A NOTE ON COMMUTATIVE L-GROUPS

T. P. SPEED and E. STRZELECKI

(Received 25 June 1969)
Communicated by B. Mond

Introduction

Let G be a commutative lattice ordered group. Theorem 1 gives necessary and sufficient conditions under which a^\perp with $a \in G$ is a maximal I-ideal. A wide family of L-groups G having the property that the orthogonal complement of each atom is a maximal L-ideal is described. Conditionally σ-complete and hence conditionally complete vector lattices belong to the family. It follows immediately that if a is an atom in a conditionally complete vector lattice then a^\perp is a maximal vector lattice ideal. This theorem has been proved in [7] by Yamamuro. Theorem 2 generalizes another result contained in [7]. Namely we prove that if M is a closed maximal L-ideal of an archimedean L-group G then there exists an atom $a \in G$ such that $M = a^\perp$.

1. Notations and supplementary results

In a commutative L-group G with $a \in G$, we write G^+ for the set of positive elements; (a) for the L-ideal generated by a, i.e. $(a) = \{g \in G : |g| \leq n|a| \text{ for some } n\}$; (A) will denote the L-ideal generated by a subset A of G. Two elements $g_1, g_2 \in G$ are said to be disjoint (written $g_1 \perp g_2$) if $|g_1| \wedge |g_2| = 0$. We put $a^\perp = \{g \in G : |g| \wedge |a| = 0\}$. It is well known that a^\perp is an L-ideal. It follows easily that $(a) \cap a^\perp = \{0\}$. Further if A is a subset of G then A^\perp is defined by $A^\perp = \{a^\perp : a \in A\}$ and $A^\perp\perp$ means $(A^\perp)^\perp$. In case $G = A^\perp \oplus A^\perp\perp$ the following properties of projections p_1 and p_2 onto A^\perp and $A^\perp\perp$ respectively are easily proved:

(i) if $g \geq 0$ then $p_1(g) \geq 0$ and $p_2(g) \geq 0$,

(ii) $p_i(a+b) = p_i(a)+p_i(b)$ for $i = 1, 2$

and

(iii) $p_i(na) = np_i(a)$, $i = 1, 2$.

To obtain these results it is sufficient to bear in mind that any L-group is a distributive lattice and that $g_1 + g_2 = g_1 \vee g_2 + g_1 \wedge g_2$. For other concepts used and not defined we refer to Birkhoff [1].
2. Discrete archimedean elements and maximal l-ideals

Definition 1. An element $a \in G$ is said to be discrete [6] if the conditions $0 \leq g_1 \leq |a|$, $0 \leq g_2 \leq |a|$, $g_1 \perp g_2$ imply that at least one of the elements g_1 and g_2 equals zero.

Definition 2. A non-zero element $a \in G$ is said to be archimedean if for any $0 \neq g \in G^+$ there exist natural numbers n_1 and n_2 (depending on g) such that $n_1 g \not< |a|$ ($n_1 g$ is not less than $|a|$) and $n_2 |a| \not< g$.

Remark. It is quite obvious that an l-group G is archimedean if and only if each of its non-zero elements is archimedean.

Lemma 1. The following statements are equivalent:
(i) $a \in G$ is discrete,
(ii) if $g_1 \perp g_2$ then at least one of them belongs to a^\perp.

Proof. Let a be discrete and let $g_1 \perp g_2$. In this case $b_1 = |a| \wedge |g_1|$ and $b_2 = |a| \wedge |g_2|$ are disjoint positive elements dominated by $|a|$. Thus, by definition 1, at least one of them equals zero.

Conversely, suppose that $0 \leq g_1 \leq |a|$, $0 \leq g_2 \leq |a|$ and that $g_1 \perp g_2$. According to (ii), we may assume that e.g. $g_1 \in a^\perp$, i.e. $g_1 \wedge |a| = 0$. But $g_1 \wedge |a| = g_1$ since $g_1 \leq |a|$. Thus $g_1 = 0$.

Lemma 2. If $a \in G$ is discrete then the l-ideal (a) generated by a is totally ordered.

Proof. If $g \in (a)$ then g^+ and g^- belong also to (a). But $g^+ \perp g^-$ and so, by lemma 1, at least one of the elements g^+ and g^- belongs to a^\perp. If e.g. $g^- \in a^\perp$, then $g^- \in (a) \cap a^\perp$ and hence $g^- = 0$. Thus, in this case $g = g^+ - g^- = g^+ \geq 0$.

Lemma 3. If $a \in G$ is a discrete archimedean element then (a) is generated by any of its non-zero elements.

Proof. Let $g \in (a)$ and $g \neq 0$. Since a is archimedean and $|g| > 0$, there exists n such that $n|g| \not< |a|$. Since $n|g| \in (a)$ and (a) is totally ordered, by lemma 2, $|a| \leq n|g|$. So $(a) \subseteq (g) \subseteq (a)$ and thus $(g) = (a)$.

Lemma 4. If $a \in G$ is archimedean and discrete then

\[G = (a) \oplus a^\perp. \]

Proof. Since a is archimedean, for any $g \in G^+$ there exists n such that $n|a| \not< g$. Consider the elements $b_1 = (n|a| - g)^+$ and $b_2 = (n|a| - g)^-$. Since $n|a| \not< g$, it follows that $b_1 > 0$. On the other hand $b_1 \leq n|a|$ and hence $b_1 \in (a)$. Now $b_1 \in (a)$ and $b_1 \neq 0$ imply that $b_1 \notin a^\perp$. Taking into account that $b_2 \perp b_1$ and that a is discrete, by lemma 1, we infer that $b_2 \in a^\perp$. Thus
For an arbitrary \(g \in G \) we have \(g = g^+ - g^- \) with \(g^+, g^- \in (a) \oplus a^\perp \). Thus \(g \in (a) \oplus a^\perp \) and so \((a) \oplus a^\perp = G\).

Theorem 1. For an element \(a \) belonging to a commutative \(l \)-group \(G \) the following statements are equivalent:

(i) \(a \) is archimedean and discrete,

(ii) \(a^\perp \) is a maximal \(l \)-ideal.

Proof of (i) \(\Rightarrow \) (ii). Since \(a^\perp \) is maximal and thus a proper \(l \)-ideal, it follows immediately that \(a \neq 0 \). Assume that \(g_1 \perp g_2 \), \(0 < g_1 \leq |a| \) and \(0 \leq g_2 \leq |a| \).

In this case the \(l \)-ideal \(J = (g_2, a^\perp) \) generated by \(g_2 \) and \(a^\perp \) is proper because \(g_1 \notin J \). Since \(a^\perp \) is maximal and \(a^\perp \subseteq J \), it follows that \(J = a^\perp \). Consequently, \(g_2 \in a^\perp \). Hence \(g_2 \in (a) \cap a^\perp \) and so \(g_2 = 0 \). Thus \(a \) is discrete whenever \(a^\perp \) is maximal.

Let us assume now that there exists an element \(0 < g \in G^+ \) such that \(ng < |a| \) for each natural \(n \). It is easy to see that the ideal \(J = (g, a^\perp) \) generated by \(g \) and \(a^\perp \) is a proper ideal \((a \notin J)\) properly containing \(a^\perp \) \((g \in J, \text{ but } g \notin a^\perp)\). This is impossible, since \(a^\perp \) is maximal.

Finally, suppose that there exists \(g \in G^+ \) such that \(n|a| < g \) for all natural \(n \). In this case again we obtain a contradiction because the ideal \((a, a^\perp)\) generated by \(a \) and \(a^\perp \) is a proper ideal properly containing \(a^\perp \). Hence \(a \) is archimedean whenever \(a^\perp \) is maximal.

3. Applications

Definition 3. A commutative \(l \)-group \(G \) is said to be Stone if \(G = g^\perp \oplus g^{\perp\perp} \) for any \(g \in G \).

Definition 4. An element \(a \in G \) is said to be an atom \([7]\) if the conditions: \(|a| = g_1 + g_2, \ g_1 \perp g_2, \ g_1, g_2 \in G^+ \) imply that one of elements \(g_1, g_2 \) equals zero.
REMARK (i). Observe that the element 0 satisfies both the definitions of a discrete element and of an atom – this seems unnecessary, but we do not wish to cause confusion by deviating from the definitions in [6] and [7].

REMARK (ii). Comparing definitions 1 and 4 we conclude that every discrete element \(a \in G \) is an atom. The converse is in general not true (see example 1 in the last part of the paper). Nevertheless if \(G \) is Stone then the following holds:

Lemma 5. An element \(a \) of a Stone \(l \)-group \(G \) is an atom if and only if \(a \) is discrete.

Proof. According to the preceding remark it suffices to prove that if \(a \) is atomic and \(G \) is Stone then \(a \) is discrete. Since \(a \) is discrete whenever \(|a| \) is discrete, we may restrict ourselves to the case when \(a > 0 \).

Suppose that \(g_1, g_2 \in G^+, g_1 \perp g_2, g_1 > 0 \) and both are dominated by an atomic element \(a \). \(G \) is Stone, and so, by definition 3, \(G = g_1^\perp \oplus g_2^\perp \). Let \(p_1 \) and \(p_2 \) denote the projections on \(g_1^\perp \) and \(g_2^\perp \) respectively. We have then \(a = p_1(a) + p_2(a) \) with \(p_1(a) \perp p_2(a) \) and since \(a > 0 \), \(p_1(a), p_2(a) \in G^+ \). Thus definition 4 implies that either \(p_1(a) = 0 \) or \(p_2(a) = 0 \). But \(0 < g_1 \leq a \) and thus, by the properties of projections, \(0 < g_1 = p_1(g_1) \leq p_1(a) \). Therefore \(p_2(a) = 0 \). On the other hand in view of \(g_2 \perp g_1 \) we obtain \(0 \leq g_2 = p_2(g_2) \leq p_2(a) = 0 \). So \(g_2 = 0 \). Consequently, \(a \) is a discrete element as required.

As a consequence of lemma 5 and theorem 1 we obtain

Theorem 2. If \(a \) is a non-zero archimedean atom of a Stone \(l \)-group \(G \) then \(a^\perp \) is a maximal \(l \)-ideal of \(G \).

Theorem 3. Every \(\sigma \)-complete (and a fortiori every complete) \(l \)-group \(G \) is archimedean Stone \(l \)-group.

Proof. A direct proof of Theorem 3 will be given soon in [5]. It can also be easily deduced from known results.

Combining theorems 2 and 3 we obtain

Corollary. If \(a \) is a non-zero atom of a complete vector lattice \(E \) then \(a^\perp \) is a maximal \(l \)-ideal.

This proposition has been proved by S. Yamamuro in [7]. Lemma 3 of the same paper states that if \(M \) is a closed maximal ideal of a complete vector lattice \(E \), then there exists an atomic element \(a \in E \) such that \(M = a^\perp \). This statement may be essentially generalised. Namely we are able to prove:

Theorem 4. If \(M \) is a closed maximal \(l \)-ideal of an archimedean \(l \)-group \(G \) then there exists an atom \(a \in G \) such that \(M = a^\perp \).

Proof. The fact that \(M \) is closed \(l \)-ideal in an archimedean \(l \)-group implies, by Johnson and Kist [3] (see also Conrad and McAllister [2]) that \(M = M^\perp \).
Thus $M^\perp \neq \{0\}$ and there is an $a > 0$ in M^\perp. For this a we have $a^\perp \supseteq M^\perp = M$ with $a \not\in a^\perp$. Thus the maximality of M implies $a^\perp = M$. So, by Theorem 1 a is discrete and hence a is an atom.

Repeating the reason from [7], we obtain

Corollary. If G is an archimedean Stone l-group then G is atomic (the set of atoms is dense in G) if and only if the intersection of all closed maximal l-ideals of G equals zero, and G is non-atomic (there exist no atoms in G) if and only if there exist no closed maximal l-ideals in G.

4. **Examples**

1. Let $E = C[0, 1]$. The function $a \in E$:

$$a(t) = \begin{cases} 0 & \text{for } 0 \leq t \leq \frac{1}{2}, \\ t - \frac{1}{2} & \text{for } \frac{1}{2} < t \leq 1 \end{cases}$$

is an atom but it is not a discrete element. Thus, according to theorem 1, a^\perp is not maximal. Since $C[0, 1]$ is archimedean, theorem 2 implies that $C[0, 1]$ is not Stone.

2. Consider R^2 ‘lexicographically’ ordered, e.g. $(x, y) \geq 0$ iff (i) $x > 0$ or (ii) $x = 0$, $y \geq 0$. This space is totally ordered and hence every element $a \in R^2$ is an atom. On the other hand for any $0 \neq a \in R^2$ we have $a^\perp = \{0\}$ and thus for no atom a of R^2 is a^\perp maximal. This is so since no $a \in R^2$ is archimedean. The space in question is a Stone (non-archimedean) l-group. The ideal $M = \{(x, y) \in R^2 : x = 0\}$ is a maximal closed l-ideal, but as it was mentioned there exists no atom $a \in R^2$ such that $M = a^\perp$. This example shows that the condition that G is archimedean is essential in theorem 4.

3. Let $E = C[0, 1] \times R \times R^2$ with R^2 ordered as in example 2. An element $(x, y, z) \in E$ (with $x \in C[0, 1]$, $y \in R$ and $z \in R^2$) is said to be positive iff $x \geq 0$, $y \geq 0$, $z \geq 0$. E is non-Stone and non-archimedean vector lattice. Nevertheless the element $(0, a, 0)$ with $a > 0$ is an atom of E and $(0, a, 0)^\perp = \{(x, 0, z) : x \in C[0, 1], z \in R^2\}$ is a maximal l-ideal of E. This is so because $(0, a, 0)$ is a discrete archimedean element of E.

4. Let S be the l-group (in fact vector lattice) of all equivalence classes of simple functions defined on a totally σ-finite measure space (X, \mathcal{F}, μ). Then results of Masterson [4] pp. 469–470 imply that S is an archimedean Stone l-group which is not σ-complete.

This example shows that theorem 2 is an essential generalization of theorem 2 in [7].
References

