A NOTE ON COMMUTATIVE l-GROUPS

T. P. SPEED and E. STRZELECKI

(Received 25 June 1969)
Communicated by B. Mond

Introduction

Let G be a commutative lattice ordered group. Theorem 1 gives necessary and sufficient conditions under which a^\perp with $a \in G$ is a maximal l-ideal. A wide family of l-groups G having the property that the orthogonal complement of each atom is a maximal l-ideal is described. Conditionally σ-complete and hence conditionally complete vector lattices belong to the family. It follows immediately that if a is an atom in a conditionally complete vector lattice then a^\perp is a maximal vector lattice ideal. This theorem has been proved in [7] by Yamamuro. Theorem 2 generalizes another result contained in [7]. Namely we prove that if M is a closed maximal l-ideal of an archimedean l-group G then there exists an atom $a \in G$ such that $M = a^\perp$.

1. Notations and supplementary results

In a commutative l-group G with $a \in G$, we write G^+ for the set of positive elements; (a) for the l-ideal generated by a, i.e. $(a) = \{ g \in G : |g| \leq n|a| \text { for some } n \}$; (A) will denote the l-ideal generated by a subset A of G. Two elements $g_1, g_2 \in G$ are said to be disjoint (written $g_1 \perp g_2$) if $|g_1| \wedge |g_2| = 0$. We put $a^\perp = \{ g \in G : |g| \wedge |a| = 0 \}$. It is well known that a^\perp is an l-ideal. It follows easily that $(a) \cap a^\perp = \{ 0 \}$. Further if A is a subset of G then A^\perp is defined by $A^\perp = \cap \{ a^\perp : a \in A \}$ and $A^{\perp\perp}$ means $(A^\perp)^\perp$. In case $G = A^{\perp} \oplus A^{\perp\perp}$ the following properties of projections p_1 and p_2 onto A^\perp and $A^{\perp\perp}$ respectively are easily proved:

(i) if $g \geq 0$ then $p_1(g) \geq 0$ and $p_2(g) \geq 0$,

(ii) $p_i(a+b) = p_i(a)+p_i(b)$ for $i = 1, 2$

and

(iii) $p_i(na) = np_i(a)$, $i = 1, 2$.

To obtain these results it is sufficient to bear in mind that any l-group is a distributive lattice and that $g_1 + g_2 = g_1 \vee g_2 + g_1 \wedge g_2$. For other concepts used and not defined we refer to Birkhoff [1].
2. Discrete archimedean elements and maximal \(l \)-ideals

Definition 1. An element \(a \in G \) is said to be discrete [6] if the conditions \(0 \leq g_1 \leq |a|, 0 \leq g_2 \leq |a|, g_1 \perp g_2 \) imply that at least one of the elements \(g_1 \) and \(g_2 \) equals zero.

Definition 2. A non-zero element \(a \in G \) is said to be archimedean if for any \(0 \neq g \in G^+ \) there exist natural numbers \(n_1 \) and \(n_2 \) (depending on \(g \)) such that \(n_1 g < |a| \) (\(n_1 g \) is not less than \(|a| \)) and \(n_2 |a| < g \).

Remark. It is quite obvious that an \(l \)-group \(G \) is archimedean if and only if each of its non-zero elements is archimedean.

Lemma 1. The following statements are equivalent:

(i) \(a \in G \) is discrete,

(ii) if \(g_1 \perp g_2 \) then at least one of them belongs to \(a^\perp \).

Proof. Let \(a \) be discrete and let \(g_1 \perp g_2 \). In this case \(b_1 = |a| \wedge |g_1| \) and \(b_2 = |a| \wedge |g_2| \) are disjoint positive elements dominated by \(|a| \). Thus, by definition 1, at least one of them equals zero.

Conversely, suppose that \(0 \leq g_1 \leq |a|, 0 \leq g_2 \leq |a| \) and that \(g_1 \perp g_2 \). According to (ii), we may assume that e.g. \(g_1 \in a^\perp \), i.e. \(g_1 \wedge |a| = 0 \). But \(g_1 \wedge |a| = g_1 \) since \(g_1 \leq |a| \). Thus \(g_1 = 0 \).

Lemma 2. If \(a \in G \) is discrete then the \(l \)-ideal \((a)\) generated by \(a \) is totally ordered.

Proof. If \(g \in (a) \) then \(g^+ \) and \(g^- \) belong also to \((a)\). But \(g^+ \perp g^- \) and so, by lemma 1, at least one of the elements \(g^+ \) and \(g^- \) belongs to \(a^\perp \). If e.g. \(g^- \in a^\perp \), then \(g^- \in (a) \cap a^\perp \) and hence \(g^- = 0 \). Thus, in this case \(g = g^+ - g^- = g^+ \geq 0 \).

Lemma 3. If \(a \in G \) is a discrete archimedean element then \((a)\) is generated by any of its non-zero elements.

Proof. Let \(g \in (a) \) and \(g \neq 0 \). Since \(a \) is archimedean and \(|g| > 0 \), there exists \(n \) such that \(n|g| < |a| \). Since \(n|g| \in (a) \) and \((a)\) is totally ordered, by lemma 2, \(|a| \leq n|g| \). So \((a) \subseteq (g) \subseteq (a)\) and thus \((g) = (a)\).

Lemma 4. If \(a \in G \) is archimedean and discrete then

\[G = (a) \oplus a^\perp. \]

Proof. Since \(a \) is archimedean, for any \(g \in G^+ \) there exists \(n \) such that \(n|a| \leq g \). Consider the elements \(b_1 = (n|a| - g)^+ \) and \(b_2 = (n|a| - g)^- \). Since \(n|a| \leq g \), it follows that \(b_1 > 0 \). On the other hand \(b_1 \leq n|a| \) and hence \(b_1 \in (a) \).

Now \(b_1 \in (a) \) and \(b_1 \neq 0 \) imply that \(b_1 \notin a^\perp \). Taking into account that \(b_2 \perp b_1 \) and that \(a \) is discrete, by lemma 1, we infer that \(b_2 \in a^\perp \). Thus
A note on commutative l-groups

\[n|a|g = b_1 - b_2 \in (a) \oplus a^\perp. \]

But
\[n|a|\in (a) \subseteq (a) \oplus a^\perp, \]
and so
\[g \in (a) \oplus a^\perp. \]

For an arbitrary $g \in G$ we have $g = g^+ - g^-$ with $g^+, g^- \in (a) \oplus a^\perp$. Thus $g \in (a) \oplus a^\perp$ and so $(a) \oplus a^\perp = G$.

Theorem 1. For an element a belonging to a commutative l-group G the following statements are equivalent:

(i) a is archimedean and discrete,

(ii) a^\perp is a maximal l-ideal.

Proof of (i) \Rightarrow (ii). $a \neq 0$, by definition 2, so $a \notin a^\perp$ and hence a^\perp is a proper l-ideal. Suppose that M is an l-ideal of G properly containing a^\perp. Let $b \in M \setminus a^\perp$. Then $b_1 = |b| \in M \setminus a^\perp$. Since $b_1 \notin a^\perp$, $c = b_1 \land |a| > 0$. So, $0 < c \leq |a|$ and thus, by lemma 3 and 4,
\[G = (a) \oplus a^\perp = (c) \oplus a^\perp \subseteq M. \]

Consequently, $M = G$ and therefore a^\perp is maximal.

Proof of (ii) \Rightarrow (i). Since a^\perp is maximal and thus a proper ideal, it follows immediately that $a \neq 0$. Assume that $g_1 \perp g_2$, $0 < g_1 \leq |a|$ and $0 \leq g_2 \leq |a|$. In this case the l-ideal $J = (g_2, a^\perp)$ generated by g_2 and a^\perp is proper because $g_1 \notin J$. Since a^\perp is maximal and $a^\perp \subseteq J$, it follows that $J = a^\perp$. Consequently, $g_2 \in a^\perp$. Hence $g_2 \in (a) \cap a^\perp$ and so $g_2 = 0$. Thus a is discrete whenever a^\perp is maximal.

Let us assume now that there exists an element $0 < g \in G^+$ such that $ng < |a|$ for each natural n. It is easy to see that the ideal $J = (g, a^\perp)$ generated by g and a^\perp is a proper ideal ($a \notin J$) properly containing a^\perp ($g \in J$, but $g \notin a^\perp$). This is impossible, since a^\perp is maximal.

Finally, suppose that there exists $g \in G^+$ such that $n|a| < g$ for all natural n. In this case again we obtain a contradiction because the ideal (a, a^\perp) generated by a and a^\perp is a proper ideal properly containing a^\perp. Hence a is archimedean whenever a^\perp is maximal.

3. Applications

Definition 3. A commutative l-group G is said to be Stone if $G = g^\perp \oplus g^{\perp\perp}$ for any $g \in G$.

Definition 4. An element $a \in G$ is said to be an atom [7] if the conditions:
\[|a| = g_1 + g_2, \quad g_1 \perp g_2, \quad g_1, g_2 \in G^+ \]
imply that one of elements g_1, g_2 equals zero.
REMARK (i). Observe that the element 0 satisfies both the definitions of a discrete element and of an atom – this seems unnecessary, but we do not wish to cause confusion by deviating from the definitions in [6] and [7].

REMARK (ii). Comparing definitions 1 and 4 we conclude that every discrete element $a \in G$ is an atom. The converse is in general not true (see example 1 in the last part of the paper). Nevertheless if G is Stone then the following holds:

LEMMA 5. An element a of a Stone l-group G is an atom if and only if a is discrete.

PROOF. According to the preceding remark it suffices to prove that if a is atomic and G is Stone then a is discrete. Since a is discrete whenever $|a|$ is discrete, we may restrict ourselves to the case when $a > 0$.

Suppose that $g_1, g_2 \in G^+$, $g_1 \perp g_2$, $g_1 > 0$ and both are dominated by an atomic element a. G is Stone, and so, by definition 3, $G = g_1^+ \oplus g_2^+$. Let p_1 and p_2 denote the projections on g_1^+ and g_2^+ respectively. We have then $a = p_1(a) + p_2(a)$ with $p_1(a) \perp p_2(a)$ and since $a > 0$, $p_1(a), p_2(a) \in G^+$. Thus definition 4 implies that either $p_1(a) = 0$ or $p_2(a) = 0$. But $0 < g_1 \leq a$ and thus, by the properties of projections, $0 < g_1 = p_1(g_1) \leq p_1(a)$. Therefore $p_2(a) = 0$. On the other hand in view of $g_2 \perp g_1$ we obtain $0 \leq g_2 = p_2(g_2) \leq p_2(a) = 0$. So $g_2 = 0$. Consequently, a is a discrete element as required.

As a consequence of lemma 5 and theorem 1 we obtain

THEOREM 2. If a is a non-zero archimedean atom of a Stone l-group G then a^\perp is a maximal l-ideal of G.

THEOREM 3. Every σ-complete (and a fortiori every complete) l-group G is archimedean Stone l-group.

PROOF. A direct proof of Theorem 3 will be given soon in [5]. It can also be easily deduced from known results.

Combining theorems 2 and 3 we obtain

COROLLARY. If a is a non-zero atom of a complete vector lattice E then a^\perp is a maximal l-ideal.

This proposition has been proved by S. Yamamuro in [7]. Lemma 3 of the same paper states that if M is a closed maximal ideal of a complete vector lattice E, then there exists an atomic element $a \in E$ such that $M = a^\perp$. This statement may be essentially generalised. Namely we are able to prove:

THEOREM 4. If M is a closed maximal l-ideal of an archimedean l-group G then there exists an atom $a \in G$ such that $M = a^\perp$.

PROOF. The fact that M is closed l-ideal in an archimedean l-group implies, by Johnson and Kist [3] (see also Conrad and McAllister [2]) that $M = M^\perp$.

Downloaded from https://www.cambridge.org/core. IP address: 54.70.40.11, on 05 Dec 2018 at 23:55:47, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1446788700008314
Thus \(M^\perp \neq \{0\} \) and there is an \(a > 0 \) in \(M^\perp \). For this \(a \) we have \(a^\perp \supseteq M^{\perp \perp} = M \) with \(a \notin a^\perp \). Thus the maximality of \(M \) implies \(a^\perp = M \). So, by Theorem 1 \(a \) is discrete and hence \(a \) is an atom. Repeating the reason from [7], we obtain

Corollary. If \(G \) is an archimedean Stone \(l \)-group then \(G \) is atomic (the set of atoms is dense in \(G \)) if and only if the intersection of all closed maximal \(l \)-ideals of \(G \) equals zero, and \(G \) is non-atomic (there exist no atoms in \(G \)) if and only if there exist no closed maximal \(l \)-ideals in \(G \).

4. Examples

1. Let \(E = C[0, 1] \). The function \(a \in E \):

\[
a(t) = \begin{cases}
0 & \text{for } 0 \leq t \leq \frac{1}{2}, \\
\frac{t - \frac{1}{2}}{2} & \text{for } \frac{1}{2} < t \leq 1
\end{cases}
\]

is an atom but it is not a discrete element. Thus, according to theorem 1, \(a^\perp \) is not maximal. Since \(C[0, 1] \) is archimedean, theorem 2 implies that \(C[0, 1] \) is not Stone.

2. Consider \(R^2 \) ‘lexicographically’ ordered, e.g. \((x, y) \geq 0 \) iff (i) \(x > 0 \) or (ii) \(x = 0, y \geq 0 \). This space is totally ordered and hence every element \(a \in R^2 \) is an atom. On the other hand for any \(0 \neq (a, 0) \in R^2 \) we have \(a^\perp = \{0\} \) and thus for no atom \(a \) of \(R^2 \) is \(a^\perp \) maximal. This is so since no \(a \in R^2 \) is archimedean. The space in question is a Stone (non-archimedean) \(l \)-group. The ideal \(M = \{(x, y) \in R^2 : x = 0 \} \) is a maximal \(l \)-ideal, but as it was mentioned there exists no atom \(a \in R^2 \) such that \(M = a^\perp \). This example shows that the condition that \(G \) is archimedean is essential in theorem 4.

3. Let \(E = C[0, 1] \times R \times R^2 \) with \(R^2 \) ordered as in example 2. An element \((x, y, z) \in E \) (with \(x \in C[0, 1], y \in R \) and \(z \in R^2 \)) is said to be positive iff \(x \geq 0, y \geq 0, z \geq 0 \). \(E \) is non-Stone and non-archimedean vector lattice. Nevertheless the element \((0, a, 0) \) with \(a > 0 \) is an atom of \(E \) and \((0, a, 0)^\perp = \{(x, 0, z) : x \in C[0, 1], z \in R^2 \} \) is a maximal \(l \)-ideal of \(E \). This is so because \((0, a, 0) \) is a discrete archimedean element of \(E \).

4. Let \(S \) be the \(l \)-group (in fact vector lattice) of all equivalence classes of simple functions defined on a totally \(\sigma \)-finite measure space \((X, \mathcal{F}, \mu) \). Then results of Masterson [4] pp. 469–470 imply that \(S \) is an archimedean Stone \(l \)-group which is not \(\sigma \)-complete.

This example shows that theorem 2 is an essential generalization of theorem 2 in [7].
References