple curves—next to the locally stable real fixed
point. We will return to this interesting scenario in Section 3.4. As it turns out, the analytically
determined area between the two cyan curves or the two purple curves in Figure 6 nicely overlaps
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Figure 6. Analytically determined bifurcation boundaries of two qualitatively different locally stable period-6 cycles in the
(b, c)-parameter plane for map T¢. The area between the two cyan curves marks the existence region of a period-6 cycle,
covering parts of regions Ry, R, and R3. The area between the two purple curves marks the existence region of another
period-6 cycle, covering part of region R;. Both period-6 cycles coexist in the area between the two cyan and the two purple
curves. Remaining parameters: d = 0.05 and h = 0.01.

with the numerically identified existence region of period-6 stock price cycles reported in Figure 5.
Of course, it is not clear from Figure 5 that we are dealing with two qualitatively different period-6
stock price cycles. Moreover, the image of the two-dimensional bifurcation diagram presented in
Figure 5 depends on the initial conditions; other initial conditions may result in different images.
In Appendix C, we explicitly derive the analytical bifurcation boundaries reported in Figure 6. We
recall that it is possible to determine the analytical bifurcation boundaries for other families of
cycles, too.

Ninth, the white triangle-like region in the two-dimensional bifurcation diagram depicted in
Figure 5 represents (b, ¢)-parameter combinations for which we found chaotic stock price dynam-
ics. In the absence of animal spirits, these parameter combinations would yield divergent stock
price dynamics. In the presence of animal spirits, the stock price may exhibit at least bounded
dynamics. In this sense, animal spirits can also have a stabilizing impact on stock market dynam-
ics. Since the real fixed point, as well as any other existing cycle of our stock market model, is of
course not stable in this parameter region, the chaotic attractor does not coexist with an attracting
real fixed point or cycle. However, the dynamics in this parameter domain may also be divergent:
stock prices explode when initial conditions exit the basin of attraction of the chaotic attractor.
We discuss this issue in more detail in Section 4.1. One further comment is in order. The two-
dimensional bifurcation diagram depicted in Figure 5 is the outcome of a simulation exercise.
In Appendix D, we analytically derive the existence region of chaotic stock market dynamics.
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Figure 7. Example of stock price dynamics in region R;. Left: the blue line shows the evolution of a period-8 stock price
cycle in the time domain. The red solid and dashed lines mark fundamentalists’ correct and biased perception of the stock
market’s fundamental value, respectively. Right: the connected blue disks depict the evolution of a period-8 stock price
cycle in (x, y)-state space; the red disk and the two red circles indicate the positions of the real fixed point and the two
virtual fixed points. The two black dashed lines and the two black dotted lines represent the discontinuity linesy =x+ h
and y =x — h and their rank-1 preimages via map Tgl, respectively. The four red segments of the quadrilateral region Q
bound the analytically determined basin of attraction of the real fixed point. The light blue and light red areas mark the
numerically detected basins of attraction of the period-8 cycle and of the real fixed point, respectively. Parameter setting:
b=0.05,c=0.5,d=0.05and h = 0.01.

The white region C in Figure 4 visualizes the analytically determined existence region of chaotic
stock market dynamics for d =0.05 and h = 0.01.

Tenth, we also show in Appendix D that the gray area in the two-dimensional bifurcation dia-
gram depicted in Figure 5 represents (b, c)-parameter combinations that must necessarily result
in divergent dynamics. While Figure 5 is based on numerical results, the gray region in Figure 4,
which again reflects divergent dynamics, visualizes our analytical results.

Eleventh, the black area in the two-dimensional bifurcation diagram depicted in Figure 5 rep-
resents (b, c)-parameter combinations for which the stock price approaches its real fixed point in
our numerical investigation (with the considered initial condition). In that region, there are still
values of the parameters for which the attracting fixed point coexists with one or more attracting
cycles. Region G in Figure 4 portrays analytically identified parameter combinations for which the
real fixed point is the only attractor, that is, it is globally attracting.

Once again, we stress that the aforementioned differences between the trivial dynamics of map
Tg and the more intriguing dynamics of map T¢ are entirely due to fundamentalists’ animal spir-
its, that is their time-varying perception of the stock market’s fundamental value. In the following,
we explore the dynamics of our stock market model in regions R}, R; and R3.

3.3. Stock market dynamics in region R,

Figure 7, based on b =0.05, c = 0.5, d =0.05 and h = 0.01, presents an example of the dynamics
of our stock market model in region R;. For this parameter setting, the real fixed point coexists
with a period-8 stock price cycle. In the left panel, we depict the evolution of the period-8 stock
price cycle (blue line) and fundamentalists’ correct and biased perceptions of the stock market’s
fundamental value (red solid and dashed lines) in the time domain. The connected blue disks
depicted in the right panel represent the evolution of the period-8 stock price cycle in (x, y)-state
space. The red disk and the two red circles reflect the positions of the real fixed point and the two
virtual fixed points. The light blue and light red areas indicate the numerically identified basins
of attraction of the period-8 stock price cycle and of the real fixed point, respectively. The two
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black dashed lines and the two black dotted lines represent the discontinuity lines y = x 4+ h and
y=x—h and their rank-1 preimages via map Tj', respectively. The four red segments of the
quadrilateral region Q indicate the analytically determined basin of attraction of the real fixed
point.

In the following, we explain the functioning of our stock market model in region Ry.” For the
initial conditions located in the light blue area, the stock price encircles its fundamental value in
the form of a period-8 cycle. The rounded time series recordings of the period-8 stock price cycle
read {—0.0220, 0.0150, 0.0334, 0.0432, 0.0220, —0.0150, —0.0334, —0.0432}, while the rounded
state-space coordinates of the period-8 stock price cycle are equal to {(0.0150, —0.0220), (0.0334,
0.0150), (0.0432, 0.0334), (0.0220, 0.0432), (—0.0150, 0.0220), (—0.0334, —0.0150), (—0.0432,
—0.0334), (—0.0220, —0.0432)}. For completeness, we recall that the fundamental value of the
stock price is equal to F = 0. In addition, fundamentalists either believe in the normal fundamen-
tal value F" = 0, the high fundamental value F° = 0.05 or the low fundamental value F¥ = —0.05.
Hence, the coordinates of the real fixed point are given by Pp = (0, 0), while those of the opti-
mistic and pessimistic virtual fixed points are equal to P;, = (0.05, 0.05) and Py = ( — 0.05, —0.05),
respectively.

As a starting point, we use the stock price increases from —0.0220 to 0.0150. In state space,
this stock price increase is represented by the point (0.0150, —0.0220). Due to the significant
increase in the stock price, fundamentalists are optimistic and believe in the high fundamen-
tal value F°. Since chartists also receive a buying signal, their joint orders drive the stock price
upwards. Technically speaking, the stock price increases monotonically for two further time steps,
from 0.0150 to 0.0344 and from 0.0344 to 0.0432, straight toward its optimistic virtual fixed
point P;. In state space, this movement involves points (0.0150, —0.0220), (0.0344, 0.0150) and
(0.0432,0.0344). Note that the last increase in the stock price falls short of the optimistic senti-
ment threshold & = 0.01. Economically speaking, this means that fundamentalists come to their
senses and correct their mistakes, that is they become neutral instead of optimistic and therefore
believe in the correct normal fundamental value F”.

Since the stock market appears overvalued to them, fundamentalists place sell orders. These
sell orders dominate chartists’ buy orders, as the stock price increases only weakly. Hence, the
market maker decreases the stock price. In technical terms, the stock price is now attracted by the
real fixed point Pp. After one time step, the stock price drops to 0.0220. This is presented by point
(0.0220, 0.0432). Note that this drop in the stock price exceeds the pessimistic sentiment threshold
h = —0.01, which is why fundamentalists become pessimistic. From this moment on, they believe
in the low fundamental value FP.

As a result, fundamentalists regard the stock market as significantly overvalued. Due to the
downward trend of the stock market, chartists receive a selling signal, too. Consequently, the stock
price converges monotonically to the pessimistic virtual fixed point Py. After two further stock
price drops, from 0.0220 to —0.0150 and from —0.0150 to —0.0334, the stock market falls once
again and the stock price drops to —0.0432. This downward movement involves points (—0.0150,
0.0220), (—0.0334, —0.0150) and (—0.0432, —0.0334). Since the last drop in the stock price is
lower than & = —0.01, fundamentalists recover from their pessimism. Once again, they come to
their senses and correct their mistakes. Now their neutral attitude leads them to believe again in
the correct normal fundamental value F”.

In the sequel, fundamentalists regard the stock market as undervalued, and their buy orders,
which dominate the sell orders of chartists, elevates the stock price up to —0.0220, represented
by point (—0.0220, —0.0432). Due to the strong stock price increase, clearly exceeding the opti-
mistic sentiment threshold = 0.01, fundamentalists optimistically believe again in F°, thereby
anticipating a strongly undervalued stock market. Since chartists seek to profit from the upward
trend of the stock market, market makers face positive excess demand, driving the stock price
higher. In the next period, the stock price increases up to 0.0150. Note that the stock price has
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now completed a period-8 cycle, its coordinates are again given by (0.0150, —0.0220), the starting
point of our journey, and the process repeats itself.

Of course, the initial conditions taken from the light red area yield stock price trajecto-
ries that converge monotonically to the real fixed point, similar to the time series plot in
the top right panel of Figure 2. Economically, this would be the desired market outcome—
the stock price should mirror its fundamental value. From Proposition 2, Appendix B, we
can conclude that the basin of attraction of the real fixed point is equal to the quadrilateral
region Q bounded by two segments on the two discontinuity lines y=x+h=x+ 0.01 and
y=x—h=x—0.01 and their rank-1 preimages via map Tal, given by y=x(1 —c¢/b) +h/b=
—9x+40.2 and y =x(1 — ¢/b) — h/b = —9x — 0.2, having vertices (x}, y7), (X[ ¥{)> ( — X]> —»])
and (—x{;, —y{), where (x],y7) = (h(1 +b)/c, x] —h) =(0.021,0.011) and (x;, y{;) = (h(1 —
b)/c, x{; + h) = (0.019, 0.029). Obviously, the basin of attraction of the real fixed point increases
with parameter h. In economic terms, this means that it becomes more likely that the stock price
will converge to its fundamental value when fundamentalists are less prone to animal spirits.
However, the basin of attraction of the real fixed point also depends on reaction parameters b
and c. Policymakers may thus engage in intervention strategies that effectively manipulate these
parameters. For instance, by trading against the current stock price trend, policymakers can
weaken the market impact of chartists. Of course, policymakers can also use knowledge of the
basin of attraction of the real fixed point by designing intervention strategies that first guide the
dynamics towards this basin and then keep it there.

The effect of the sentiment threshold parameter /1 on the dynamics of our stock market model
is threefold. First, a decrease in parameter h shrinks the basin of attraction of the real fixed point,
as discussed above. Second, a decrease in parameter h enables the stock price to move closer to
fundamentalists’ optimistic or pessimistic belief about the fundamental value. Third, a decrease in
parameter h increases the time span over which the stock price can move toward one of these two
beliefs. We can understand the latter two effects as follows. For i — 0, the real fixed point is always
unstable—its basin of attraction vanishes—and the two virtual fixed points become attractors in
the sense of Milnor (1985). In (x, y)-state space, the stock price thus moves continuously towards
one of the two virtual fixed points and gets closer and closer to it. For h — 0, our stock market
model would essentially be driven by a two-dimensional discontinuous map with two branches.'°
In Section 4.2, we discuss these issues in more detail.

Relatedly, note that the amplitude of the stock price cycle depicted in the left panel of Figure 7
is sandwiched between fundamentalists’ optimistic and pessimistic views of the stock market’s
fundamental value, that is F® = 0.05 and FP = —0.05. The explanation for this is as follows. Due
to the monotonic adjustment path of the stock price toward F°, F" or FF, respectively, toward
the upper virtual fixed point, the real fixed point or the lower virtual fixed point, the stock price
cannot exceed F° or fall below F. In region R}, the maximum amplitude of the stock price cycles is
limited to, say A = 2d. As we will see in Sections 3.4 and 3.5, this picture changes when parameters
b and c are located inside region R; or region Rs.

3.4. Stock market dynamics in region R,

Figure 8 presents an example of the dynamics of our stock market model in region R,. The
underlying parameter setting, given by b =0.25, c=1, d=0.05 and h = 0.01, gives rise to three
coexisting attractors, namely two period-6 stock price cycles and the real fixed point.!! In the left
panel, the blue and green lines depict the evolution of the two period-6 stock price cycles in the
time domain. Moreover, the red solid and dashed lines mark fundamentalists’ correct and biased
perceptions of the stock market’s fundamental value, respectively. The connected blue and green
disks depict the evolution of the two period-6 stock price cycles in (x, y)-state space. The red disk
and the two red circles reflect the location of the real fixed point and the two virtual fixed points.
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Figure 8. Example of stock price dynamics in region R,. Left: the blue and green lines show the evolution of two period-6
stock price cycles in the time domain. The red solid and dashed lines mark fundamentalists’ correct and biased perception
of the stock market’s fundamental value, respectively. Right: the connected blue and green disks depict the evolution of two
period-6 stock price cycles in (x, y)-state space; the red disk and the two red circles indicate the positions of the real fixed
point and the two virtual fixed points. The two black dashed lines and the two black dotted lines represent the discontinuity
linesy =x + handy = x — hand their rank-1 preimages via map T, respectively. The four red segments of the quadrilateral
region bound the analytically determined basin of attraction of the real fixed point. The light green, light blue and light red
areas mark the numerically detected basins of attraction of two period-6 cycles and of the real fixed point, respectively.
Parameter setting: b =0.25,c=1,d =0.05and h=0.01.

The light green, light blue and light red areas indicate the numerically identified basins of attrac-
tion of the two period-6 cycles and of the real fixed point, respectively. The two black dashed lines
and the two black dotted lines represent the discontinuity lines y =x + h and y = x — h and their
rank-1 preimages via map T, respectively. The four red segments of the quadrilateral region Q
indicate the analytically determined basin of attraction of the real fixed point.

In principle, the functioning of our stock market model in region R; is similar to its functioning
in region R;. As long as the initial conditions are outside the basin of attraction of the real fixed
point, endogenous stock market dynamics arise via the destabilizing nature of virtual fixed points.
Suppose that the stock market increases strongly. Then orders placed by chartists and fundamen-
talists will push the stock price upwards. At some point, however, there will be a regime change.
Roughly speaking, either the momentum of the stock price will weaken and fundamentalists will
become neutral or the stock price trend will reverse its direction and fundamentalists will become
pessimistic. In the former case, the stock price moves briefly in the direction of its fundamental
value. Since the associated stock price decline is relatively large, fundamentalists become pes-
simistic. In the latter case, fundamentalists immediately become pessimistic. Importantly, when
fundamentalists are pessimistic, the stock price decreases further. The next reversal of the direc-
tion of the stock price occurs when the downward movement of stock prices loses momentum or
reverses its direction. From here on, the pattern repeats itself.

One difference between the stock market dynamics observed in regions R; and R; is that the
stock price is no longer sandwiched between fundamentalists’ optimistic and pessimistic percep-
tions of the stock market’s fundamental value in region R;. Why is this the case? In region Ry,
the three branches of the two-dimensional piecewise-linear discontinuous map that drive the
dynamics of our stock market model imply that the stock price exhibits a cyclical adjustment
path towards their associated fixed points. Therefore, the stock price overshoots fundamentalists’
optimistic and pessimistic perceptions of the stock market’s fundamental value in region R, as
can easily be seen in Figure 8.

Another difference between the stock market dynamics observed in regions R; and R; is that a
stock price cycle does not necessarily involve all three branches of map T¢. For instance, the two
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Figure 9. Example of stock price dynamics in region Rs. Left: the blue, yellow, green and purple lines show the evolution of
a period-10, period-4 and two period-3 stock price cycles in the time domain. The red solid and dashed lines mark funda-
mentalists’ correct and biased perception of the stock market’s fundamental value, respectively. Right: the connected blue,
yellow, green and purple disks depict the evolution of a period-10, period-4 and two period-3 stock price cycles in (x, y)-state
space; the red disk and the two red circles indicate the positions of the real fixed point and the two virtual fixed points. The
light blue, light yellow, light green, light purple and light red areas mark the numerically detected basins of attraction of
a period-10 cycle, a period-4 cycle, two period-3 cycles and the real fixed point, respectively. Parameter setting: b = 0.34,
¢=2.66,d =0.05and h=0.01.

period-6 stock price cycles depicted in Figure 8 differ in the sense that one of them involves all
three branches of map T, while the other one only involves the optimistic and pessimistic branch
of map T¢. Put differently, the period-6 stock price cycle plotted in green implies that fundamen-
talists are never neutral; they are either optimistic or pessimistic. In contrast, the period-6 stock
price cycle plotted in blue implies that fundamentalists’ sentiment alternates between optimistic,
neutral and pessimistic.

What about the size of the basin of attraction of the real fixed point? Note first that
the basin of attraction of the real fixed point is again equal to the quadrilateral region Q.
However, the two discontinuity lines y=x+ 0.01 and y =x —0.01 and their rank-1 preim-
ages y = —3x+ 0.04 and y = —3x — 0.04 now imply that the vertices of region Q are given by
(xf, y) = (0.0125,0.0025), (x5, y%)) = (0.0075,0.0175), ( — xF, —y¥) = (— 0.0125, —0.0025) and
(= x{» —y{;) = (= 0.0075, —0.0175). Comparing the sizes of the basins of attraction of the real
fixed point of Figures 7 and 8, we can conclude that the latter one is smaller. Hence, a shift in
the reaction parameters of chartists and fundamentalists from b = 0.05 and ¢ = 0.5 (Figure 7) to
b=0.25and ¢ = 1 (Figure 8) is destabilizing in the following sense. First, the basin of attraction of
the real fixed point shrinks. Therefore, it is more likely that endogenous stock price cycles are set in
motion (smaller exogenous shocks are sufficient to push the stock price out of region Q). Second,
the amplitude of the associated stock price cycle increases. Once again, we stress that policymak-
ers can offset the effects of such a destabilizing parameter change by implementing measures that
counter the behavior of chartists and fundamentalists.

3.5. Stock market dynamics in region R;

Figure 9 shows an example of stock price dynamics in region R3. Since the simulations are based
on b=0.34, ¢c=2.66,d = 0.05and h = 0.01, we observe the coexistence of a period-10 stock price
cycle, two period-3 stock price cycles, a period-4 stock price cycle and the real fixed point, respec-
tively. The blue line in the left panel shows the evolution of the period-10 stock price cycle in the
time domain. Once again, the red solid and dashed lines mark fundamentalists’ correct and biased
perception of the stock market’s fundamental value, respectively. The connected blue disks in the
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right panel depict the evolution of the period-10 stock price cycle in (x, y)-state space, whereas
the red disk and the two red circles indicate the positions of the real fixed point and the two vir-
tual fixed points. The light blue, light green, light cyan, light yellow and light red areas indicate the
numerically identified basins of attraction of the period-10 cycle, two period-3 cycles, the period-4
cycle and the real fixed point, respectively. Note that the basin of attraction of the real fixed point
is rather small and essentially covered by the red disk.

Although the underlying parameter setting of Figure 9 produces four different types of stock
price cycles, we can still understand the functioning of our stock market model. Similar to what we
observed earlier for regions R; and R, the emergence of endogenous stock price cycles is a natu-
ral result of the destabilizing nature of the stock market’s virtual fixed points. Recall that in region
Rj the stock price alternatingly approaches fundamentalists’ biased and correct perceptions of the
fundamental value of the stock market. Due to the zigzag behavior of stock prices, fundamen-
talists’ sentiment changes more frequently in region Rz than in regions R; and R,. Suppose, for
instance, that the stock price jumps above fundamentalists’ optimistic view of the stock market’s
fundamental value. In such a situation, fundamentalists are optimistic. Moreover, they believe that
the stock market is overvalued. Since fundamentalists trade rather aggressively in region R3, their
sell orders will push the stock price below F° = 0.05. Due to the reversal of the stock price trend,
fundamentalists’ sentiment will change, too. Suppose that they become pessimistic. Since funda-
mentalists believe that the stock market is overvalued again, they return to selling aggressively.
Consequently, the stock price will fall below F® = —0.05. Regardless of whether fundamentalists
now remain pessimistic or become neutral, they believe they are facing an undervalued stock mar-
ket. Due to fundamentalists’ buy orders, the stock price will rise again, resulting in the next change
in sentiment.

4. Discussion

So far, we have seen that our stock market model can generate endogenous stock price dynamics
in the form of periodic attractors. In Section 4.1, we show that our stock market model can also
produce chaotic stock market dynamics. In Section 4.2, we discuss how the sentiment parameters
d and h may shape the dynamics of the stock market in region R;.

4.1. Chaotic stock market dynamics

Figure 10 shows an example of the dynamics of our stock market model for parameter combi-
nations located outside stability box S. Simulations are based on the parameter setting b=0.1,
c¢=2.75,d=0.05 and h = 0.01. The blue line in the left panel shows a chaotic trajectory of the
stock price in the time domain; the red solid and dashed lines mark fundamentalists’ correct and
biased perceptions of the stock market’s fundamental value, respectively. The blue dots in the
right panel portray the chaotic attractor of the stock price in (x, y)-state space; the red disk and the
two red circles indicate the position of the real fixed point and the two virtual fixed points. The
white area marks the numerically detected basin of attraction of the chaotic attractor. The initial
conditions selected from the light gray area yield divergent dynamics.

Overall, our stock market model suggests that animal spirits have a destabilizing impact on
stock market dynamics. However, there are important exceptions to this rule. As illustrated in
Figures 4 and 5 and rigorously proved in Appendix D, a broader set of parameter combinations
may yield irregular stock market dynamics (besides divergent trajectories). Since these parameter
combinations would always generate divergent dynamics in the absence of animal spirits, there are
instances where animal spirits have a stabilizing impact on stock market dynamics. As suggested
by Figure 10, however, chaotic stock price dynamics can be quite volatile.
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Figure 10. Example of stock price dynamics outside stability box S. Left: the blue line shows the chaotic dynamics of the
stock price in the time domain. The red solid and dashed lines mark fundamentalists’ correct and biased perceptions of the
stock market’s fundamental value, respectively. Right: the blue dots depict the chaotic dynamics of the stock price in (x, y)-
state space; the red disk and the two red circles indicate the positions of the real fixed point and the two virtual fixed points.
The white area marks the numerically detected basin of attraction of the chaotic attractor. Divergent dynamics occur in the
light gray area. Parameter setting: b =0.1, c =2.75,d = 0.05 and h = 0.01.

4.2, Effects of sentiment parameters d and h

Suppose that parameters b and c are located inside region R;. In Section 3.3, we have shown that
a decrease in parameter h then enables the stock price to move closer to fundamentalists’ opti-
mistic or pessimistic belief about the fundamental value of the stock market, thereby increasing
the duration and the amplitude of stock price cycles. In this section, we discuss this issue in more
detail. Figure 11 is based on b =0.05 and ¢ = 0.5; the same scenario that we have considered in
Figure 7. Its first four panels illustrate the impact of parameter h on the dynamics of our stock
market model. To be precise, parameter / is set to h = 0.01 (top left panel), h = 0.001 (top right
panel), h = 0.0001 (center left panel) and h = 0 (center right panel), while parameter d is always
equal to d = 0.05. The blue lines show the evolution of the stock price in the time domain. The red
solid and dashed lines mark fundamentalists’ correct and biased perception of the stock market’s
fundamental value, respectively.

In general, fundamentalists lose their optimism when the stock market’s boom ebbs away, while
they recover from their pessimism when the stock market’s slump slows down. Note that the
lower parameter A, the longer lasts the convergence to fundamentalists’ erroneous optimistic or
pessimistic fundamental value perception, while for the limiting case h =0, it does not stop at
all. Excluding the limiting case h = 0, this reflects an important model aspect. Within our stock
market model, fundamentalists eventually come to their senses and realize that neither F° nor F? is
economically justified. In this sense, we may say that parameter h regulates when fundamentalists
realize their mistakes, that is when they free themselves from their biased optimistic or pessimistic
sentiment. Of course, the picture changes when we select initial conditions from the basin of
attraction of the real fixed point. Then the stock price approaches its true fundamental value,
an outcome that is in line with fundamentalists’ neutral sentiment and correct perception of the
stock market’s fundamental value.

The last two panels of Figure 11 are devoted to scenarios in which we relax the symmetry
assumptions that we have imposed on parameters d and h. In the bottom left panel, we assume
that d = 0.05, h° = 0.001 and h? = 0.01. Parameters h° and h” indicate different threshold param-
eters for the optimistic and pessimistic sentiment regime. As can be seen, our stock market model
still produces cyclical stock market dynamics. In the bottom right panel, we assume that d° = 0.06,
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Figure 11. Effects of parameters d and h in region R;. The blue lines shows the evolution of the stock price in the time
domain. The red solid and dashed lines mark fundamentalists’ correct and biased perception of the stock market’s funda-
mental value, respectively. Top left: d = 0.05 and h =0.01. Top right: d = 0.05 and h = 0.001. Center left: d =0.05 and h=
0.0001. Center right: d = 0.05 and h = 0. Bottom left: d = 0.05, h° = 0.001 and hP = 0.01. Bottom right: d° = 0.06, d° = 0.04,
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h° =0.001 and hP = 0.01. Remaining parameters: b = 0.05 and ¢ = 0.5.

dP =0.04, h° =0.001 and h” = 0.01. Parameters d° and dP represent different degrees of opti-
mism and pessimism. Once again, our stock market model is able to produce cyclical stock market
dynamics. Note, however, that the cycles become asymmetric: booms may be more pronounced

and longer lasting than slumps.!?
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5. Conclusions

Two of the most notorious asset pricing puzzles are the “disconnect puzzle” and the “excess volatil-
ity puzzle”. See, for instance, the classical papers by Black (1986) and Shiller (1981). Unfortunately,
our understanding of (1) why stock markets repeatedly exhibit dramatic boom-bust cycles and
(2) why stock markets are so volatile is still limited. The goal of our paper is to identify new mech-
anisms that foster their understanding. For this purpose, we studied a stock market model with
three types of market participants: chartists, fundamentalists and market makers. Chartists follow
stock price trends, fundamentalists bet on mean reversion, and market makers adjust stock prices
to reflect current excess demand. Moreover, fundamentalists’ perception of the stock market’s fun-
damental value is subject to animal spirits. Fundamentalists optimistically (pessimistically) believe
in a high (low) fundamental value when the stock market rises (falls) sharply. When the stock mar-
ket is relatively stable, fundamentalists are neutral and believe in a normal fundamental value. Due
to fundamentalists’ three generic sentiment states, the law of motion of our stock market model
corresponds to a two-dimensional piecewise-linear discontinuous map with three branches.
We can summarize our key results as follows.

« In the absence of animal spirits, our stock market model predicts that the stock price will
approach its fundamental value, provided that chartists and fundamentalists do not trade
too aggressively. After an exogenous shock, the stock price will converge to its fundamen-
tal value either cyclically, monotonically or alternatingly, depending on the underlying
parameter setting.

o In the presence of animal spirits, this global stability result may only hold locally. Our
stock market model then entails a bidirectional feedback process between stock prices and
animal spirits, which can generate boom-bust stock market dynamics that coevolve with
waves of optimism and pessimism, even when the market impact of chartists and funda-
mentalists is weak. The only ingredient needed to spark such dynamics is an exogenous
shock that forces the stock price out of the basin of attraction of its fundamental fixed
point.

o The key cycle-generating mechanism of our stock market model works roughly as fol-
lows. Suppose that the stock price increases strongly. Fundamentalists then optimistically
believe in a high fundamental value and the stock price moves towards its optimistic vir-
tual fixed point. As the stock price approaches its optimistic virtual fixed point, however,
the increase in the stock price automatically weakens. This eventually leads to a first regime
change, where fundamentalists become neutral. Since they now believe in a normal funda-
mental value, the stock price falls. However, the stock price decline may be so pronounced
that fundamentalists become pessimistic and believe in a low fundamental value. In the
aftermath of such a second regime change, the stock price approaches its pessimistic vir-
tual fixed point, albeit only for a few time steps. Once again, the downward movement
of the stock price eventually slows down, prompting a third regime change that renders
fundamentalists’ sentiment neutral. Fundamentalists now believe in a normal fundamen-
tal value, which drives the stock price upwards. Due to the accelerated stock price increase,
a fourth regime change occurs. Fundamentalists optimistically believe in a high funda-
mental value, and the stock price becomes attracted by its optimistic virtual fixed points.
From here on, the aforementioned process repeats itself—and a periodic attractor is born.
Clearly, both virtual fixed points of our stock market model are temporarily attracting, but
any convergence towards them is self-defeating. The destabilizing nature of temporarily
attracting virtual fixed points provides the stage for endogenous boom-bust stock market
dynamics that coevolves with waves of optimism and pessimism.

« Since our stock market model gives rise to coexisting attractors, e.g. a fundamental fixed
point and a periodic attractor, the arrival of exogenous shocks can easily yield interesting
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attractor switching dynamics. For instance, the stock price may meander near its funda-
mental fixed point for a while, suggesting that stock markets are efficient, but then, out
of the blue, excessively volatile boom-bust dynamics may emerge until the stock market
becomes more stable again.

Overall, we conclude that animal spirits create temporarily attracting virtual fixed points, which
make stock markets prone to endogenous dynamics, an aspect that explains their excessively
volatile boom-bust behavior.

We end our paper with two remarks. First, animal spirits play an important role not only in
the evolution of stock prices, but also in the behavior of other economic systems. For instance,
de Grauwe (2011), de Grauwe and Ji (2020) and Gardini et al. (2023b) study how animal spirits
can evoke business cycle dynamics, while Naimzada and Pireddu (2020) investigate their possible
effects in cobweb markets. Second, piecewise maps can be applied to many research fields. For
instance, Matsuyama (2007), Gardini et al. (2008) and Matsuyama et al. (2016) use piecewise maps
to study the emergence of growth cycles, while Franco and Hilker (2014) and Segura et al. (2020)
employ them to explore population dynamics. For general surveys of mathematical techniques
and applications in social and natural sciences, see Zhusubaliyev and Mosekilde (2003), Puu and
Sushko (2006), di Bernardo et al. (2008) and Avrutin et al. (2019). We hope that our modeling
of animal spirits and the mathematical techniques we describe in our paper will be stimulating
for scientists interested in such research topics. We are convinced that the destabilizing nature of
temporarily attracting virtual fixed points deserves more attention.

Financial support. Davide Radi and Laura Gardini thank the Czech Science Foundation (Project 22-28882S), the
VSB—Technical University of Ostrava (SGS Research Project SP2024/047), the European Union (REFRESH Project—
Research Excellence for Region Sustainability and High-Tech Industries of the European Just Transition Fund, Grant
CZ.10.03.01/00/22 003/000004) and the Gruppo Nazionale di Fisica Matematica GNFM-INdAM for financial support. Iryna
Sushko acknowledges financial support from the UC Berkeley Economics/Haas and the Universities for Ukraine Non-
Residential Fellowship program. She is also grateful to the University of Urbino, DESP, for their hospitality during her stay as
a visiting researcher.

Notes

1 In general, the label “chartists” refers to speculators who apply technical analysis to determine their orders. In this paper,
we assume that chartists base their orders on past price changes.

2 Interestingly, the functioning of these simple models may carry over to much more complicated models; see Martin
etal. (2021), Dieci et al. (2022) and Campisi et al. (2024) for examples. The results we present in our paper are useful for
understanding the latter type of economic models in more detail.

3 Despite these economic contributions, the main goal of the paper by Gardini et al. (2022c) is to advance the bifurcation
theory for the study of two-dimensional piecewise-linear discontinuous maps.

4 In Brock and Hommes (1998), the fundamental value is determined by the discounted value of expected future dividend
payments, denoted as F = D/r, where D represents expected future dividend payments, and r is the risk-free interest rate.
Similarly, we can express fundamentalists’ optimistic, neutral and pessimistic views about the fundamental value as F° =
D°/r,F*=D"/rand P> =D /r, respectively, thus linking fundamentalists’ sentiment directly to their dividend expectations.
5 Gardini et al. (2024) study a stock market model in which fundamentalists optimistically believe in a new prosperous
economic era when the stock price is increasing strongly and when the stock price is relatively high. Also this setup, in which
fundamentalists’ sentiment is tied to the momentum and level of the stock market, is able to produce endogenous stock
market dynamics.

6 The symmetry assumptions we impose on parameters d and h greatly simplify our analysis. As illustrated in Section 4.2,
however, our main results do not hinge on them.

7 Medio and Lines (2001) provide an excellent review of the properties of two-dimensional linear maps.

8 Due to the coexistence of attractors, different initial conditions may yield different numerical results.

9 Since the dynamics of our stock market model in region R; is simpler to understand than that observed in regions R, and
Rj3, we will cover this scenario in more detail.

10 See Gardini et al. (2022a) for a study of such a map.
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11 Note that this parameter setting is located inside the analytically determined bifurcation boundaries that give rise to two
locally stable period-6 cycles. See the discussion on Figure 6 and Appendix C. Moreover, this parameter setting implies that the
basin of attraction of the real fixed point is equal to the quadrilateral region Q. See the discussion on Figure 4 and Proposition
2 in Appendix B.

12 While the deterministic evolution of the stock price is here bounded between fundamentalists’ optimistic and pessimistic
perception of the stock market’s fundamental value, this is not necessarily the case in the presence of exogenous shocks. As
pointed out by an anonymous referee, it might be interesting to endogenize fundamentalists’ misperceptions of the stock
market’s true fundamental value. For instance, one could make parameter d dependent on a moving average of past stock
prices.
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Appendix A: Global stability domain of the real fixed point

In this appendix, we state and prove a sufficient condition for which the real fixed point Po = (0, 0)
of map T¢ is globally attracting.

Proposition 1: When the parameters belonging to region R, satisfy the condition 1>
h/d>1—2x;, with A\1=050+b—c++/(A+b—c)>—4b), ie. 1>h/d>05(1—b+c—
V(L + b — c)* — 4b), then the real fixed point Po = (0, 0) of map T¢ is globally attracting.

Proof of Proposition 1: Condition h < d holds by assumption. For parameters in region Ry, the
eigenvalues are real and positive, with 0 <A, <A} < 1. The corresponding eigenvectors issuing
from the real fixed point Po = (0, 0) of map T¢ have the equation y = s;x with i = 1, 2, where the
slopes are s =1/A, > 1/A; =s;. These eigenvectors are relevant in the segments belonging to
the middle partition of map T¢. In particular, the eigenvector with the smaller slope s; intersects
the upper boundary y = x 4 h at point H = (A; /(1 — X1))h, L1 /(1 — X1))h + h). It is easy to show
that attracting cycles, if they exist, must belong to the strip between the two straight lines y =
—d and y = d (which includes the virtual fixed points Py = ( — d, —d) and P, = (d, d)). Hence, a
sufficient condition to state that other cycles cannot exist is to have point H above the line y =d
(due to the symmetry of map T, it is enough to show this for y > 0). In fact, when this condition
holds, a trajectory entering the middle partition below (or above) the virtual fixed point P, = (d, d)
converges to the real fixed point Po = (0, 0) along the eigenvector y = s;x from above (or below).
Hence, the sufficient condition reads A;/(1 — A1))h + h > d. Finally, using A1 =0.5(1 +b — c+
V(1 4+ b+ c)? — 4b), we obtain the expression stated in Proposition 1. Note that when parameter
¢ tends to zero, eigenvalue 1, tends to one from below, and for parameters h and d, which are fixed
as parameter c decreases, the above sufficient condition must be satisfied in a suitable region. [

Appendix B: On the basin of attraction of the real fixed point

Let parameters b and ¢ be located inside stability box S. The real fixed point Po = (0, 0) of map
Tc is then either globally or locally attracting. When no other cycle coexists, the real fixed point
is globally attracting. When a cycle coexists, necessarily also attracting, the basin of attraction
of the real fixed point can have a simple structure, belonging to a quadrilateral region Q whose
boundary consists of two segments of the discontinuity lines and their preimages of rank-1. A
sufficient condition to have such a simple basin structure is as follows.

Proposition 2: Consider that parameters (b, c) € S.

(a) If ¢> c*, where c* =2h/(d + h), then the basin of attraction of the real fixed point Po =
(0,0) of map Tc belongs to the quadrilateral region Q, bounded by two segments on the two
discontinuity lines y =x + h and y = x — h and their rank-1 preimages via map Tal, having ver-
tices (X7, 1), (x05¥0)> (= [, —y;) and (= x{;, —y7;), where (x],y7) = (h(1 + b)/c,x] —h) and
(0 y7) = (h(1 = b) /¢, x{; + h).
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(b) For ¢ > 2 and ¢* < ¢ < 2b, the basin of attraction of the real fixed point Po = (0, 0) of map
Tc is smaller than the quadrilateral region Q.

Proof of Proposition 2: Since for (b, ¢) € S map T¢ cannot have saddle cycles, the boundaries of
a basin of attraction of a fixed point consist of segments of the discontinuity lines and their preim-
ages. Recall that we assume that i < d. The four vertices of the quadrilateral region Q mentioned
in Proposition 2 are the intersection points of the two discontinuity linesy=x+handy=x—h
and their rank-1 preimages via map T, !, Due to the symmetry of map T¢, we can base our argu-
ment on one preimage. Consider the preimage of the upper discontinuity line y = x + h via the
inverse function T, !, which has the equation y = x(1 — ¢/b) + h/b. It intersects the two discon-
tinuity lines at two points, given by (x7, y7) and (x7;, 7;) in Proposition 2. Consider the image

by map T} of the discontinuity line y = x — h, which is a straight line of equation y = *=bh=dc,

1—c
If both points (x7, y7) and (x;, y7;) for ¢ > 1 are below the straight line (i.e. y} < folth—dc and
Vo< #) or for ¢ < 1 are above the straight line (i.e. y] > lbhc 4 and o> —lbhc dc)

then the (total) basin of the real fixed point belongs to region Q (it is equal or included in it). If
one of the conditions is violated, then the portion of Q crossing y = %ﬁc‘ic has other preimages

viamap T} ! (and similarly for the symmetric lines with map TL_II). Point (x7, y7) belongs to that
image for h =dc/(2 — c). For h < dc/(2 — ¢), it is on its left side. Point (x7, y7;) belongs to that
image for h = dc/(c — 2b). For h < dc/(c — 2b), it is on its left side. Since dc/(2 — ¢) < dc/(c — 2b)
for ¢ <1+ b, the condition corresponds to ¢ > ¢*. For ¢ > 1+ b, the condition corresponds to
h/d < c/(c —2b). Since h/d < 1 and ¢/(c — 2b) > 1, the latter condition is always satisfied. This
ends the proof of the first part of Proposition 2. Now consider points (x, y7), (x{;, y{;) deter-
mined above, and let condition (a) be satisfied when their image under map To belongs to the
quadrilateral region Q. Then the total basin of the real fixed point is exactly Q, while when at least
one of them is mapped outside Q, there are also points of Q that are mapped outside Q, converg-
ing to some attracting cycle, so that the total basin of the real fixed point is smaller than Q. First,
consider point ( — x;, —y{;), which is equivalent to point (x7;, y{;), the intersection point of the
lower discontinuity line y = x — h with its preimage by map T Then its image is the intersec-
tion point of y = x — h with the image of y = x — h by map T, given by y = =7, so that we have

the x-value of the intersection point from x — h= %, leading to x = M, and the con-

dition (of being mapped outside Q) results in 4(b + ¢ — 1)/c > h(b + 1)/c( = x])), corresponding
to ¢ > 2. Second, consider point (7, y7), the intersection point of the lower discontinuity line
y =x — h with its preimage by map T, ! of the upper discontinuity line y = x + h. Then its image
7hh’ o

h(b c+1)
c b

is the intersection point of y = x + h with the image of y = x — h by map To, given by y =

that we have the x-value of the intersection point from x + h = %_cdc, leading to x =
and the condition (of being mapped outside Q) results in h(b —c+1)/c > h(b —1)/c( = x7;)),
corresponding to ¢ < 2b. O

Figures 6 and 7 provide examples for which the basin of attraction of the real fixed point Pp =
(0,0) of map T¢ is equal to the quadrilateral region Q. In these figures, parameters b and ¢ are
located inside region E, as discussed in connection with Figure 4. The left panel of Figure 12, based
on b=0.4, c=0.5,d=0.05 and h = 0.01, provides an example for which the basin of attraction
of the real fixed point Po = (0, 0) of map T¢ is smaller than the quadrilateral region Q. As can be
seen from Figure 4, parameters b and ¢ are now located inside region U. The red disk indicates
the position of the real fixed point Po = (0, 0) in (x, y)-state space. The two black dashed lines
and the two black dotted lines represent the discontinuity lines y=x+h=x+40.01 and y =x —
h=x — 0.01 and their rank-1 preimages via map Tal, given by y=x(1 — ¢/b) + h/b=—0.25x +
0.025and y =x(1 — ¢/b) — h/b = —0.25x — 0.025. The four red segments bound the quadrilateral
region Q. Its vertices are (x7, y7), (x{;» y{)> ( — x[, —y}) and ( — x{;, —y7;), where (x, y7) = (h(1 +
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Figure 12. Basins of attraction of the real fixed point for d = 0.05 and h = 0.01. The two panels display the following. The
red disks indicate the position of the real fixed point in (x, y)-state space. The two dashed lines and the two dotted lines
represent the discontinuity lines y =x + h and y = x — h and their rank-1 preimages via map 751, respectively. The four red
segments bound the quadrilateral region Q. The light red area marks the numerically detected basins of attraction of the real
fixed point. Parameter setting: b = 0.4 and ¢ = 0.5 (left) and b = 0.15 and ¢ = 0.3 (right).

b)/c, x{ —h) =(0.028,0.018) and (x7;, y{;) = (h(1 — b)/c, x]; + h) = (0.012, 0.022). The light red
area marks the numerically detected basin of attraction of the real fixed point. The right panel of
Figure 12, based on b =0.15, c = 0.3, d = 0.05 and h = 0.01, provides an example for which the
basin of attraction of the real fixed point Pp = (0,0) of map T¢ is larger than the quadrilateral
region Q. As can be seen from Figure 4, parameters b and c are now located inside region A. The
discontinuity lines are again given by y =x + 0.01 and y = x — 0.01, while their rank-1 preimages
via map T51 now read y = —x + 0.067 and y = —x — 0.067. The vertices of region Q are given
by (xf,y¥) = (0.038,0.028), (x};, %) = (0.028,0.038), ( — x%, —y%) = ( — 0.038, —0.028) and ( —
X, —yi) = (— 0,028, —0.038).

Appendix C: Bifurcation boundaries of period-6 cycles

To derive border-collision bifurcation (BCB for short) boundaries of periodicity regions in the
parameter space of map T¢, we follow the line of reasoning developed in Gardini et al. (2023a).
In the following, we briefly recall how to compute these boundaries for the n-periodicity regions
related to even-period cycles with rotation number 1/n, n > 2, having symbolic sequences L U™
and L™OU™O, m > 1, and illustrate these results for the 6-periodicity regions, associated with
cycles L3U3 and L2OU?0. For more details, we refer the interested reader to Gardini et al. (2023a).
Recall that we consider parameter values belonging to stability box S.

Cycles L"U™, m > 1: Suppose that po = (x0, y0) is a point of cycle L U™, m > 1, which is the
leftmost periodic point in the lower partition of map T¢ (i.e. yo < xo — h). The coordinates of po
can be obtained by solving T}"(x0, yo) = ( — x0, —y0). Here the calculations are simplified due
to the symmetry of cycle L™ U™ with respect to the origin (in particular, points po and p,, are
symmetric, so that (X, ym) = ( — X0, —y0)). The existence conditions of cycle L™ U™ are inequal-
ities yo <xp — h and y;;,—1 < xpu—1 — h, which must be satisfied simultaneously. The equalities
correspond to BCBs at which points pp and p,,—; collide with the discontinuity line y =x — h.
Substituting (xo, yo) and (Xp—1, ym—1) = TE”_I(xo, y0) into the BCB condition yp = xo — h and
Ym—1 = Xm—1 — h, respectively, we get the following BCB boundaries of the n-periodicity region
related to cycle L™ U™, n = 2m,

2dcay, 1 _

L1,
BCH!: D)

—h, (yo=x0—h) (C1)
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and

2dc(ay,—r — b 1)
BC>!: =h, Ym_1=Xm_1—h), C2
n P]m(—l) (Ym—1=Xm—1 ) (C2)
where Pyn(—1) =14 2a,, — vay—1 + b" #0and a,, = vay—1 — baym—2, m>2,withay=1,4a; =
vandv=1+b—c.
For the period-6 cycle L3U3 (m = 3), from (C1) and (C2), substituting a, = v2—band as =

. . . L1 2dc(v2—b
v3 — 2bv into Pj3(—1), the BCB boundaries are given by BC (2(b+1)—i§¥b2—ic—b+1) =—h and

2,1 2dc(v—b*

BCs': (2(b+1)7c§(b271)/c7h+1) =h.

Cycles L™OU™O, m > 1: Let po = (x0, yo) be the leftmost point in the lower partition of
map T¢ (i.e. yo <xp — h) of cycle L"OU™O =, m > 1. This point can be obtained from Tp o
T7"(x0, yo) = (— x0, —y0). The existence conditions of cycle L OU™O are given by inequalities
yo<x0—h, Xy —h <ym <xm+h and y,—1 <xu_1 — h, which must be satisfied simultane-
ously. The equalities correspond to BCB conditions defining the boundaries of the related
periodicity regions, namely

de(am +baym_1 —1) B

BCL?; =—h, (yo=x0— h), <
R vo=xo= 7
de(aym—1 + ay — b™)
BCZ,Z: = h, = - h > C4
2 P]m+1(_1) (Ym = xm ) (C4)
de(am— —-b"
Bcz’z: C(am 1 + am ) — —h, (ym =X + h)’ (CS)

P]m+1(_1)

14+2b—¢) (am_y —b™) —a, bh
]m-H(_l)

where Pymii(—=1) =1+ amt1 — bam—1 + bl £ 0.
For the period-6 cycle L20U20 (m=2), at d =0.05 and h = 0.01, only curves (C4) and (C5)
are valid. Inserting a; =v and a3 = v3 — 2bv into Pj3(—1), we can see that the BCB boundaries of

the related periodicity region are defined by BCé’2 : % =hand BCé’2 : #:Z)H =—h.

Appendix D: Existence region of chaotic stock market dynamics

For c=2(b+1) and 0 < b < 1, a saddle period-2 cycle with symbolic sequence LU appears via
a degenerate transcritical bifurcation, with periodic points po = (x0, yo) and p; = (x1, y1) in the
lower and upper partition of map T¢, respectively, where

. cd . —cd
T e20+6)7°T (20 +b)
The period-2 cycle disappears via a border collision when point pp collides with the lower

discontinuity line y = x — h and, simultaneously, point p; collides with the upper discontinuity
line y = x + h. This occurs at

%) , X1 = —xp and y; = —)o. (D1)

h—2d
c

=2(1+0b), (D2)

requiring that & > 2d. Since we assume in Figures 4 and 5 that & < 24, the period-2 cycle always
exists forc>2(b+1)and 0 < b < 1.
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The stable set of the saddle period-2 cycle belongs to the boundary separating bounded tra-
jectories from divergent trajectories. Since all existing cycles are saddles, the generic bounded
trajectory converges to some chaotic attractor for parameters at which the period-2 cycle is not
homoclinic, as well as points belonging to one branch of the unstable set of the period-2 cycle.
The generic trajectory is divergent after the first homoclinic bifurcation of the period-2 cycle.
Since the eigenvalues of the Jacobian matrix J are given by

Aa=05 (v + M) , (D3)

the eigenvalues of the period-2 cycle, that is (11,)?, satisfy (A1)? > 1 and (;)? < 1. The local
unstable set of point pp, given by the eigenvector associated with the eigenvalue larger than 1,
that is (A1)?, intersects the two discontinuity lines at points pu; and puy. Its stable set includes a
segment belonging to the eigenvector associated with the eigenvalue smaller than 1, that is (,)2,
which has preimages that intersect the discontinuity lines at points ps; and psy. The period-2
cycle becomes homoclinic when pu;, = ps; or when puy = psy, leading to a contact followed by a
transverse intersection of the stable and unstable sets of the period-2 cycle. The condition pu; =
psi, leads to the first homoclinic bifurcation curve

L. yo—xo/)»2+h_)»1y0—xo+cd+bh

: D4
2 1—1/2, c—1+A; (b9
while the condition puy = psy leads to the first homoclinic bifurcation curve
—xo/Aa—h  Ayo—xo—bh
U, Yo—Xo/A2—h Aiyo—xo (D5)

20 1—1/h =14 xn

In the examples shown in Figures 4 and 5, only the first case can occur.
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