Ethylene and Structure-Function Relations of \textit{Xylella fastidiosa} in \textit{Vitis vinifera} in Pierce’s Disease in Plants

E. Ann Ellis* and B. Greg Cobb**
*Microscopy and Imaging Center, Texas A&M University, College Station, TX 77843-2257
**Department of Horticultural Sciences and Molecular and Environmental Plants Sciences, Texas A&M University, College Station, TX 77843-2133

\textit{Xylella fastidiosa}, a xylem-limited rickettsia-like microorganism, is responsible for Pierce's disease in grape vines and citrus chlorosis in citrus trees. The disease results in a slow, but significant water loss due to plugging of the xylem by tyloses and gums. Previously, it had been thought that the pathology is simply a result of physical plugging of the xylem by the bacteria. However, ethylene, a gaseous plant hormone, has been implicated in the etiology of Pierce's disease and other plant pathologies [1, 2]. We examined the ultrastructural pathology of field grown, naturally infected and Ethiphon®, precursor of ethylene, treated uninfected grape vines, \textit{Vitis vinifera}, to verify a role for ethylene stimulation of tyloses and gums in the pathology of Pierce's disease by immunocytochemical localization of 1-aminocyclopropane-1-carboxylic acid oxidase (ACC oxidase), a biomarker for ethylene production.

Petioles of naturally infected \textit{V. vinifera} were collected in the Texas A&M vineyard and fixed for transmission electron microscopy (TEM) as previously described [3, 4]. Uninfected plants raised in the greenhouse were treated with Ethiphon®, a precursor of ethylene, and then fixed for TEM. Thin sections were examined and the pathology was compared in both naturally infected and Ethiphon® treated plants. Sites of ACC oxidase were localized with goat anti-ACC oxidase (Santa Cruz Biotechnology, Santa Cruz, CA) followed by donkey anti-goat IgG secondary antibody labeled with 12 nm colloidal gold (Jackson ImmunoResearch, West Grove, PA). Semi-quantitative data from colloidal gold counts were compared between the naturally infected, Ethiphon® treated uninfected and uninfected field grown plants.

ACC oxidase localized at low levels in uninfected petioles. There were tyloses in both naturally infected and Ethiphon® treated specimens and there was extensive localization of ACC oxidase as documented by colloidal gold immunocytochemistry (Figs. 1 and 2). Semi-quantitative analysis (Table 1) of the colloidal gold distribution indicated high levels of ethylene in the xylem of both naturally infected and in Ethiphon® treated uninfected petioles. Ethiphon® treated uninfected xylem had the highest levels of ACC oxidase (56.5 ± 3.28 gold particles/µm²) that were higher than the naturally infected xylem (42.0 ± 2.57, 34.1 ± 1.27 gold particles/µm²) while uninfected xylem had much lower levels (19.5 ± 9.76 gold particles/µm²).

The immunocytochemical localization of ACC oxidase demonstrated the production of ethylene by the pathogen, \textit{X. fastidiosa}, as well as by the host plant. Elevated levels of ethylene have been reported in a number of plant pathologies [2] and in the pathogens. In addition, ethylene is auto-catalytic and the production of ethylene by the pathogens can stimulate additional production of ethylene by the host plant as well. The evidence presented here indicates a role for increased production of tyloses and gums in response to increased ethylene production by both the pathogen, \textit{X. fastidiosa}, and the host, \textit{V. vinifera}.
References

5. Supported by USDA UPHS Grant 05-0955 CA.

Fig. 1 Localization of ACC oxidase (arrows) by colloidal gold immunocytochemistry in xylem of naturally infected petiole.

Fig. 2 Localization of ACC oxidase (arrows) by colloidal gold immunocytochemistry in xylem of an uninfected, Ethiphon® treated petiole. Note the large tylose (arrowheads) in the uninfected xylem.

<table>
<thead>
<tr>
<th>TREATMENT</th>
<th>Colloidal Gold Particles/μm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethiphon® Treated Uninfected (Chardonnay)</td>
<td>56.5 ± 3.28</td>
</tr>
<tr>
<td>Xylella Infected (LaRouge)</td>
<td>34.1 ± 1.27</td>
</tr>
<tr>
<td>Xylella Infected (Sangiovese)</td>
<td>42.0 ± 2.57</td>
</tr>
<tr>
<td>Uninfected, Untreated</td>
<td>19.5 ± 9.76</td>
</tr>
</tbody>
</table>

Table 1. Localization of ACC Oxidase in Xylem