Microstructural Study of Metastable ZrO₂-Al₂O₃ and ZrO₂-Y₂O₃-Al₂O₃ Coatings Deposited Using Solution-Precursor Plasma Spray (SPPS) Process

A.L. Vasiliev and N.P. Padture

Department of Materials Science and Engineering, The Ohio State University, 2041 N. College Road, Columbus, OH 43210

Hot-section metallic components of aircraft and industrial gas-turbine engines are often protected by ceramic thermal barrier coatings (TBCs). TBCs help reduce the temperature of the underlying component substrate, thereby prolonging the service life of the components [1]. Recently, solution-precursor plasma spray (SPPS) has been used to deposit highly durable TBCs in the ZrO_2 - Y_2O_3 system [2]. The SPPS process, where solution precursor is atomized directly into a plasma jet, is an effective way of producing metastable ceramics coatings [3]. In this study we have used the SPPS process to deposit metastable ceramic coatings in the ZrO_2 - Al_2O_3 and the ZrO_2 - Y_2O_3 - Al_2O_3 systems. These coatings show extended solubilities and unusual microstructures, and TBCs made in these systems may offer better thermal and environmental protection compared to conventional TBCs.

Coatings in one binary (ZrO₂-10 mol%Al₂O₃) and two ternary (ZrO₂-3.6mol%Y₂O₃-10mol%Al₂O₃ and ZrO₂-3.6mol%Y₂O₃-10 mol%Al₂O₃) compositions were prepared using the SPPS process. These coatings show rich variety of metastable phases. As-sprayed coatings in all systems are predominantly nanostructured (grain size < 100 nm), and made mostly of t-ZrO₂ $(P4_2 / nmc)$ (Fig. 1a). The Al³⁺ solute appears to stabilize the tetragonal ZrO₂ phase in the binary and the ternary coatings. These coatings also contain some orthorhombic (*Pbc 2*₁ or *Pbcm*) and monoclinic (P21/c, only binary) ZrO2 grains (Fig.1a), and Al-rich amorphous phases at grainboundaries (Fig. 1b) and inside the ZrO₂ grains (Fig. 2b). After a prolonged heat-treatment (1400 °C, 30 h) the binary and ternary coatings were found to contain α -Al₂O₃ precipitates, and the t-ZrO₂ was found to destabilize into the m-ZrO₂ phase. In addition to t-ZrO₂, amorphous Al₂O₃, γ -, γ '- and δ -Al₂O₃ are present in the as-sprayed ternary coating with 10mol%Al₂O₃ (Fig. 2A), but only α -Al₂O₃ is present in the ternary coating with 20 mol%Al₂O₃. The ternary coatings after heat treatment at 1400° C (30 h) showed that t-ZrO₂ is mostly stable, and only alumina phase to precipitate out is α -Al₂O₃. Heat treatment at a higher temperature 1500^oC (30) h) results in the transformation of t-ZrO₂ to m-ZrO₂. A new Y₂O₃ phase was found in both ternary coatings after heat treatment at 1500 °C, 30h (Fig. 3a-3f). Using SADP and CBED that phase was identified as tetragonal (*I4mm*) Y_2O_3 , with lattice parameters a=0.702 nm and c=0.597nm.

References

[2] N.P. Padture et al., Acta Mater. 49 (2001) 2251.

[3] Bhatia et al., J. Mater. Res. 17 (2002) 2363.

[4] This work was supported by the Office of Naval Research (Grant No. N000014-02-1-0171) and Naval Air Systems Command (Grant No. N00421-05-1-0001)

^[1] N.P. Padture et al., Science 296 (2002) 280.

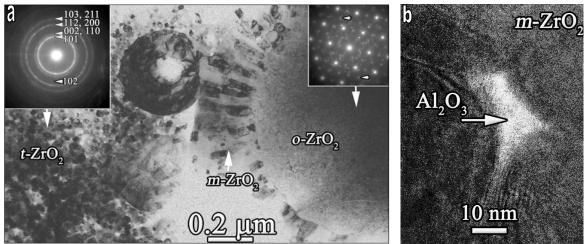


Fig.1. (a) TEM image of as-sprayed ZrO_2 -10 mol%Al₂O₃ coating with correspondent SADP from *t*-and *o*-ZrO₂ and (b) Al EELS map from the quaternary *m*-ZrO₂ grain boundary area.

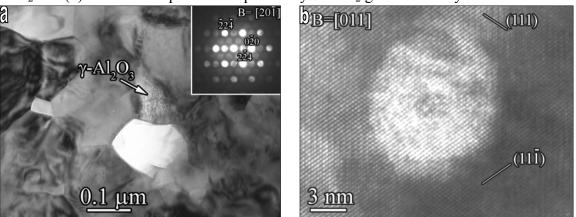


Fig. 2. TEM images of: (a) As-sprayed ZrO_2 -3.6mol% Y_2O_3 -10mol% Al_2O_3 with tetragonal γ - Al_2O_3 grain, and corresponding μ -diffraction pattern, surrounded by *t*- ZrO_2 grains, and (b) amorphous alumina particle inside *t*- ZrO_2 grain.

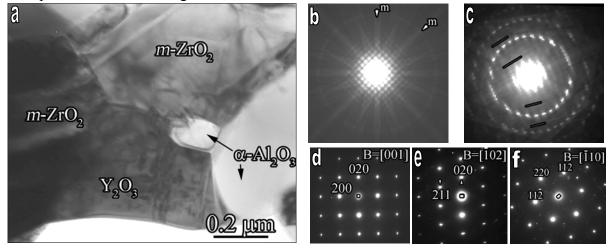


Fig.3. (a) TEM image of heat-treated (1500° C 30 hours) ZrO₂-3.6mol%Y₂O₃-10 mol%Al₂O₃, together with CBED patterns in [001]-(b), [133] –(c) zone axes and CBED patterns (d-f).