Zwitterionic Detergents Promote the Formation of Atypical \(\beta \text{-40} \) Fibrils

*Neurochem Inc., 7220 Frederick-Banting St., Bureau 100, Saint-Laurent, Quebec, H4S 2A1 Canada.
**McGill University, Dept. of Anatomy and Cell Biology, 3640 University St., Montreal, Quebec, H3A 2B2 Canada.
E-mail: abstracts@neurochem.com

Alzheimer’s disease is characterized by the presence in the brain of distinctive extracellular amyloid plaques. The major constituent of these deposits is the beta amyloid (A\(\beta \)) peptide, which self-associates \textit{in vitro} to form amyloid-like fibrils [1]. The mechanism of fibrillization has been extensively studied in hopes of developing anti-amyloid therapeutic agents [2]. We have studied a family of compounds that promote A\(\beta_{40} \) assembly as a means to explore the process of fibril formation. Using circular dichroism (CD) to test their effect on A\(\beta_{40} \) assembly, zwitterionic detergents with 14 or 16 carbon chain lengths, 3-(N, N-dimethyltetradecylammonio)propanesulfonate (\(\text{III} \)) and 3-(N, N-dimethylhexadecylammonio)propanesulfonate (\(\text{IV} \)) were identified as promoters of A\(\beta_{40} \) fibrillogenesis based on their induction of \(\beta \)-sheet structure. Interestingly, two related compounds with chain lengths of 10 and 12 carbons respectively, 3-(N, N-dimethyldecylammonio)propanesulfonate (\(\text{I} \)) and 3-(N, N-dimethyldodecylammonio)propanesulfonate (\(\text{II} \)) were found not to have this effect. CD only indirectly infers the assembly state of A\(\beta \), based on the appearance of \(\beta \)-structure [3]. Transmission electron microscopy (TEM) was therefore used to directly visualize the appearance of the A\(\beta_{40} \) fibrils in the presence of these compounds. EM confirmed the CD findings and revealed the presence of a unique fibril morphology [4, 5]. TEM images of high-resolution platinum/carbon replicas showed that the A\(\beta_{40} \) in the presence of compounds \(\text{III} \) and \(\text{IV} \) assembled into a network of highly bundled and cross-linked fibrils not observed with A\(\beta_{40} \) alone. Compounds \(\text{I} \) and \(\text{II} \) did not have this effect, indicating that the promotion and morphological changes are dependent on the length of the hydrophobic chain. Preliminary 2-D-NOESY experiments clearly indicate that these detergents interact with the A\(\beta \) molecules. Studies are currently ongoing to better characterize the interactions between A\(\beta_{40} \) and \(\text{III} \) and \(\text{IV} \).

REFERENCES

Figure 1. Electron micrographs of platinum/carbon replicas showing Aβ fibril structures in the presence of compounds I, II, III, and IV compared to control. Magnification = X 21 000. Typical amyloid fibrils are formed by Aβ control (C). Identical fibril morphology is visualized in the presence of compounds I and II. A network of cross-linked fibrils is visualized in the presence of compounds III and IV.

Figure 2. Circular dichroism analysis of compounds I, II, III, IV, and control after a 4-h incubation. Compounds III and IV are potent promoters of β-sheet formation.