A NON-CYCLIC ONE-RELATOR GROUP
ALL OF WHOSE FINITE QUOTIENTS ARE CYCLIC

GILBERT BAUMSLAG
(Received 17 June 1969)

To Bernhard Hermann Neumann on his 60th birthday
Communicated by G. B. Preston

Let \(G \) be a group on two generators \(a \) and \(b \) subject to the single
defining relation \(a = [a, ab] \):
\[
G = (a, b; a = [a, ab]).
\]
As usual \([x, y] = x^{-1}y^{-1}xy \) and \(x^y = y^{-1}xy \) if \(x \) and \(y \) are elements of a
group. The object of this note is to show that every finite quotient of \(G \) is
cyclic. This implies that every normal subgroup of \(G \) contains the derived
group \(G' \). But by Magnus’ theory of groups with a single defining relation
\(G' \neq 1 \) ([1], §4.4). So \(G \) is not residually finite. This underlines the fact
that groups with a single defining relation need not be residually finite
(cf. [2]).

In order to prove that \(G \) has the described properties let us put
\[
a_i = b^{-i}a b^i.
\]
Then the normal closure \(N \) of \(a \) in \(G \) is generated by the elements
\(\cdots, a_{-1}, a_0, a_1, \cdots \) subject to the defining relations
\[
a_i = [a_i, a_{i+1}] \quad (i = 0, \pm 1, \cdots).
\]
Thus
\[
a_i^2 = a_{i+1}^{-1}a_i a_{i+1} \quad (i = 0, \pm 1, \cdots).
\]
Now suppose that \(K \) is a normal subgroup of \(G \) of finite index. Put
\[
x = aK, y = a^b K.
\]
We shall show that \(x = 1 \) which implies \(N(\leq G') \leq K \) as desired. For
suppose \(x \neq 1 \). Then \(x \) and \(y \) are of order \(n > 1 \), say. Since \(x^y = x^2 \) we find
\[
x = x^1 = x^n = x^{2n}.
\]
This implies \(x^{2n-1} = 1 \) and \(n \) divides \(2^n - 1 \). But it is easy to see that the
smallest prime divisor of \(n \) is less than the smallest prime divisor of \(2^n - 1 \)
(G. Higman [3]). This completes the proof.
References

Institute for Advanced Study
and
Rice University