A symplectic lattice L is a free \mathbb{Z}-module of finite rank endowed with a non-degenerate alternating bilinear form. Thus we have a bilinear mapping Φ of $L \times L$ into the domain of integers \mathbb{Z}; we denote $\Phi(\alpha, \beta)$ by $\alpha \cdot \beta$ (where $\alpha, \beta \in L$). Then $\alpha^2 = 0$ and $\alpha \cdot \beta = -\beta \cdot \alpha$.

The symplectic group $\text{Sp}(L, \mathbb{Z})$ is the group of all automorphisms ϕ of L such that $\phi(\alpha) \cdot \phi(\beta) = \alpha \cdot \beta$ for all α, β in L. The purpose of this note is to give necessary and sufficient conditions on vectors α and β for there to exist an automorphism ϕ of $\text{Sp}(L, \mathbb{Z})$ such that $\phi(\alpha) = \beta$. If such an automorphism exists we write $\alpha \sim \beta$ and call α and β associated vectors. The group $\text{Sp}(L, \mathbb{Z})$ will act transitively on the equivalence class of α.

Although the results will be given for lattices over \mathbb{Z}, they may be immediately interpreted for any principal ideal domain. Similar results for orthogonal groups over the p-adic integers have been obtained by S. Rosenzweig and the author [2], and for unimodular quadratic forms by Wall [5]. See also Kneser [3] for results on the representation of integers by quadratic forms. For the local integral structure of the symplectic group see Riehm [4].

We describe first the (well known) structure of the lattice L. Then, after investigating invariants of a typical vector α in L, we shall give the conditions for α and β to be associated.

We say that α and β are orthogonal if $\alpha \cdot \beta = 0$. Write $L = L_1 \oplus L_2$ if L is the direct sum of two sublattices L_1 and L_2 with α in L_1 orthogonal to all β in L_2. We shall call this an orthogonal splitting of L (with two components). $\langle \lambda, \mu \rangle$ denotes the sublattice $\{l\lambda + m\mu \mid l, m \in \mathbb{Z}\}$.

Lemma 1. The lattice L has an orthogonal splitting

$$L = \langle \lambda, \mu \rangle \oplus L_1$$

if and only if $\lambda \cdot \mu = q$ and q divides $\lambda \cdot \alpha$ and $\mu \cdot \alpha$ for all α in L.

Proof. The necessity of the conditions is immediate. Suppose now that the conditions are satisfied. Then, for arbitrary α in L, we can write

$$\alpha = q^{-1}(\alpha \cdot \mu)\lambda - q^{-1}(\alpha \cdot \lambda)\mu + \beta$$

where

$$\beta = \alpha - q^{-1}(\alpha \cdot \mu)\lambda + q^{-1}(\alpha \cdot \lambda)\mu \in L.$$
Then $\beta \cdot \lambda = \beta \cdot \mu = 0$. Let L_1 be the sublattice of all β in L orthogonal to λ and μ. The result is now clear.

We call a sublattice $\langle \lambda, \mu \rangle$ as in the lemma a \textit{q-modular hyperbolic plane} and denote it by H_q. A sublattice M of L is called \textit{q-modular} if it is the orthogonal sum of q-modular hyperbolic planes of L.

Proposition 1. A symplectic lattice L has an orthogonal splitting

$$L = L_1 \oplus L_2 \oplus \cdots \oplus L_n$$

where each L_i, $1 \leq i \leq n$, is a q_i-modular sublattice. Furthermore $q_i | q_{i+1}$, $1 \leq i \leq n-1$, and with the condition $q_{i+1} \neq q_i$, the q_i and the rank of each L_i are invariants of L.

Proof. A splitting of the given type can be easily obtained with the help of the lemma; see Bourbaki [1, § 5]. The q_i (with multiplicities) are the invariants of the abelian group defined as the quotient of $\text{Hom}(L, Z)$ by the subgroup of homomorphisms of the form $\mu \to \lambda \cdot \mu$. I wish to thank the referee for this observation.

Corollary 1. The rank of L is even.

Corollary 2. We can take $\lambda_{ij}, \mu_{ij}, 1 \leq j \leq n_i = \frac{1}{2} \text{rank } L_i$, $1 \leq i \leq n$, as a basis for L, where $\lambda_{ij} \cdot \mu_{ij} = q_i$ and all other products are zero.

A basis as in Corollary 2 is called a \textit{symplectic basis}.

We shall now investigate conditions on α and β for them to be associated. α in L is called \textit{imprimitive} if $\alpha = dy$ where $\gamma \in L$ and $d(\neq \pm 1)$ is an integer. Otherwise α is said to be \textit{primitive}. It suffices in future to consider α and β primitive since the automorphisms are linear transformations on L.

A primitive vector α is called \textit{q-modular} if it can be embedded in a q-modular hyperbolic plane. We now obtain a decomposition of a general vector α into the orthogonal sum of modular vectors.

For the rest of this note $a \mid b$ shall mean a divides b and $|a| \neq |b|$.

Lemma 2. If M is a q-modular sublattice of L and $\eta \in M$ is primitive, then η is q-modular (and can be taken as the leading element in a symplectic basis of M).

Proof. Let $\lambda_j, \mu_j, 1 \leq j \leq m$, be a symplectic basis for M. Then

$$\eta = \sum_{j=1}^{m} (a_j \lambda_j + b_j \mu_j)$$

with $(a_1, \cdots, a_m, b_1, \cdots, b_m) = 1$. Hence there exist integers x_j, y_j such that

$$\sum_{j=1}^{m} (a_j x_j - b_j y_j) = 1.$$
Put

\[\xi = \sum_{j=1}^{m} (y_j \lambda_j + x_j \mu_j) \in M \]

so that \(\eta \cdot \xi = q \). Using Lemma 1 we can now split off a \(q \)-modular hyperbolic plane \(\langle \eta, \xi \rangle \). \(\eta \) is thus a \(q \)-modular vector.

Proposition 2. Any \(\alpha(\neq 0) \) in \(L \) can be written in the form

\[\alpha = \sum_{i=1}^{t} r_i \alpha_i, \]

where \(\alpha_i, 1 \leq i \leq t \) (with \(1 \leq t \leq n \), are \(p_i \)-modular mutually orthogonal vectors, such that

\[r_{i+1} | r_i \text{ and } r_i \beta_i | r_{i+1} \beta_{i+1} \quad 1 \leq i \leq t-1. \]

Proof. Take an orthogonal splitting of \(L \), as in Proposition 1, and write \(\alpha = \sum_{i=1}^{n} a_i \phi_i \) where \(\phi_i \in L_i, 1 \leq i \leq n \), are primitive vectors. By Lemma 2 they are \(q_i \)-modular, \(\eta_i \) being embedded in \(\langle \eta_i, \xi_i \rangle \) with \(\eta_i \cdot \xi_i = q_i \).

By a previous remark it suffices to consider \(\alpha \) primitive, so that \(r = 1 \). We shall consider first the special case \(n = 2 \). Write

\[\alpha = rd_1 \eta_1 + d_2 \eta_2 \]

where \((rd_1, d_2) = 1 \) and \(r \) is maximal with the property \(rq_1 s = q_2 (s \in \mathbb{Z}) \).

Put

\[\alpha_1 = d_1 \eta_1 + d_2 s \xi_1 - d_1 \xi_2 \]

\[\alpha_2 = d_2 \eta_2 - d_2 r s \xi_1 + d_1 r \xi_2. \]

Then \(\alpha = r \alpha_1 + \alpha_2 \) and \(\alpha_1 \cdot \alpha_2 = 0 \), \(\alpha_1 \) is \(q_1 \)-modular and \(\alpha_2 \) is \(q_2 \)-modular. Since, by choice of \(r \), \((d_1, d_2 s) = 1 \), there exist integers \(x \) and \(y \) such that \(xd_2 s - yd_1 = 1 \). Put

\[y_1 = x \eta_1 + y \xi_1 - x \xi_2. \]

Then \(y_1 \cdot \alpha_i = q_1 \) and \(y_1 \cdot \alpha_2 = 0 \), so that, by Lemma 1

\[\langle \eta_1, \xi_1 \rangle \oplus \langle \eta_2, \xi_2 \rangle = \langle y_1, \alpha_1 \rangle \oplus H. \]

But \(\alpha_2 \in H \), so that by Lemma 2 we have \(H = \langle y_2, \alpha_2 \rangle \). The proof is now complete in this case except for the two possibilities

(i) \(r = 1 \): but now \(\alpha_1 + \alpha_2 \) is \(q_1 \)-modular, since it can be embedded in the hyperbolic plane \(\langle y_1, \alpha_1 \rangle \).

(ii) \(s = 1 \): and now \(r = q_2 q_1^{-1} \), so that \(\alpha_1 + \alpha_2 \) is \(q_2 \)-modular, being embedded in \(\langle y_2, \alpha_2 + \alpha_1 \rangle \).

We now consider the general case. Write
\[\alpha = a_1 \eta_1 + \cdots + a_n \eta_n \]

where \(\eta_i \) are \(q_i \)-modular vectors in \(L_i \). Applying the case \(n = 2 \) to \(a_1 \eta_1 + a_2 \eta_2 \) we can reduce it to the form \(s_1 \beta_1 + c_2 \gamma_2 \) where \(c_2 = (a_1, a_2) \), \(s_1 q_1 \) divides \(c_2 q_2 \) and \(c_2 \) divides \(s_1 \). In the same manner reduce \(c_2 \gamma_2 + a_3 \eta_3 \) to the form \(s_2 \beta_2 + s_2 \gamma_3 \) where \(c_3 = (c_2, a_3) \), \(s_2 q_2 \) divides \(c_3 q_3 \) and \(s_2 \) divides \(c_2 \) and hence \(s_1 \). Proceeding in this manner we reduce \(\alpha \) to the form

\[\alpha = s_1 \beta_1 + \cdots + s_n \beta_n \]

where \(s_{i+1} \) divides \(s_i \), \(1 \leq i \leq n-1 \).

However, we need not have \(s_i q_i | s_{i+1} q_{i+1} \). This can be achieved by further applications of the case \(n = 2 \). Put \(r_n = s_n \). Starting now with \(s_{n-1} \beta_{n-1} + r_n \beta_n \) we may change it to \(r_{n-1} \delta_{n-1} + r_n \alpha_n \) with \(r_{n-1} q_{n-1} | r_n q_n \) (absorbing \(r_{n-1} \delta_{n-1} \) in \(r_n \alpha_n \) if \(r_{n-1} q_{n-1} = r_n q_n \)). The relation \(s_{n-1} \) divides \(s_{n-2} \) will become \(r_{n-1} \) divides \(s_{n-2} \) since \(r_{n-1} \) divides \(s_{n-1} \). Proceed now with \(s_{n-2} \beta_{n-2} + r_{n-1} \delta_{n-1} \).

If \(r_i = r_{i+1} \) for any \(i \), \(\alpha_i + \alpha_{i+1} \) is \(q_i \)-modular, so that the \(i+1 \)-component may be absorbed in the \(i \)-component. The proof is now complete, the \(\hat{p}_i \) being a subset of the \(q_i \).

Let \(L(\hat{p}) \) be the set of all \(p \)-modular vectors in \(L \); hence for \(\beta \in L(\hat{p}) \) we have that \(\beta \cdot \gamma \) is divisible by \(\hat{p} \), for any \(\gamma \) in \(L \). Denote by \(v(\hat{p}, \alpha) \) the greatest common divisor of \(\alpha \cdot \gamma \) as \(\gamma \) varies over \(L(\hat{p}) \).

Lemma 3. If \(\alpha = \sum_{i=1}^{t} r_i \alpha_i \) as in Proposition 2, then

\[v(\hat{p}_i, \alpha) = r_i \hat{p}_i, \quad 1 \leq i \leq t. \]

Proof. If we multiply \(\alpha \) by \(\gamma \) in \(L(\hat{p}_i) \) the terms \(r_i \gamma \cdot \alpha_j \), \(1 \leq j \leq i \), are divisible by \(r_i \hat{p}_i \), and hence by \(r_i \hat{p}_i \); while the terms \(r_j \gamma \cdot \alpha_j \), \(i < j \leq t \), are divisible by \(r_j \hat{p}_j \), which in turn is divisible by \(r_i \hat{p}_i \). Thus \(r_i \hat{p}_i \leq v(\hat{p}_i, \alpha) \). On the other hand, Lemma 2 shows there exists \(\xi_i \in L(\hat{p}_i) \) such that \(\alpha_i \cdot \xi_i = \hat{p}_i \) and \(\alpha_j \cdot \xi_i = 0 \) (\(j \neq i \)). Thus \(v(\hat{p}_i, \alpha) \leq \alpha \cdot \xi_i = r_i \hat{p}_i \). This proves the lemma.

It is clear from this lemma that the \(r_i \) of any \(\alpha \) are uniquely determined by the \(\hat{p}_i \). However, the \(\hat{p}_i \) as they stand need not be invariant, except in the case where the \(q_i \) are all powers of the same prime. (For example, if \(r_2 \hat{p}_2 = (r_1 \hat{p}_2, r_3 \hat{p}_3) \), the term \(r_2 \alpha_2 \) can be removed.) By placing further restrictions on the choice of \(\hat{p}_i \) an invariant set can be obtained, for example as follows.

Consider all the decompositions of \(\alpha = \sum r_i \alpha_i \) as in Proposition 2. Restrict consideration now to those with maximal \(\hat{p}_1 \), which now becomes an invariant of \(\alpha \). Amongst these decompositions we now restrict our attention to those with \(\hat{p}_i \) maximal. In general, after choosing \(\hat{p}_i \), we take \(\hat{p}_{i+1} \) maximal. We therefore arrive finally at an uniquely determined set
of \(p_i \) and hence also \(r_i \). We shall consider these \(p_i \) and \(r_i \) as the invariants of \(\alpha \).

An alternative method of characterizing an invariant set of \(p_i \) for \(\alpha \) would be to make \(p_1 \) minimal, then \(p_2 \) minimal, and so on. Any such choice of invariants is sufficient; in fact for \(\alpha \) and \(\beta \) to be associated it suffices for them to have decompositions with the same \(p_i \) and \(r_i \).

Theorem. \(\alpha \sim \beta \) if and only if \(\alpha \) and \(\beta \) have the same invariants \(r_i \) and \(p_i \), \(1 \leq i \leq t \).

Proof. The necessity of these invariants is clear from Proposition 3; an automorphism will preserve the invariants. Consider now \(\alpha \) and \(\beta \) with the same invariants

\[
\alpha = r_1 \alpha_1 + \cdots + r_t \alpha_t \\
\beta = r_1 \beta_1 + \cdots + r_t \beta_t
\]

where \(\alpha_i \) and \(\beta_i \) are \(p_i \)-modular vectors, \(1 \leq i \leq t \). We can embed the \(\alpha_i \) in mutually orthogonal hyperbolic planes \(\langle \alpha_i, \gamma_i \rangle = H_{p_i} \), so that we get an orthogonal splitting of \(L \)

\[
L = H_{p_1} \oplus \cdots \oplus H_{p_t} \oplus J.
\]

Similarly we can embed \(\beta_i \) in \(\langle \beta_i, \delta_i \rangle = H^*_{p_i} \) and get another splitting of \(L \)

\[
L = H^*_{p_1} \oplus \cdots \oplus H^*_{p_t} \oplus J^*.
\]

From the invariance of rank \(L_i \) in an orthogonal splitting of \(L \), the invariants of \(J \) and \(J^* \) must be the same. Thus they split in the same manner into modular hyperbolic planes. We now take the automorphism \(\phi \) in \(\text{Sp}(L, Z) \) with \(\phi(\alpha_i) = \beta_i, \phi(\gamma_i) = \delta_i, 1 \leq i \leq t \), and extend it to \(L \), in the obvious way, through corresponding hyperbolic planes in \(J \) and \(J^* \). Then \(\phi(\alpha) = \beta \) and the theorem is established.

Note added in proof. We originally expected that the \(p_i \) in Proposition 2 would be global invariants of \(\alpha \) (as they are in the local case, compare [2]); but this is not the case. We have shown above how an invariant subset of \(p_i \) can be obtained by imposing maximal conditions. It would be desirable to have algebraic conditions that would ensure this. For example we must have \(r_2 p_2 | (r_1 p_2, r_3 p_3) \), but this is not enough. Moreover, the conditions appear to depend on \(L \) (the \(q_i \)) and not only \(\alpha \). One should also be able to prove that if \(\alpha \) and \(\beta \) are associated locally at all primes, then they are globally associated.

References

The Pennsylvania State University