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One of the primary goals of microscopy is to correlate the functional property of materials with 

microstructural features of the sample. Measuring the functionality on highly heterogeneous samples in 

microscopy typically requires the use of spectroscopy, where parameters are varied whilst the probe is 

fixed in space, to measure the functional response at that location. When built up over a grid of points, the 

resulting hyperspectral datasets contain relevant information on the spatial variability of functional 

response of the sample [1]. 

  

There are primarily two downsides to this approach. The first is that spectroscopy is typically time-

expensive, as grid-based spectroscopy scales as O(N2). This makes dense grid-based spectra time 

consuming and can limit the applicability for unstable, beam-sensitive or bias-sensitive samples, or for 

situations where drift is very large (e.g., at higher temperatures). The second downside is that much of the 

data captured is highly redundant: adjacent spatial locations are likely to produce reasonably similar 

functional responses. As such, methods to improve the efficiency of the sampling mechanism are 

attractive. 

  

Here, we explore the use of Gaussian process (GP) regression combined with Bayesian optimization to 

improve the efficiency of spectroscopy and implement it on a commercial atomic force microscope (AFM) 

to produce an automated experimental system, for the task of finding regions of high electromechanical 

response in a model ferroelectric thin film. The sample is inserted into the microscope, and a random 

subset of pixels is chosen for voltage spectroscopy, where each pixel is associated with a hysteresis loop 

acquired at that location. The loop area is calculated for each of the measured pixels, and gaussian process 

regression is used to interpolate the unobserved pixels, providing a method of not only prediction but also 

uncertainty. This is used within a Bayesian optimization framework that utilizes an acquisition function 

(in this case, expected improvement [2]) to choose the best locations to sample during the next iteration. 

This process is repeated until the user terminates the process. It should be noted that the GP regression 

and Bayesian optimization were run on a dedicated GPU server in direct connection with the AFM, given 

the large processing requirements of GP based algorithms. Results for this process are shown in Fig. 1 for 

(a,b) simulated example and Fig. 1 (c,d) real implementation on the microscope. These results indicate 

that this approach can rapidly find areas of maximal loop area, although can suffer from limited 

exploration. We then extended this method to incorporate prior knowledge in the form of high-resolution 

images before the spectroscopy to better guide the optimization process. Although implemented here for 

scanning probe microscopy, this method is general and can be employed within electron microscopy and 

virtually any other scanning modality. 
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Figure 1. Figure 1: (a) Ground truth dataset. At each pixel, a hysteresis loop is captured, and the loop area 

is calculated. This results in a 2D map of loop area. High response is seen in the center-left part of the 

map. (b) Gaussian Processing - Bayesian optimization framework used to determine the next sampling 

locations. As can be seen, the sampled pixels are closely aligned with those from the high response region 

in (a), suggesting the process is quick to find the regions of interest. (c) ground truth from experiment. (d) 

Pixels sampled on the microscope, after 40 iterations of the GP-Bayesian optimization cycle, where on 

each iteration 10 new pixels are selected to measure spectroscopy at. The high response regions near the 

top of the image are clearly found by this method. 
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