Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T23:50:09.763Z Has data issue: false hasContentIssue false

Analysis of Radiation Damage in Light Water Reactors: Comparison of Cluster Analysis Methods for the Analysis of Atom Probe Data

Published online by Cambridge University Press:  30 January 2017

Jonathan M. Hyde
Affiliation:
National Nuclear Laboratory, Culham Science Centre, Building D5, Abingdon, Oxfordshire OX14 3DB, UK Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK
Gérald DaCosta
Affiliation:
UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, Normandie Université, 76000 Rouen, France
Constantinos Hatzoglou
Affiliation:
UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, Normandie Université, 76000 Rouen, France
Hannah Weekes
Affiliation:
National Nuclear Laboratory, Culham Science Centre, Building D5, Abingdon, Oxfordshire OX14 3DB, UK
Bertrand Radiguet
Affiliation:
UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, Normandie Université, 76000 Rouen, France
Paul D. Styman*
Affiliation:
National Nuclear Laboratory, Culham Science Centre, Building D5, Abingdon, Oxfordshire OX14 3DB, UK Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK
Francois Vurpillot
Affiliation:
UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, Normandie Université, 76000 Rouen, France
Cristelle Pareige
Affiliation:
UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, Normandie Université, 76000 Rouen, France
Auriane Etienne
Affiliation:
UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, Normandie Université, 76000 Rouen, France
Giovanni Bonny
Affiliation:
Studiecentrum voor Kernenergie—Centre d’Etudes de l’Energie Nucléaire (SCK—CEN), Institute of Nuclear Materials Science, Expert Group of Structural Materials, Boeretang 200, B-2400 Mol, Belgium
Nicolas Castin
Affiliation:
Studiecentrum voor Kernenergie—Centre d’Etudes de l’Energie Nucléaire (SCK—CEN), Institute of Nuclear Materials Science, Expert Group of Structural Materials, Boeretang 200, B-2400 Mol, Belgium
Lorenzo Malerba
Affiliation:
Studiecentrum voor Kernenergie—Centre d’Etudes de l’Energie Nucléaire (SCK—CEN), Institute of Nuclear Materials Science, Expert Group of Structural Materials, Boeretang 200, B-2400 Mol, Belgium
Philippe Pareige
Affiliation:
UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, Normandie Université, 76000 Rouen, France
*
*Corresponding author.paul.styman@materials.ox.ac.uk
Get access

Abstract

Irradiation of reactor pressure vessel (RPV) steels causes the formation of nanoscale microstructural features (termed radiation damage), which affect the mechanical properties of the vessel. A key tool for characterizing these nanoscale features is atom probe tomography (APT), due to its high spatial resolution and the ability to identify different chemical species in three dimensions. Microstructural observations using APT can underpin development of a mechanistic understanding of defect formation. However, with atom probe analyses there are currently multiple methods for analyzing the data. This can result in inconsistencies between results obtained from different researchers and unnecessary scatter when combining data from multiple sources. This makes interpretation of results more complex and calibration of radiation damage models challenging. In this work simulations of a range of different microstructures are used to directly compare different cluster analysis algorithms and identify their strengths and weaknesses.

Type
Materials Science (Metals)
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auger, P., Pareige, P., Akamatsu, M. & Blavette, D. (1995). APFIM investigation of clustering in neutron-irradiated Fe-Cu alloys and pressure vessel steels. J Nucl Mater 225, 225230.Google Scholar
Blavette, D., Vurpillot, F., Pareige, P. & Menand, A. (2001). A model accounting for spatial overlaps in 3D atom-probe microscopy. Ultramicroscopy 89, 145153.Google Scholar
Carter, R.G., Soneda, N., Dohi, K., Hyde, J.M., English, C.A. & Server, W.L. (2001). Microstructural characterization of irradiation-induced Cu-enriched clusters in reactor pressure vessel steels. J Nucl Mater 298, 211224.CrossRefGoogle Scholar
Cerezo, A. & Davin, L. (2007). Aspects of the observation of clusters in the 3-dimensional atom probe. Surf Interface Anal 39, 184188.CrossRefGoogle Scholar
Gault, B., Moody, M.P., Cairney, J.M. & Ringer, S.P. (2012). Atom Probe Microscopy. New York: Springer.CrossRefGoogle Scholar
Heinrich, A., Al-Kassab, T. & Kirchheim, R. (2003). Investigation of the early stages of decomposition of Cu0.7at.% Fe with the tomographic atom probe. Mater Sci Eng A353, 9298.CrossRefGoogle Scholar
Huang, H., Radiguet, B., Todeschini, P., Rainasse, C., Clémendot, F. & Pareige, P. (2014). Influence of Cu and Ni levels on the microstructural evolution of French reactor pressure vessel steels. Proc Fontevraud 8.Google Scholar
Hyde, J.M. & English, C.A. (2001). An analysis of the structure of irradiation induced Cu-enriched clusters in low and high nickel welds. Mat Res Soc Symp. Proc 650, R6.6.1R6.6.12.Google Scholar
Hyde, J.M., Marquis, E.A., Wilford, K.B. & Williams, T.J. (2011). A sensitivity analysis of the maximum separation method for the characterisation of solute clusters. Ultramicroscopy 111, 440447.CrossRefGoogle ScholarPubMed
Jägle, E.A., Choi, P.-P. & Raabe, D. (2014). The maximum separation cluster analysis algorithm for atom-probe tomography: Parameter determination and accuracy. Microsc Microanal 20, 16621671.CrossRefGoogle ScholarPubMed
Kolli, R.P. & Seidman, D.N. (2007). Comparison of compositional and morphological atom-probe tomography analyses for a multicomponent Fe-Cu steel. Microsc Microanal 13, 272284.CrossRefGoogle ScholarPubMed
Lefebvre, W., Vurpillot, F. & Sauvage, X. (2016). Atom Probe Tomography – Put Theory Into Practice. Elsevier.Google Scholar
Marquis, E.A. & Hyde, J.M. (2010). Atomic scale analysis of solute behaviours by atom-probe tomography. Mater Sci and Eng R Reports 69, 3762.CrossRefGoogle Scholar
Miller, M.K. (2000). Atom Probe Tomography Analysis at the Atomic Level. New York: Kluwer Academic/Plenum Publishers.Google Scholar
Miller, M.K., Cerezo, A., Hetherington, M.G. & Smith, G.D.W. (1996). Atom Probe Field Ion Microscopy. Oxford: Oxford Science Publications.CrossRefGoogle Scholar
Miller, M.K. & Hetherington, M.G. (1991). Local magnification effects in the atom probe. Surf Sci 246, 442449.CrossRefGoogle Scholar
Miller, M.K. & Russell, K.F. (2007). Embrittlement of RPV steels: An atom probe tomography perspective. J Nucl Mater 371, 145160.CrossRefGoogle Scholar
Miller, M.K., Russell, K.F., Kocik, J. & Keilova, E. (2000). Embrittlement of low copper VVER 440 surveillance samples neutron-irradiated to high fluences. J Nucl Mater 282, 8388.Google Scholar
Miller, M.K., Russell, K.F., Sokolov, M.A. & Nanstad, R.K. (2007). APT characterization of irradiated high nickel RPV steels. J Nucl Mater 361, 248261.CrossRefGoogle Scholar
Morley, A., Sha, G., Hirosawa, S., Cerezo, A. & Smith, G.D.W. (2009). Determining the composition of small features in atom probe: BCC Cu-rich precipitates in an Fe-rich matrix. Ultramicroscopy 109, 535540.Google Scholar
Odette, G.R. (1995). Radiation induced microstructural evolution in reactor pressure vessel steels. Mat Res Soc Symp Proc 373, 137148.Google Scholar
Pareige, P., Stoller, R.E., Russell, K.F. & Miller, M.K. (1997). Atom probe characterization of the microstructure of nuclear pressure vessel surveillance materials after neutron irradiation and after annealing treatments. J Nucl Mater 249, 165174.CrossRefGoogle Scholar
Radiguet, B., Pareige, P. & Barbu, A. (2009). Irradiation induced clustering in low copper or copper free ferritic model alloys. Nucl Instrum Methods Phys Res B 267, 14961499.CrossRefGoogle Scholar
Styman, P.D., Hyde, J.M., Parfitt, D., Wilford, K., Burke, M.G., English, C.A. & Efsing, P. (2015). Post-irradiation annealing of Ni-Mn-Si-enriched clusters in a neutron-irradiated RPV steel using atom probe tomography. J Nucl Mater 459, 127134.Google Scholar
Styman, P.D., Hyde, J.M., Wilford, K. & Smith, G.D.W. (2013). Quantitative methods for the APT analysis of thermally aged RPV steels. Ultramicroscopy 132, 258264.CrossRefGoogle ScholarPubMed
Takeuchi, T., Kuramoto, A., Kameda, J., Toyama, T., Nagai, Y., Hasegawa, M., Ohkubo, T., Yoshiie, T., Nishiyama, Y. & Onizawa, K. (2010). Effects of chemical composition and dose on microstructure evolution and hardening of neutron irradiated reactor pressure vessel steels. J Nucl Mater 402, 93101.Google Scholar
Vurpillot, F., Bostel, A. & Blavette, D. (2000). Trajectory overlaps and local magnification in three-dimensional atom probe. Appl Phys Lett 76, 31273129.Google Scholar
Wells, P.B., Yamamoto, T., Miller, B., Milot, T., Cole, J., Wu, Y. & Odette, G.R. (2014). Evolution of manganese–nickel–silicon-dominated phases in highly irradiated reactor pressure vessel steels. Acta Mater 80, 205219.Google Scholar
Williams, C.A., Haley, D.J., Marquis, E.A., Smith, G.D.W. & Moody, M.P. (2013). Defining clusters in APT reconstructions of ODS steels. Ultramicroscopy 132, 271278.CrossRefGoogle ScholarPubMed