ON THE MATHIEU GROUP M_{23}

N. BRYCE

(Received 4 March 1969; revised 25 November 1969)

Communicated by G. E. Wall

1. Introduction

Until 1965, when Janko [7] established the existence of his finite simple group J_1, the five Mathieu groups were the only known examples of isolated finite simple groups. In 1951, R. G. Stanton [10] showed that M_{12} and M_{24} were determined uniquely by their order. Recent characterizations of M_{22} and M_{23} by Janko [8], M_{22} by D. Held [6], and M_{11} by W. J. Wong [12], have facilitated the unique determination of the three remaining Mathieu groups by their orders. D. Parrott [9] has so characterized M_{22} and M_{11}, while this paper is an outline of the characterization of M_{23} in terms of its order.

MAIN THEOREM. Let G be a non-abelian simple group of order 10,200,960. Then G is isomorphic to M_{23}.

2. Some known results

1. The results used in the proof of the main theorem were obtained by R. Brauer [1], [2], [3], H. F. Tuan [4] and applied by R. G. Stanton [10], D. Parrott [9] and S. K. Wong [11]. Some of the important theorems are given here without proof.

2. If G is a group of order $|G|$ containing k classes K_1, \ldots, K_k of conjugate elements, then there exists exactly k distinct irreducible characters $\zeta_1(\eta), \ldots, \zeta_k(\eta)$ where η denotes a variable element of G. Let p be a prime which divides $|G|$, then the k characters are distributed into a certain number of p-blocks $B_1(p), B_2(p), \ldots$. The principal p-block $B_1(p)$ is always taken as the block containing the 1-character $\zeta_1(\eta) = 1$ for all $\eta \in G$. Suppose $p^2 \nmid |G|$; if for all characters ζ_μ of $B_\mu(p)$ the degrees z_μ of ζ_μ is divisible by p^σ while at least one of the degrees z_μ is not divisible by $p^{\sigma+1}$ then $B_\mu(p)$ is a block of defect $(\gamma-\alpha)$, or type α. In particular if $p \nmid |G|$ a p-block $B_\sigma(p)$ is of defect 0 (highest type) or of defect 1 (lowest type).

An element g is p-regular if its order is prime to p, otherwise g is called p-singular.
3. We assume in this section that \(p \nmid |G| \). Let \(G_p \) be a Sylow \(p \)-subgroup of \(G \). Then \(C_G(G_p) = G_p \times V_p \). If \(V_p \) has \(l \) conjugate classes in the group \(N_G(G_p) \) then \(G \) has \(l \) blocks of defect 1. Let \(t \) denote the number of conjugate classes of elements of order \(p \) in \(G \). To each of the \(l \) \(p \)-blocks \(B_r(p) \) of defect 1 there corresponds a certain multiple \(t_o \) of \(t \), where \(t_o | p - 1 \), such that \(B_o(p) \) has \((p - 1)/t_o \) characters \(\zeta_\mu \) which are \(p \)-conjugate only to themselves and one exceptional family of \(t_o \) \(p \)-conjugate characters.

Theorem 2.1 ([1]. Theorem 11). For the block \(B_1(p) \), we have \(t_1 = t \). The degrees \(z_\mu \) of the characters \(\zeta_\mu \) of \(B_1(p) \) satisfy:

\[
(2.1) \quad z_\mu \equiv \delta_\mu \equiv \pm 1 \pmod{p}, \quad 1 \leq \mu \leq \omega = (p - 1)/t
\]

\[
(2.2) \quad tz_{\omega + 1} \equiv \delta_{\omega + 1} \equiv \pm 1 \pmod{p},
\]

where \(z_{\omega + 1} \) is the degree of a representative of the exceptional family.

\[
(2.3) \quad \sum_{\mu = 1}^{\omega + 1} \delta_\mu z_\mu = 0 \quad (\delta_1 = z_1 = 1).
\]

Moreover, for \(p \)-singular elements \(P \) of \(G \) we have

\[
\zeta_\mu(P) = \delta_\mu \quad (1 \leq \mu \leq \omega).
\]

Corollary 1. Let \(G \) be a group of order \(pq^bq^* \) where \(p \) and \(q \) are distinct primes, \(b \) and \(q^* \) positive integers and \((pq, q^*) = 1\). Suppose that \(G \) has an element of order \(pq \), then \(q^* \) cannot divide the degree of any irreducible character \(\zeta_\mu \) in \(B_1(p) \).

We shall say a character \(\zeta \) of \(B_1(p) \) is of type 0 for the prime \(p \) if \(\zeta(1) \equiv 1 \pmod{p} \) or if \(\zeta \) belongs to the exceptional family of \(B_1(p) \) and \(\zeta(1) \equiv -(p - 1)/t \pmod{p} \); \(\zeta \) is of type 1 if \(\zeta(1) \equiv -1 \pmod{p} \) or if \(\chi \) belongs to the exceptional family and \(\zeta(1) \equiv +(p - 1)/t \pmod{p} \).

Theorem 2.2 ([10] Lemma 6). Let \(G \) be a group of order \(|G| \). Assume \(p \) and \(p' \) are distinct primes which divide \(|G| \) to the first power only and that \(G \) has no elements of order \(pp' \). Let \(a_{ij} \) be the number of characters in \(B_1(p) \cap B_1(p') \) which are of type \(i \) for \(p \) and type \(j \) for \(p' \), the indices \(i \) and \(j \) being 0 or 1 as described above. Then

\[
a_{00} + a_{11} = a_{01} + a_{10}.
\]

It is clear that a character \(\zeta \) in \(B_1(p) \cap B_1(p') \) cannot be exceptional for both primes \(p \) and \(p' \).

Theorem 2.3 ([4], Lemma 1). Let \(G \) be a finite group which is identical with its commutator group \(G' \), and assume that the principal \(p \)-block \(B_1(p) \) contains an irreducible faithful character \(\zeta \) of degree \(z < 2p \). Then the order of the centralizer \(C_G(G_p) \) of a Sylow \(p \)-subgroup \(G_p \) of \(G \) is a power of \(p \).
3. The Sylow 23-normalizer of G

We assume from now on, that G is an non-abelian finite simple group of order $10,200,960 = 2^7 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11 \cdot 23$.

Let S_{23} be a Sylow 23-subgroup of G and let $n_{23} = |G : N_G(S_{23})|$. Then n_{23} has the following possibilities: (1) $2^7 \cdot 3^2 \cdot 5 \cdot 7$, (2) $2^6 \cdot 5 \cdot 11$, (3) $2^6 \cdot 3$, (4) $2^4 \cdot 3 \cdot 5 \cdot 7$, (5) $2^3 \cdot 3^2 \cdot 7 \cdot 11$, (6) $2^3 \cdot 3$, (7) $2 \cdot 3^2 \cdot 5 \cdot 11$, (8) $2 \cdot 5 \cdot 7$, (9) $3 \cdot 7 \cdot 11$.

We know that G has either 1, 2, or 11 classes of elements of order 23 according as t for prime 23 (written as t_{23}) is 1, 2, or 11. Using equations (2.1), (2.2), and (2.3), and Theorem 2.3 $t_{23} = 11$ is ruled out, consequently $|N_G(S_{23})/(C_G(S_{23}))| = 11$ or 22. Hence cases (2), (5), (7), and (9) above, for n_{23} are not possible. The impossibility of cases (4) and (8) follows almost as quickly, because otherwise G has no elements of order $5 \cdot 23$, $7 \cdot 23$, or $11 \cdot 23$ thus facilitating the use of Stanton’s block intersection theorem (Theorem 2.2). Suppose $n_{23} = 2^3 \cdot 3$, case (6). Then $|N_G(S_{23})| = 2^4 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 23$. G then contains elements of order $2 \cdot 23$, $3 \cdot 23$, $5 \cdot 23$, and $7 \cdot 23$. From this it follows that 528 is the only possible degree of a nonexceptional character and 264 the only possible exceptional degree. But both of these degrees are even, and for $(2 \cdot 3)$ to be satisfied $B_1(23)$ must contain a character of odd degree. Case (3) is ruled out similarly. Hence we have proved

Lemma 3.1. The Sylow 23-normalizer $N_G(S_{23})$ is a Frobenius group of order $23 \cdot 11$.

Corollary 3.1. The principal 23-block $B_1(23)$ is the only 23-block of defect 1, and consists of 11 non-exceptional characters and a family of 2 exceptional characters. All other characters of G have degrees divisible by 23.

4. The Sylow 11-normalizer of G

Let S_{11} be a Sylow 11-subgroup of G and $n_{11} = |G : N_G(S_{11})|$. Lemma 3.1 reduces the possible values for n_{11} to the following: (1) $3^2 \cdot 5 \cdot 23$, (2) $2 \cdot 3 \cdot 5 \cdot 7 \cdot 23$, (3) $2^2 \cdot 3 \cdot 23$, (4) $2^2 \cdot 7 \cdot 23$, (5) $2^3 \cdot 3^2 \cdot 5 \cdot 7 \cdot 23$, (6) $2^4 \cdot 3^2 \cdot 23$, (7) $2^5 \cdot 3 \cdot 7 \cdot 23$, (8) $2^6 \cdot 5 \cdot 23$, (9) $2^7 \cdot 3^2 \cdot 7 \cdot 23$.

Using the same methods as for the prime 23, one proves quickly that $t_{11} \neq 5$ and so $|N_G(S_{11})/(C_G(S_{11}))| = 5$ or 10. This in turn eliminates cases (1), (2), (5) and (8), from the above list for n_{11}.

Suppose $|N_G(S_{11})| = 2^5 \cdot 3 \cdot 5 \cdot 7 \cdot 11$, case (3). Then $|C_G(S_{11})| = 2^5 \cdot 3 \cdot 7 \cdot 11$ or $2^4 \cdot 3 \cdot 7 \cdot 11$.

If $|C_G(S_{11})| = 2^5 \cdot 3 \cdot 7 \cdot 11$, then $t_{11} = 2$ and $B_1(11)$ consists of 5 nonexceptional characters $\chi_1, \chi_2, \chi_3, \chi_4$ and χ_5 and a family of 2 exceptional charac-
ters with representative \(\chi_6 \). Since \(G \) has elements of order \(2 \cdot 11, 3 \cdot 11 \) and \(7 \cdot 11 \), the possible degrees for the non-exceptional characters are

\[
\begin{array}{ccc}
1, & 23, & 276 \\
230, & 736, & 2760 \\
\end{array}
\equiv +1 \pmod{11}
\equiv -1 \pmod{11}
\]

while the possible degrees for \(\chi_6 \) are

\[
\begin{array}{ccc}
115, & 368, & 1380 \\
138, & 160, & 1920 \\
\end{array}
\equiv +5 \pmod{11}
\equiv -5 \pmod{11}
\]

Then the degrees in \(B_1(23) \cap B_1(11) \) are 1 and 160, and so \(\chi_6(1) = 160 \). Applying theorem 2.2 to \(B_1(11) \cap B_1(5) \) we see that only degrees 1 and 736 lie in this intersection. Let \(\chi_2(1) = 736 \). Substitute the values 1, 160 and 736 in the degree equation (2.3). Then

\[
\delta_3 z_3 + \delta_4 z_4 + \delta_5 z_5 = -(1-736+160) = 575
\]

and so \(z_3 = 23, z_4 = z_5 = 276 \). The characters \(1_G, \chi_2, \chi_3 \) and \(\chi_6 \) are real on 11-regular elements, but this implies that in the tree for \(B_1(11) \), two characters having the same sign \(\delta = +1 \) are joined by one edge contrary to a result of Brauer ([2], Theorem 5).

Thus \(|C_G(S_{11})| = 2^4 \cdot 3 \cdot 7 \cdot 11 \), and so \(t_{11} = 1 \) and \(B_1(11) \) consists of 10 non-exceptional characters whose possible degrees are given by Table I. But then the only character which could lie in the principal 23-block and the principal 11-block is the principal character which is impossible.

Using similar arguments cases (4), (6) and (8) are removed and so we have

Lemma 4.1. The Sylow 11-normalizer \(N_G(S_{11}) \) is a Frobenius group of order \(5 \cdot 11 \).

Corollary 4.1. The principal 11-block \(B_1(11) \) is the only 11-block of defect 1. All other characters of \(G \) have degrees divisible by 11, and lie in 11-blocks of defect 0.

5. The determination of degrees and blocks of characters of \(G \)

We know now that \(G \) has no elements of order \(23 \cdot 11, 23 \cdot 7, 23 \cdot 5, 23 \cdot 3, 11 \cdot 7, 11 \cdot 5 \) or \(11 \cdot 3 \). Applying Theorem 2.2 to the intersection of \(B_1(23) \) and \(B_1(5) \) we see that both blocks contain a character of degree 896. This character is then the exceptional character for \(B_1(11) \) and using the degree equation (2.3) together with Theorem 2.2, we have
Lemma 5.1. The principal 11-block $B_1(11)$ contains only characters with the following degrees 1, 45, 45, 1035, 230, 896. All other characters of G have degrees which are divisible by 11.

Since a character of degree $896 = 2^7 \cdot 7$ lies in $B_1(5)$ then G has no elements of order $7 \cdot 5$, or $2 \cdot 5$. As shown earlier, G has no elements of order $23 \cdot 5$ or $11 \cdot 5$ and so a Sylow 5-subgroup S_5 of G can be centralized only by elements of order 3 or 9. Further $|N_G(S_5)/C_G(S_5)| \leq 4$, whence $|N_G(S_5)| = 2 \cdot 5$ or $2^2 \cdot 3 \cdot 5$. But in $B_1(5)$ we have already 3 non-exceptional characters and so $|N_G(S_5)| = 2^2 \cdot 3 \cdot 5$. Hence $t_5 = 1$ and $B_1(5)$ contains exactly 5 characters. These are found easily using equation (2.3).

Lemma 5.2. $|N_G(S_5)| = 2^2 \cdot 3 \cdot 5$. $B_1(5)$ consists of 5 characters with the following degrees: 1, 896, 896, 231, 2024.

Using the same methods we have

Lemma 5.3. The principal 23-block $B_1(23)$ contains only characters with the following degrees: 1, 22, 45, 45, 231, 2024, 896, 896, 990, 990 and 770. All other degrees of characters of G are divisible by 23.

Lemma 5.4. $|N_G(S_7)/C_G(S_7)| = 3$. The principal 7-block $B_1(7)$ contains only characters with the following degrees: 1, 2024, 1035 and 990.

We have determined 16 characters of G, the sum of squares of degrees is $(10200960-64009)$. Further, the degrees of the remaining characters must be divisible by both 23 and 11. However $(11 \cdot 23)^2 = 64009$, so G has only one more character and that is of degree $253 = 11 \cdot 23$.

Lemma 5.5. G has 17 characters with the following degrees: 1, 22, 45, 45, 230, 231, 231, 231, 231, 253, 770, 770, 896, 896, 990, 990, 1035 and 2024.

It is thus clear there are two 7-blocks of defect 1, and hence two conjugate classes of 7-regular elements of $C_G(S_7)$ in $N_G(S_7)$. Further since $|N_G(S_7)/C_G(S_7)| = 3$, $|N_G(S_7)|$ has the following possible orders, $27 \cdot 3 \cdot 7$, $2^4 \cdot 3 \cdot 7$ and $2 \cdot 3 \cdot 7$, but only when $|N_G(S_7)| = 2 \cdot 3 \cdot 7$, are there the required two classes of 7-regular elements. Finally, there is only one 3-block of defect 2 and so a Sylow 3-subgroup is self centralizing.

6. Conclusion

The group G has 17 conjugate classes and we have so far determined 16 of them, as is shown in the table below.

<table>
<thead>
<tr>
<th>Order of element</th>
<th>1</th>
<th>23</th>
<th>11</th>
<th>7</th>
<th>14</th>
<th>5</th>
<th>15</th>
<th>6</th>
<th>4</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of classes</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
There is at least one class of involutions, and at least one class of elements of order 3 with one class to be determined.

By Sylow theorems, the order of the normaliser of a Sylow 3-subgroup of G is either 2^23^2 or $2^4 \cdot 3^2$, and consequently a Sylow 3-subgroup is elementary abelian. Suppose G has two classes of elements of order 3. Let R be a Sylow 3-subgroup of G. We know that R is self centralising and that $|N_G(R)| = 2^2 \cdot 3^2$, and so $N_G(R)/R$ is cyclic of order 4. Let Q be a subgroup of order 3 in R and $C_G(Q)$ the centraliser of Q in G. Then since $N_{C_G(Q)}(R) = R$, we have by Burnside’s result ([5], p. 252) that $C_G(Q)$ has a normal 3-complement, say N. Let \bar{Q} be the subgroup of order 3 of R which is centralised by an element of order 5.

Then $C_G(\bar{Q}) = R\bar{N}$ where \bar{N} is the normal 3-complement in $C_G(\bar{Q})$ and $5||\bar{N}|$. But then by the Frattini argument ([5], p. 12), $9||N_G(G_5)||$ where G_5 is a Sylow 5-subgroup of G, which is false. Hence G has only one class of elements of order 3 and so we have proved

Lemma 6.1. The group G has one class of elements of order 3. A Sylow 3-subgroup is normalised by a semi-dihedral group of order 16, and so G has only one class of involutions and one class of elements of order 8.

Let t be the involution in the normaliser of a Sylow 7-subgroup G_7 of G, and consider the centraliser of t in G, $C_G(t)$. It follows immediately that $N_G(G_7) \subset C_G(t)$. Since G has no elements of order $2 \cdot 23$, $2 \cdot 11$, or $2 \cdot 5$, then $C_G(t)$ has order $2^\alpha \cdot 3^\beta \cdot 7$, where $\alpha \leq 7$ and $\beta \leq 2$. We know that G has only one class of involutions, and because $|C_G(t) : N_G(G_7)| \equiv 1(\text{mod } 7)$, the order of $C_G(t)$ is $2^7 \cdot 3 \cdot 7$.

Suppose the group $C_G(t)$ is soluble. Let G_2 be a Sylow 2-subgroup of G which is contained in $C = C_G(t)$. Let $O_2(C)$ be the maximal normal subgroup of 2-power order in C. Then the factor group $C/O_2(C)$ is soluble. Let \bar{N} be a minimal normal subgroup of $C/O_2(C)$. Then \bar{N} has order 7 and so $O_2(C) = G_2$. But then $C_G(t)$ is 2-closed and so by a result of Suzuki ([5], p. 466), G is one of known list of finite simple groups. However, none of these have the order 10, 200, 960, a contradiction.

Hence we conclude that $C_G(t) = C$ is insoluble. Write $E = O_2(C)$. Because we must have $|C/E : N_{C/E}(G_7)| \equiv 1(\text{mod } 7)$ where G_7 is a Sylow 7-subgroup in C/E, we have $|E| = 2$ or 16.

Suppose we have $|E| = 2$. Since $2^6 \cdot 3 \cdot 7$ is not the order of any simple group, C/E contains a normal subgroup. Let \bar{N} be a minimal normal subgroup of C/E, then \bar{N} is either elementary abelian or a direct product of isomorphic simple groups. Clearly \bar{N} cannot be an elementary abelian 2-group. Further, \bar{N} cannot be of order 3 for then G would have elements of order 21, and \bar{N} cannot be of order 7 for this would imply that $|N_G(G_7)| > 2 \cdot 3 \cdot 7$. So we conclude that $|\bar{N}| = 2^3 \cdot 3 \cdot 7$, and $\bar{N} \simeq PSL(2, 7)$. Write $N = O_2(C)\bar{N}$, then we have $N < C = C_G(t)$. Let N_7
be a Sylow 7-subgroup of N. By the Frattini argument $C = NN_C(N_7)$ and so $C/N \cong N_C(N_7)/N_N(N_7)$. But then order of the normaliser of a Sylow 7-subgroup is greater than $2 \cdot 3 \cdot 7$, which is a contradiction.

Thus we conclude that $|O_2(C)| = 16$. Since $C_G(t)$ is insoluble, $C_G(t)$ is an extension of $E = O_2(C)$ of order 16 by $PSL(2, 7)$. Suppose that $E = O_2(C)$ is non-abelian. Let $Z(E)$ be the centre of E. It follows that $|Z(E)| \neq 4$ for otherwise the order of the centraliser of a Sylow 7-subgroup in C is $4 \cdot 7$. Hence $Z(E) = \langle t \rangle$. Let $\Phi(E)$ be the Frattini subgroup of E, then $\Phi(E)$ has order 4 or 2. If $|\Phi(E)| = 4$ then $\Phi(E) \triangleleft C_G(t)$ and again we have that a Sylow 7-subgroup of C has a normalizer of order 4.7. So $\Phi(E) = Z(E) = E' = \langle t \rangle$ and hence E is an extra special 2-group, but this is impossible as $|E| = 2^4$. So E is abelian.

By a result of Suzuki ([5], p. 177) a Sylow 7-subgroup H of C acts as an automorphism group of E, and so $E = \langle t \rangle Z$ where $\langle t \rangle \cap Z = \langle 1 \rangle$ and Z is an H-admissible subgroup of E. The group Z is then of order 8 and so is elementary abelian. Hence E is elementary abelian.

Let T be a Sylow 2-subgroup of $C_G(t)$. Clearly the centre of T, $Z(T)$, is contained in E. If $Z(T)$ is of order 8, then at least two involutions say z and z' in $Z(T) \setminus \langle t \rangle$ are conjugated in C by an element of order 7. But this contradicts the result of Burnside ([5], p. 240) since they are not conjugate in $N_C(T) = T$. Suppose $Z(T)$ is of order 4 and let z be an element in $E \setminus \langle t \rangle$. Since z has 7 conjugates in C, $C_C(z)$ has order $2^7 \cdot 3$. Let Q be a Sylow 3-subgroup of $C_C(z)$ and let \tilde{T} be a Sylow 2-subgroup of $C_C(z)$. It is clear that \tilde{T} is also a Sylow 2-subgroup of G. We have $E \lhd \tilde{T}$ and so $\langle t, z \rangle = Z(\tilde{T}) = C_E(Q)$. Further we have $|C_E(Q)| = 2^2 \cdot 3$ and hence $N_C(Q)$ has order $2^2 \cdot 3$.

Let F^* be a Sylow 2-subgroup of $C_G(Q)$ which contains $\langle t, z \rangle$ and suppose by way of contradiction that $\langle t, z \rangle < F^*$ has a subgroup F_1 which contains $\langle t, z \rangle$ properly and $|F_1 : \langle t, z \rangle| = 2$. Since F_1 does not lie in C, F_1 is contained in $C_G(z)$ or in $C_G(tz)$ and so $|C_{C_E}(Q)| > 2^2 \cdot 3$ or $|C_{C_E}(Q)| > 2^2 \cdot 3$. But G has only one class of involutions and so this is impossible. Hence $C_G(Q)$ has order $2^2 \cdot 3^2$. 5. By a result of Gaschütz ([5], p. 26) Q splits in $C_G(Q)$ and so we may write $C_G(Q) = Q \times L$ where L is a group of order 60. From the order of the normalizer of a Sylow 5-subgroup of G (lemma 5.6) it follows that L is insoluble, and so L is simple. But then $L \cong A_5$ where A_5 is the alternating group on 5 letters. By a result of Gaschütz we may write $N_G(Q) = QK$ where $|K| = 2^3 \cdot 3 \cdot 5$, and so $L \lhd K$, where $L \cong A_5$ and $L \subseteq C_G(Q)$.

Let F be the Sylow 2-subgroup of $N_G(Q)$, then F must be Abelian since a dihedral group of order 8 cannot normalize a group of order 3. Consequently $K = L \times S$ where S is a group of order 2. But then G has elements of order 10, which is impossible. Hence a Sylow 2-subgroup of G has cyclic centre of order 2. We have proved:

Lemma 6.2. The centralizer C of an involution t in the centre of a Sylow
2-subgroup T of G is an extension of an elementary abelian group E of order 16 by a group H, $H \cong PSL(2, 7)$. Further the centre of T is cyclic.

It now follows from a result of Janko [8] that $G \cong M_{23}$.

References

Monash University
Melbourne