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Abstract

We study a cell growth model with a division function that models cells which divide
only after they have reached a certain minimum size. In contrast to the cases studied
in the literature, the determination of the steady size distribution entails an eigenvalue
that is not known explicitly, but is defined through a continuity condition. We show that
there is a steady size distribution solution to this problem.
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1. Introduction

A simple model for cell division for size-structured cohorts was presented by Hall and
Wake [6]. There, ‘size’ corresponds to mass or DNA content. Their work was based
on models developed earlier by Sinko and Streifer [16, 17]. The Hall and Wake model
considers cells dividing into @ > 1 daughter cells of equal size at a division rate B(x).
The cells also grow at a rate G(x). Let n(x,t) denote the density of cells of size x
at time . The cell division process is governed by the functional partial differential
equation (pde)

2n(x, H+ E(G(x)n(x, 1) + B(x)n(x,t) = a'zB(ax)n(a/x, 1). (1.1)
ot 0x

In this equation, the term B(x)n(x,t) represents the loss of cells of size x through
division, and the term o B(ax)n(ax, f) represents the gain of cells of size x, as a result
of a cell of size ax dividing into @ equal cells of size x. The equation is derived in
detail by Diekmann et al. [4].
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Equation (1.1) is a special case of the growth—fragmentation equation

gn(x, n+ ﬁ(G()C)n(x, 1) =f BEOW(x,6)n(, 1) d
t Ox

X

_ ( f T W dT)B(x)n(x, 0,
0 X

where the fragmentation kernel W(x, &) represents the density of cells of size x
produced when one cell of size & > x divides. The first term on the right-hand side
of the equation is the gain of cells of size x from the division of cells of larger size ¢.
The second term on the right-hand side represents the loss of cells of size x owing to
division to smaller sized cells.

A derivation of equation (1.1) using the above equation for the special case @ = 2
can be found in [11, 12]. Essentially, the model assumes that when a division occurs a
cell of size ¢ divides into @ daughter cells of equal size x. This means that division to
the size x occurs only when & = ax, and this leads to the kernel

W(x, &) = aé(g - x),

where ¢ denotes the Dirac delta function. Although we use the language of cell division
throughout this paper, equation (1.1) is applicable to growth—fragmentation models
where division conserves mass and, when a particle divides, it divides into particles of
equal mass.

The cell division problem is of the initial boundary value type with the conditions

n(0,£)=0 forallr>0 (1.2)

and
n(x,0) = no(x) forall x > 0. (1.3)

Here, no(x) is a given initial cell size distribution, which may be regarded as a
probability density function (pdf).

A special class of solutions to equation (1.1) are the so-called steady size
distribution (SSD) solutions. These solutions correspond to separable solutions

n(x, t) = N(t)y(x), (1.4)

which satisfy condition (1.2). Here, y(x) is normalized so that it is a pdf. These
solutions are of interest because they represent the long term asymptotic behaviour of
the solution to the problem that includes the initial condition (1.3). Roughly speaking,
solutions to the problem for any pdf ny(x) evolve towards the SSD solution. This
behaviour was observed experimentally in plant cells [8] and this motivated the study
of such solutions by Hall and Wake [6]. In fact, the relationship is generic to a large
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class of fragmentation-type equations of which the cell division equation is a special
case. An account of this for the cell division equation is given by Perthame and
Ryzhik [14].

Substituting solution form (1.4) into equation (1.1) yields

1 d -1(d
N() = —{—(G(X)y(X)) + B(x)y(x) - CYZB(M)y(CKX)}

Wt}% y(x) ldx
= A,
where A is a constant. Evidently, N(f) = Ke™' for some constant K, and y(x) must
satisfy
(Gx)y(x)) + (B(x) + A)y(x) = &’ Blax)y(ax), (1.5)

where ’ denotes d/dx. The function y(x) is required to be a pdf, so that, in particular,
y(x) must be nonnegative and

j(;wy(x)dx= 1. (1.6)

The solution N(#)y(x) is required to be nontrivial, so that K # 0, and therefore in order
to meet condition (1.2),
v(0) =0. (1.7)

Under the assumptions that B(x)y(x) is integrable on [0, co) and
1i1r(1)1+ G(x)y(x) = lim G(x)y(x) =0,

integrating equation (1.5) from O to co yields

A=(@-1) foo B(x)y(x) dx. (1.8)
0

Assuming that y is decaying rapidly enough to have a first moment (that is, xy(x) is
integrable), and such that xB(x)y(x) is integrable and xG(x)y(x) — 0 as x goes to oo or
to 0, an alternative expression for A can be obtained by first multiplying equation (1.5)
by x and then integrating from O to co. This gives
Ao b Con@dx 19
fo xy(x)dx
Certainly a crux to finding SSD solutions for specific choices of B(x) and G(x) is
the determination of A. Hall and Wake [7] studied the case in which these rates are
constants. In this case A can be readily obtained from equation (1.8). Hall and Wake
[7] also examined the case where G(x) is a linear monomial and A can be obtained
from equation (1.9). The cell division model has been extended to include dispersion
(for example [21-23]) and asymmetric cell division [18]. All of these extensions
involve (directly or indirectly through a transformation) either B as a constant or G
as a linear monomial.
Prima facie it is not clear for general nonnegative functions b and g that there is
an eigenvalue A such that equation (1.5) yields a pdf. If there is such a value, the
corresponding pdf y is called a positive eigenfunction. This problem was studied by
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da Costa et al. [3], who established the existence of a positive eigenvalue under the
assumption that the nonnegative functions B(x) and G(x) are such that B(x)/G(x) is
integrable on [0, c0). Although Perthame and Ryzhik [14] did not consider directly the
variable growth case, they did establish the existence of a positive eigenfunction for a
general class of positive functions B(x) under the assumption that B(x) was uniformly
bounded away from 0 and bounded on the interval [0, o). In both of these studies, the
eigenvalue that produces the positive eigenfunction is unique.

In this paper, we consider the case where the growth rate is constant, but the division
rate models cells that divide only when they reach a certain minimum size and after
which they divide at a constant rate. We note that Diekmann et al. [4] studied a closely
related problem, where division occurred after the minimum size, and there was an
upper bound on the maximum cell size. Their analysis established the existence
and uniqueness of solutions to the initial boundary value problem. Moreover, they
established the existence and uniqueness of an eigenvalue that produces a pdf solution.
The model we study is a limiting case where there is no upper bound on the size.
For this case, it is possible to determine the SSD solution directly in terms of the
eigenvalue.

Without loss of generality, we can always scale the size variable and use the constant
function G(x) = 1. The division rate can be modelled by

B(x) =bH(x - ¢),

where b is some positive constant, ¢ represents the minimum size at which a cell will
divide, and H is the Heaviside function. We thus seek a pdf solution to

Y(x) + (bH(x — ¢) + A)y(x) = ba*H(ax — c)y(ax) (1.10)

that satisfies conditions (1.6) and (1.7). For this problem, A cannot be found by (1.8)
or (1.9), and the division rate does not fall directly into the class considered by [3] or
[14]. Nonetheless, it is sufficiently simple that a solution can be constructed.

Equation (1.10) can be regarded as three equations for the pdf y in three size
intervals. In particular,

Vi) +Ayi(x) =0, 0<x<c/a, (1.11)
Y5(x) + Ayz(x) = ba’ys(ax), cla<x<c, (1.12)
Y5(0) + (b + A)ys(x) = ba2y3(a'x), c<x. (1.13)

Equation (1.11) is simply an ordinary differential equation (ode), which with the initial
value (1.7) gives the unique solution y;(x) = 0 for all x € [0, c/@). If y; is known,
then equation (1.12) is an ode for y, that can be readily solved. Equation (1.13) is
the only equation that is functional in character; it contains the nonlocal term y(ax).
This equation is an example of the well-known pantograph equation, which has been
studied extensively by several researchers. Detailed analytical accounts can be found
in the literature [9, 10]. Aside from the intrinsic analytical interest of this functional
equation, some substantial studies reflect the fact that it appears in many applications.
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For instance, aside from cell division models, the pantograph equation appears in a
simple model for the absorption of light in the Milky Way [1], a problem in ruin theory
[5], and a model for the collection of current from an electric train [13].

We seek a continuous nonnegative solution to (1.10); thus, equations (1.11)—(1.13)
are supplemented with the continuity conditions

yi(c/a) = ya(c/a) =0, (1.14)
ya(c) = y3(c). (1.15)

Note that, in general, the derivative of y(x) is not continuous at ¢/« or c.
Although A cannot be determined directly, it is possible to get upper and lower
bounds on the eigenvalue. Specifically, equation (1.8) implies

A=bla-1) fooy(x)dx.

Given that y is a pdf solution, we know that the value of the above integral lies
between 0 and 1. If A =0, then the integral would have to be zero and, since y is
nonnegative, this means that the solution to equation (1.13) would have to be the trivial
solution. Equation (1.12) and continuity conditions then force y, to also be trivial.
Since the only solution to (1.11) is the trivial solution, we conclude that y(x) = 0 for
all x > 0. But y is a pdf, so this cannot be the case; hence,

0<A<bla-1). (1.16)

We establish the existence of an eigenvalue in Section 3, where we construct a
solution. It is well known that a class of rapidly decaying solutions to pantograph
equations such as (1.13) can be expressed as Dirichlet series. In the next section, we
turn to the Dirichlet series and study certain properties that are needed to establish the
eigenvalue. In particular, we will see in Section 3 that the continuity condition (1.14)
determines any eigenvalues A as the zeros of a function involving a Dirichlet series
and its integral. It is not obvious that there is a zero that satisfies inequality (1.16) and,
if there is such a zero, it is not clear that the resulting solution is nonnegative. In order
to resolve these problems, a closer study of the Dirichlet series as a function of both x
and the eigenvalue parameter is required.

2. A class of Dirichlet series

The Dirichlet series D is defined as

o0 Nk 2Nk
Dy =ty Y COOT s @1
k=1

— /1k an:l(am _ 1)

for x > 0 and A > 0. It can be verified directly that this series is a solution to the
pantograph equation

D.(x, 1) + AD(x, ) = ba’D(ax, ), (2.2)
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where D, = dD/dx. This series has been studied in detail for the special value A = ba
by Hall and Wake [6]. Suitably normalized, the function D(x, ba) is the pdf solution
to their cell division model. The series also appears in the analysis of the pantograph
equation by Kato and McLeod [10] and Iserles [9] among others. Dirichlet series
for second order versions of the pantograph equation have been studied in [23], and
a double series version of D can be found in [18] in connection with an asymmetric
cell division model. The focus in most of these studies was on particular values of A.
The interpretation of A as an eigenvalue parameter, aside from its role in cell division
models as the value that produces a pdf solution, was made for a related problem in
[19, 20]. We also note that an eigenvalue problem for a second order version was
studied in [22].

The pantograph equation (1.13) has a solution of the form (2.1) with 4 =b + A.
Inequality (1.16) shows that for any pdf solution

b < A< ba, (2.3)

and it is in this interval that we wish to study D. In order to do this, however, we need
to study D for larger values of A. A key property of the Dirichlet series that links D for
different eigenvalues is

D.(x, 1) = —AD(ax, /). 2.4)

Tureorem 2.1. If A > ba?, then D(x, A) > 0 for all x > 0. Moreover, D(x, A) is monotonic
and strictly decreasing with respect to x on the interval (0, o).

Proor. For any 4 > 0,

o (D)
DO, ) =1+ —_—
T

B (=D (ba/ D)
=1+ Zl kk=1)/2 H]:nzl(l _ orm)'

The above series can be recast as an infinite product using the Euler identity [2]

PUCSIER

]—[(1+zq)—1+znfn N

with z = —ba/Ad and g = 1/a to get

o)

D(0, 1) = ]_[(1 - b—“), 2.5)

k
oo Aa
which immediately gives all the zeros of D(0, 4), namely, 4, = ba'" forn=0,1,2....

These values correspond to the eigenvalues determined by van Brunt and Vlieg-
Hulstman [19]. Here, we simply note that D(0, 1) > 0 for all A > ba.
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We now show that D(x, 1) cannot have any local extrema if 1 > ba?. First note that
for any A,
lim D(x, 1) = 0. (2.6)

X—00

Suppose that D has a positive local maximum at x = m;. Then equation (2.2) implies
that
AD(my, ) = ba’D(amy, A)

and, since A > ba?, the above equation along with equation (2.6) imply the existence
of another positive local maximum at some point my > am;, at which D(my, A) >
D(my, ). We can continue this argument, and thereby construct a sequence {m;} of
local positive maxima such that my — oo as k — oo, and D(my, A) = D(m;, 1) > 0 for
all k > 1. This contradicts equation (2.6) and we thus conclude that D cannot have a
positive local maximum. The same argument can be applied to —D to preclude the
possibility of a negative local minimum. Evidently, D cannot have a positive local
minimum or a negative local maximum and satisfy (2.6) as well.

We know that D(0, 1) > 0. Suppose that D has a zero at £ € (0, o). Then D must be
identically zero on the interval [£, c0), because otherwise it would require a nonzero
local extremum to satisfy (2.6). For any A > 0, however, D(z, 1), regarded as a function
of the complex variable z, is holomorphic in the right half plane. Since D is not
identically zero in the half plane, the identity theorem [15] rules out the possibility
of this function being zero on any such interval. We thus see that D must be positive
for all x > 0 whenever A > ba?>. Finally, we note that D,(x, 1) < 0 for all x > 0, since
D,(x, 1) = 0 would induce a local positive maximum. O

CoroLLARY 2.2. Ifbar < A < ba?, then D(x, A) > 0 for all x > 0 and it has precisely one
local maximum in (0, o).

Proor. Equation (2.4) can be recast as
D.(x,ad) = —aldD(ax, 1)

and, because ad > ba?, the positivity of D follows immediately from Theorem 2.1.
Concerning the existence of the maximum, the result has already been established
for the case 1 = ba (see [3]). Suppose that b < A < ba. Equation (2.2) implies that

D,(0,2) = (ba® — )D(0, D).

We know that D(0, 1) > 0 by equation (2.5); hence, D,(0, 1) > 0. Condition (2.6)
indicates that D must have at least one local positive maximum. In fact, the positivity
of the derivative at x = 0 precludes the possibility that the global maximum occurs at
x = 0. Now,

D.(x, ) = —de™ + O(e™*™)

as x — oo, so there cannot be a sequence {x;} such that x; — co as k — oo with
D, (xy, ) = 0. The function D can thus have only a finite number of local maxima.
Suppose that D has more than one local maximum, and let M denote the largest value
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of x at which D has a local maximum. Since D has more than one maximum, there
must be at least one local minimum. Let m denote the largest value of x at which D has
a local minimum. The positivity of D implies that m < M. Equation (2.2) implies that
AD(m, ) = ba’D(am, 1), so that in particular D(am, 1) < D(m, 1) and hence M < am.
Moreover, differentiating equation (2.2) and noting that D,,(m, ) > 0, we see that D,
must be nonnegative at x = am. The derivative cannot be positive, since the last local
maximum occurred at M; hence, the derivative must be zero at am and this means that
D, must also be zero there because there are no more local extrema beyond M. We
can now apply the same argument at the point am to assert that D, and D,, must both
vanish at x = a’m. It is clear in this manner that we could construct a sequence {x;}
such that with D,(x;, 1) = 0, x; — o0 as k — oo. This contradiction shows that D can
have only one local maximum. O

We finally reach the interval with which we are most concerned. Equation (2.5)
shows that D(0, 1) < 0 for all A € (b, ba). Although the Dirichlet series starts out
negative, it is clear that it is positive for a sufficiently large x. Since this Dirichlet series
will form part of a pdf solution, it is important to identify the zeros of the function,
and where it is positive.

CoroLLARY 2.3. If b < A < ba, then D(x, A) has only one zero z € (0, 0); moreover,

[0

oD

Proor. The existence and uniqueness of z follow immediately from Corollary 2.2 and
relation (2.4). Here, z/a corresponds to the maximum for D(x, ad). Equation (2.2)
and the positivity of D(x, @A) for A > b imply that

Z 00

D(z/a,ad) = ad f D, ad)dé + (ad — ba) D, ad) d¢

z/a z/a

> al f © D ad)de

a

> adz(l — 1/a)D(z, ad),

where we have used the fact that D(x, @) is monotonically decreasing after the local
maximum at z/a. Equation (2.2) also shows that

aAD(z/a, ad) = ba*D(z, ad);

hence,
ba a

2@ ba-1)

Note that equation (2.5) shows that D(0, 1) < 0, and it is clear for x large that
D(x, 1) > 0. We thus see that D(x, 1) changes sign from negative to positive as x
increases. The function D(x, 1) is graphed for different values of A in Figure 1.
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0.1 1
0 —A=b
O b < dand A < ba
——A=ba
-0.14 -\~
-0.2

Ficure 1. D(x, A) for different values of A witha =2,b = 1.

3. A pdf solution

In this section, we construct a pdf solution to equation (1.10) that satisfies
conditions (1.7), (1.14), and (1.15). We know from Section 2 that equation (1.13)
has a solution of the form

y3(x) = kD(x, ), (3.1
where k is a constant and
A=A+b.
It is straightforward to determine the solution of (1.12), namely,
y2(x) = kba?e~ b f eED(ag, D) dé, (3.2)

where we have used equation (1.14). The constant k can be used eventually to
normalize y to make it a pdf. The main problem now is to show that there is an
eigenvalue that produces a positive eigenfunction. The continuity condition (1.15)
places a restriction on A. In particular, equations (3.1), (3.2), and (1.15) imply that

F(1) =0, (3.3)

where .
F(Q) = ba? f eED(ag, 1) dé - ePD(e, ).

a
We know from inequality (2.3) that for any pdf solution 4 must be in the interval
(b, ba], but it is not clear that equation (3.3) has a solution in this interval. Certainly,
one complication is that D(x, 1) changes sign once along the positive x-axis. Theorem
2.1 and Corollary 2.2 show, in contrast, that D(x, 1) > 0 for all x > 0 when A € (b, ba].
We can recast F using equations (2.2) and (2.4) along with integration by parts to get

b
F) = D(c/a, a/l)(Tae(l_b)c/" - eu_b)c)

+ %‘”(a - b) ‘ ePEDE an) dé. (3.4)

cla
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Lemma 3.1. For any c > 0, there exists a solution to equation (3.3) in the interval

(b, ba).

Proor. The function F is continuous on the interval [b, ba]. Now, using equation (3.4),
F(b) =(a-1)D(c/a,al) >0

and

F(boz) — D(C/(Y, ba2)(eb(a—l)c/a _ eb(a—l)C)
+b@—-1) | LD ba?) de.

cla

Theorem 2.1 shows that D(x, @) is monotonically decreasing on [0, co); hence,

F(ba) < D(c/a, ba*)(e?@Vele — b@=Dey o po — D)D(c/a, ba®) | 2@V g¢

cla
— D(c/a, ba’Z)(eb(a/f])C/af _ eb(affl)c‘) + D(C/Q, baZ)(eb(a/fl)C _ eb(a/fl)c/(l)
=0.

We thus see that F' changes sign in the interval and, therefore, must have a zero in this
interval. u

Although there is a solution to equation (3.3) in the interval (b, ba), it is not clear
that the resulting solution to equation (1.10) is nonnegative. For instance, it may be,
for some choice of ¢ > 0, that D(c, 1) < 0. For each A € (b, ba), the function D(x, 1)
has precisely one zero z(1) in [0, c0) and hence the question is whether equation (3.3)
precludes the case ¢ < z(1). Corollary 2.3 shows that for ¢ sufficiently large, D(c, 1) > 0
for any A € (b, ba). The next lemma shows that this is true for all ¢ > 0.

Lemma 3.2. Let ¢ > 0 and suppose that A € (b, ba) is a solution to equation (3.3). Then
D(c,1) > 0.

Proor. Recall from the proof of Corollary 2.3 that if m(2) is the maximum for D(x, a 1),
then am(A) is the zero for D(x, A). The lemma will be established if it can be shown
that m(A) < c/a.

The continuous function D(x, @A) has one local maximum and no local minimum.
Consequently, on any compact interval of [0, o), the global minimum of the function
over this interval must occur at an end point of the interval. Specifically, for any
¢ > 0, the global minimum of D(x, @4) on the interval [¢/a, c] must occur at either c/a
or ¢. Suppose that this minimum occurs at ¢/a. Then the second term in (3.4) can be
bounded as follows:
ba o
~ (A =b)D(c/a,ad) D% gg

cla

%(ﬁ - b) EED(E ad) dé >

cla

b | |
= ZED(c/a a)(e! P - el Pelm,
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Hence,
F ba .
(D) > D(c/a, a//l)( — l)e(’l"’)‘ >0,

so that A cannot be a solution to equation (3.3). We thus conclude that the minimum
cannot be achieved at c¢/a and must, therefore, be at c. This leads to the inequality

FQ) > D(c/a, aﬂ){%’e(”*b)ﬂ/” ~ e“*b”} +D(c, a//l)bja{e(’l’b)c — el
b
= P22 De,a) - Dic/a,a)| + P D(e/aad) = Dic,ad)

and, using equation (2.2), this yields

(A=b)c

F() > D.(c/a,ad) + €V UD(c/a, ad) — D(c,ad)).

The last term in the above expression is clearly positive, since the minimum is at c. If
c/a < m(A), then D,(c/a, ad) > 0, which leads to the contradiction that F (1) > 0. We
thus conclude that m(1) < c/a. |

The above lemma indicates that D(x, 1) > 0 for all x > ¢, which ensures that a
positive solution y; exists. It is clear from equation (3.2) that the positivity of yj3
implies that of y,, and that a suitable positive constant k can be obtained to normalize
the solution to satisfy (1.6). In summary, we have the following result.

TueorEM 3.3. For any c¢ > 0, there exist an eigenvalue A € (0, b(a — 1)) and a positive
eigenfunction y that satisfy equation (1.10).

4. Conclusions

In this paper, we studied the cell growth model of Hall and Wake for a cell division
function that models cells which divide only after they reach a minimum size. Unlike
the earlier models of Hall and Wake, the determination of the SSD solution involves an
eigenvalue that could not be found explicitly. This problem brings to the fore a class
of Dirichlet series that solves a pantograph equation. It is shown directly that there are
an eigenvalue and a corresponding SSD solution to this cell growth model. Under a
rapid decay condition on the pdf (that is, assuming the pdf has moments of all orders),
it is possible to show that the eigenvalue is simple. This, however, is of limited value
until it is known whether the eigenvalue itself is unique. Certainly, numerical evidence
indicates that equation (3.3) has a unique solution in (b, @b), but there may be non-
Dirichlet series solutions for ys if the rapid decay condition is relaxed.
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