Let A be a commutative Banach algebra, D a closed derivation defined on a subalgebra Δ of A, and with range in A. The elements of Δ may be called derivable in the obvious sense. For each integer $k \geq 1$, denote by Δ_k the domain of D^k (so that $\Delta_1 = \Delta$); it is a simple consequence of Leibniz's formula that each Δ_k is an algebra. The classical example of this situation is $A = C(0, 1)$ under the supremum norm with D ordinary differentiation, and here $\Delta_k = C^k(0, 1)$ is a Banach algebra under the norm $\| \cdot \|_k$:

$$\|x\|_k = \sum_{n=0}^{k} \frac{1}{n!} \sup_{t \in [0, 1]} |x^{(n)}(t)|.$$

Furthermore, the maximal ideals of Δ_k are precisely those subsets of Δ_k of the form $M \cap \Delta_k$ where M is a maximal ideal of A, and $\overline{M \cap \Delta_k} = M$, the bar denoting closure in A. In the present note we show how this extends to the general case.

If A is a commutative Banach algebra then $\| \cdot \|_A$, $\rho_A(\cdot), \mathcal{M}(A)$ will denote the norm, spectral radius and maximal ideal space of A respectively. The author is indebted to the referee for the present proof of the following result.

Theorem 1. Let A, B be commutative Banach algebras, with B a dense subalgebra of A in the norm topology of A. Suppose that there is a constant K such that $\rho_B(x) \leq K \rho_A(x)$ for $x \in B$. Then the map $\Gamma : \mathcal{M}(A) \rightarrow \mathcal{M}(B) : M \mapsto M \cap B$ is a homeomorphism of $\mathcal{M}(A)$ onto $\mathcal{M}(B)$ (and so $\rho_B(x) = \rho_A(x)$ for $x \in B$).

Proof. If ψ is a multiplicative linear functional on A then $\psi|_B$ is clearly such a functional on B. Conversely, if ϕ is a multiplicative linear functional on B, the given inequality shows that ϕ is continuous in the norm topology of A, and so has a unique continuous extension, also multiplicative linear, to all of A. From the correspondence between multiplicative linear functionals and maximal modular ideals it follows that Γ is bijective. That Γ is a homeomorphism is an immediate con-
sequence of the fact that \(B \) is dense in \(A \). The last statement is clear from the form of \(\Gamma \).

We now turn to the situation at hand.

Lemma 1. Let \(A \) be a Banach algebra with norm \(||\cdot|| \), \(D \) a closed derivation defined on a subalgebra \(\mathcal{A} \) of \(A \), with range in \(A \). Then for each integer \(k \geq 1 \), \(\mathcal{A}_k \) is a Banach algebra under the norm \(||\cdot||_k \):

\[
||x||_k = \sum_{n=0}^{k} \frac{1}{n!} ||D^n x||.
\]

Proof. As was remarked above each \(\mathcal{A}_k \) is certainly an algebra, and an application of Leibniz's formula shows that \(||\cdot||_k \) is a norm on \(\mathcal{A}_k \). If \(\{x_n\} \subseteq \mathcal{A}_k \) is Cauchy under \(||\cdot||_k \), then \(\{D^j x_n\} \) is Cauchy in \(A \) for \(0 \leq j \leq k \). Setting \(y_j = \lim_n D^j x_n \), the closure of \(D \) shows that \(y_j = D^j y_0 \), whence \(y_0 \in \mathcal{A}_k \) and \(||x_n - y_0||_k \to 0 \) as \(n \to \infty \).

Lemma 2. Let \(A \) be a commutative normed algebra, \(D \) a derivation defined on a subalgebra \(\mathcal{A} \) of \(A \), with range in \(A \). Denote by \(v_k(\cdot) \) the spectral radius in \(\mathcal{A}_k \) calculated from \(||\cdot||_k \). Then if \(x \in \mathcal{A}_k \), \(v_k(x) = v_A(x) \).

Proof. It is clear that \(v_k(x) \geq v_A(x) \) for all \(x \in \mathcal{A}_k \). Now for \(j < n \) and \(x \in \mathcal{A}_k \),

\[
D^j x^n = \sum_{i=1}^{j} u_{i,j} x^{n-i}
\]

where the \(u_{i,j} \) are polynomials in \(D^r x \), \(1 \leq r \leq j \), of degree \(\leq j \), the scalars concerned being polynomials in \(n \) of degree \(\leq j \). To see this, note that the formula is true for \(j = 1 \), since \(Dx^n = nx^{n-1} Dx \). Supposing by way of induction that it holds for \(j = m-1 \), we have

\[
D^m x^n = \sum_{i=1}^{m-1} \left\{ D(u_{i,m-1}) x^{n-i} + (n-i)u_{i,m-1} x^{n-i-1} Dx \right\},
\]

which is of the desired form.

Thus if \(x \in \mathcal{A}_k \) and \(n > k \),

\[
||x^n||_k = ||x^n|| + \sum_{j=1}^{k} \frac{1}{j!} \left|\sum_{i=1}^{j} u_{i,j} x^{n-i}\right|
\]

\[
\leq ||x^{n-k}|| \left\{ ||x^n|| + \sum_{j=1}^{k} \frac{1}{j!} \sum_{i=1}^{j} ||u_{i,j}|| \cdot ||x^{n-i}|| \right\}
\]

\[
\leq Kn^k ||x^{n-k}||
\]

1 The exact form is

\[
\frac{D^j x^n}{j!} = \sum_{i_1 + \cdots + i_n = j} \frac{D^{i_1} x}{i_1!} \cdots \frac{D^{i_n} x}{i_n!}.
\]
for some constant K, by the properties of the elements $u_{i,j}$. But this means $v_k(x) \leq v_A(x)$.

Our main result is an immediate consequence of Lemmas 1 and 2, and Theorem 1.

Theorem 2. Let A be a commutative Banach algebra, D a closed derivation on a subalgebra Δ of A, with range in A. Suppose that Δ_k is dense in A for some integer $k \geq 1$. Then the map $\Gamma_j : M \rightarrow M \cap \Delta_j$ is homeomorphism of $\mathcal{M}(A)$ onto $\mathcal{M}(\Delta_j)$, $1 \leq j \leq k$.

Corollary 1. If A has an identity e then $e \in \Delta$.

Proof. Theorem 2 shows that $\mathcal{M}(A)$ is compact, and so by Silov’s theorem there is an idempotent $f \in \Delta$ with $\hat{f} \equiv 1$ on $\mathcal{M}(\Delta)$, and hence on $\mathcal{M}(A)$. But this means the idempotent $e - f$ is quasi-nilpotent, and hence zero.

Corollary 2. If Δ is dense in A and D has non-empty resolvent set then Γ_j is a homeomorphism for each $j \geq 1$.

Proof. By Lemma VIII.2.9 of [1] Δ_j is dense in A for each $j \geq 1$.

Remark. In the situation of Theorem 2 define, for $\alpha > 0$,

$$A_{\alpha, \alpha} = \left\{ x \in \bigcap_{k \geq 1} A_k : \|x\|_{\alpha, \alpha} = \sum_{n=0}^{\infty} \frac{\alpha^n}{n!} \|D^n x\| < \infty \right\}.$$

An argument similar to that of Lemma 1 shows that $A_{\alpha, \alpha}$ is a Banach algebra under $\|\cdot\|_{\alpha, \alpha}$, however $\mathcal{M}(A)$ and $\mathcal{M}(A_{\alpha, \alpha})$ are not homeomorphic in general, even when $A_{\alpha, \alpha}$ is dense in A. Indeed, in the classical situation mentioned at the beginning of this paper, $\mathcal{M}(A) = [0, 1]$, while $\mathcal{M}(A_{\alpha, \alpha})$ is homeomorphic to the closed unit disc.

Reference

Department of Mathematics
Carleton University
Ottawa 1, Canada