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Electron Energy Loss Spectroscopy (EELS) is a supremely versatile technique for elemental mapping, 

electronic structure analysis, and more recently, vibrational spectroscopy. The invention of direct electron 

detectors (DEDs) coupled with atomic resolution capabilities of the TEM, put it far ahead of competing 

spectroscopies. DEDs enable low-dose and swift acquisition of spectroscopic data from beam sensitive 

samples while maintaining respectable signal-to-noise ratio (S/N)1. While there has been much progress 

in atomic resolution EELS acquisition and data analysis, there is still a need to handle the processing of 

large amounts of data generated by these DEDs. Additionally, to be able to analyze the fine structure and 

peak shifts, improving the quality of the data post-acquisition is a must. Using python, one of the most 

popular programming languages specifically geared towards scientific computing, Principle Component 

Analysis (PCA) has been applied to intelligentially increase the quality by learning from the dataset and 

filtering out uncorrelated noise2 but does not natively support the capability to process large volumes of 

independent data in parallel. Using a python library called DASK3, we achieve full parallelization of 

EELS data processing, reducing computation times by up to 20x. Our work also demonstrates 

measurement of oxidations states of perovskite materials and compositional phonon redshifts enabled by 

the intelligent smoothing of data and massively parallel computation scalable to super clusters. 

 

Initially, the dataset is treated with PCA with the number of components varied as needed to adequately 

explain the data. This is done so that background subtraction and subsequent analysis is not hindered by 

uncorrelated noise which may cause instabilities in the fitting. By default, python processes data 

sequentially unless specific instructions are scheduled for the threads. Fig 1A illustrates the processing 

workflow for analyzing the fine structure of core loss data. The PCA filtered high loss spectrum is split 

so that a power law background model can be fit to the pre-edge of each element. Then, the L-shells of 

transition elements are treated with an arctan background model to eliminate the Hartree–Slater 

background. In the last step, the background subtracted peaks are then decomposed to obtain their 

individual peak properties. For vibrational spectra, best results were obtained when PCA was applied after 

background subtraction. This is because despite standardizing the spectra, the large tail of the zero-loss 

peak dominates the feature space. Fig 1B shows the task stream, typically 1 process per thread. Taking 

advantage of the independent nature of each pixel in an EELS dataset, processing of data points can be 

handled in parallel. Figs. 1C and 1D shows how memory is allocated with respect to each thread and how 

tasks are scheduled per thread, respectively. 

 

By taking advantage of PCA and DASK, acquisition and processing of large pixel map with short 

acquisition times becomes possible. Fig 2A illustrates a dramatic increase in S/N enabling the 

decomposition of the Ti fine structure. It should be stressed that without PCA treatment, peak 
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decomposition would not be possible as the fitting would either fail or produce large errors. PCA filtered 

maps in fig. 2D offers an obvious improvement over the untreated data in fig 2C. Mapping the peak 

properties of the Ti L2 t2g peak, we have a measure of Ti valence state. Just above the interface the onset 

dips suggesting a lower oxidation state and consequently, the existence of a two-dimensional electron gas 

(2DEG). Previous studies of free charge carriers using EELS have been limited to single point scans or 

line scans, for the first time, 2D mapping of oxidation state and charge carriers is possible. Fig. 2F also 

shows a similar improvement for vibrational spectra as fig. 2A. A main utility of PCA is the ability to 

separate high variance features. Fig. 2G and 2H demonstrates the uniqueness of the SiGe and Ge vibrations 

respectively. Additionally, compositional vibrational redshift is possible by increasing the quality of the 

data via PCA. 

 

Our work demonstrates that by combining the high utility of PCA for denoising data intelligently and 

DASK for its parallelization capabilities, we enable the rapid processing of EELS features previously 

beyond the reach of dedicated study. It also becomes possible to spatially study fine structure and 

correlated changes with atomic precision. 

 

 
Figure 1. Figure 1: Task scheduling of data processing. A. Comparison of sequential and parallel 

processing schemes B. Task stream of local cluster displayed by DASK C. Memory allocation per thread 

D. Task scheduling per thread 
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Figure 2. Figure 2: Post data processing high and low loss EELS mapping. A. PCA filtered single-pixel 

spectrum with inset of peak decomposition of Ti L3 and L2 edges. B. HAADF image of EELS map. C. 

Ti L2 t2g intensity mapping of untreated data D. Ti L2 t2g intensity mapping of PCA filtered data E. Ti 

L2 t2g onset mapping obtained from peak decomposition F. PCA filtered single-pixel spectrum with inset 

of peak decomposition of Si vibrational modes. G-D. Map of loadings of first two principle components. 

I. Map of Si optical mode (OM) peak shift. 
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