CONCERNING NON-MEASURABLE SUBSETS OF A GIVEN MEASURABLE SET

H. W. PU

(Received 12 December 1969)

Communicated by B. Mond

Let \(R, \mu \) and \(M_\mu \) denote the set of real numbers, Lebesgue outer measure and the class of Lebesgue measurable subsets of \(R \) respectively. It is easy to prove that the complement \(E^c \) of \(E \in M_\mu \) is a set of Lebesgue measure zero if the inequality \(\mu(E \cap I) \geq \delta \mu(I) \) holds for some \(\delta > 0 \) and all intervals \(I \) of \(R \). However, in [1], Hewitt raised a problem whether the result is still true if \(E \) is not a priori measurable set. In this paper, a negative answer to this question is given through a counter-example. Also, it is proved that for a given set \(E \in M_\mu \) with \(\mu(E) > 0 \) there is a non-measurable subset \(A \) of \(E \) satisfying \(\mu(A) = \mu(E) \).

Lemma 1. Let \(E \in M_\mu \) with \(\mu(E) < \infty \) and \(A \subset E \). Then \(A \in M_\mu \) if and only if \(\mu(E) = \mu(A) + \mu(E - A) \).

For the proof, the reader is referred to [2].

Lemma 2. If \(\{E_i\} \) is a sequence of pairwise disjoint sets of \(M_\mu \) each having positive measure and \(\{A_i\} \) is a sequence of non-measurable sets such that \(A_i \subset E_i \) for each \(i \), then \(\bigcup_{i=1}^{\infty} A_i \) is non-measurable and \(\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i) \).

Proof. The non-measurability for \(\bigcup_{i=1}^{\infty} A_i \) is obvious. We need only prove

\[
\mu(\bigcup_{i=1}^{\infty} A_i) \geq \sum_{i=1}^{n} \mu(A_i)
\]

for every \(n \), from which \(\mu(\bigcup_{i=1}^{\infty} A_i) \geq \sum_{i=1}^{\infty} \mu(A_i) \) follows, and the conclusion is obtained in view of subadditivity of \(\mu \). By monotoneity of \(\mu \),

\[
\mu(\bigcup_{i=1}^{\infty} A_i) \geq \mu(\bigcup_{i=1}^{n} A_i)
\]

for all \(n \). We shall show that \(\mu(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} \mu(A_i) \) by induction. The equality is trivial for \(n = 1 \). Assume that it holds for \(n = k \). Since \(A_{k+1} \subset E_{k+1} \) and \(\bigcup_{i=1}^{k} A_i \subset E_k \), measurability of \(E_{k+1} \) implies that

\[
\mu(\bigcup_{i=1}^{k+1} A_i) = \mu(\bigcup_{i=1}^{k} A_i) + \mu(A_{k+1}) = \sum_{i=1}^{k+1} \mu(A_i)
\]

The last equality follows by inductive hypothesis. The proof is now completed.
Lemma 3. If $E \in M_\mu$ with $\mu(E) > 0$, then there is a non-measurable subset A of E such that $\mu(A) \geq \frac{1}{2} \mu(E)$.

Proof. The existence of a non-measurable subset Q of E is well-known.

If $0 < \mu(E) < \infty$, then by lemma 1, $\mu(E) < \mu(Q) + \mu(E - Q)$. Thus we have $\mu(Q) > \frac{1}{2} \mu(E)$ or $\mu(E - Q) > \frac{1}{2} \mu(E)$. Since $Q \notin M_\mu$, $E - Q \notin M_\mu$. The conclusion follows.

If $\mu(E) = \infty$, then by σ-finiteness of μ, there is a sequence of pairwise disjoint sets $\{E_i\}$ of M_μ such that $E = \bigcup_{i=1}^{\infty} E_i$ and $\mu(E_i) < \infty$ for each i (we may assume $0 < \mu(E_i) < \infty$). By what we have just shown, there is a non-measurable subset A_i of E_i for each i such that $\mu(A_i) > \frac{1}{2} \mu(E_i)$. Let $A = \bigcup_{i=1}^{\infty} A_i$. By lemma 2, $A \notin M_\mu$ and

$$\mu(A) = \sum_{i=1}^{\infty} \mu(A_i) \geq \frac{1}{2} \sum_{i=1}^{\infty} \mu(E_i) = \frac{1}{2} \mu(E).$$

Theorem. If $E \in M_\mu$ with $\mu(E) > 0$, then there is a non-measurable subset A of E such that $\mu(A) = \mu(E)$.

Proof. Case 1. $0 < \mu(E) < \infty$. We define $r_0 = \mu(E)$ and $B_0 = \emptyset$.

By lemma 3, there is $A_1 \subseteq E$ such that $A_1 \notin M_\mu$ and $\mu(A_1) \geq \frac{r_0}{2}$. Also, there is $B_1 \subseteq E$ such that $E - B_0 \supseteq B_1 \supseteq A_1$ and $\mu(B_1) = \mu(A_1)$. Let $r_1 = \mu(E - B_1)$. Clearly $0 \leq r_1 \leq \frac{r_0}{2}$.

If $r_1 = 0$, then we are through. Assume $r_1 > 0$. By the same reason, there are $A_2 \notin M_\mu$ and $B_2 \subseteq E$ such that $A_2 \subseteq B_2 \subseteq E - \bigcup_{k=0}^{r_1} B_k$ and $\mu(B_2) = \mu(A_2) \geq \frac{r_1}{2}$. Let $r_2 = \mu(E - \bigcup_{k=0}^{r_2} B_k)$, then $0 \leq r_2 \leq \frac{r_1}{2} \leq \frac{r_0}{2^2}$.

Suppose $\{A_j\}_{j=1}^{\infty}$, $\{B_j\}_{j=0}^{\infty}$ and $\{r_j\}_{j=0}^{\infty}$ have been defined such that $A_j \notin M_\mu$, $B_j \in M_\mu$, $A_j \subseteq B_j \subseteq E - \bigcup_{k=0}^{r_j} B_k$,

$$\mu(B_j) = \mu(A_j) \geq r_{j-1}/2, r_j = \mu(E - \bigcup_{k=0}^{j} B_k) \leq \frac{r_0}{2^j} \text{ for } j = 1, 2, \cdots n.$$

Clearly $\{B_j\}_{j=1}^{n}$ is pairwise disjoint. By lemma 2, $\bigcup_{j=1}^{n} A_j \notin M_\mu$ and

$$\mu(\bigcup_{j=1}^{n} A_j) = \sum_{j=1}^{n} \mu(A_j) = \sum_{j=1}^{n} \mu(B_j) = \mu(\bigcup_{j=1}^{n} B_j) = \mu(E) - r_n.$$

If $r_n = 0$, we may take $A = \bigcup_{j=1}^{n} A_j$. Otherwise, $\mu(E - \bigcup_{k=0}^{n} B_k) = r_n > 0$ and there are $A_{n+1} \notin M_\mu$, $B_{n+1} \in M_\mu$ such that $A_{n+1} \subseteq B_{n+1} \subseteq E - \bigcup_{k=0}^{n} B_k$,

$$\mu(B_{n+1}) = \mu(A_{n+1}) \geq r_n/2, r_{n+1} = \mu(E - \bigcup_{k=0}^{n+1} B_k) \leq \frac{r_0}{2^{n+1}}.$$

If this process does not terminate, we obtain infinite sequences $\{A_i\}$, $\{B_i\}$ and $\{r_i\}$. Let $A = \bigcup_{i=1}^{\infty} A_i$. By lemma 2 again, $A \notin M_\mu$ and

$$\mu(A) = \sum_{i=1}^{\infty} \mu(A_i) = \sum_{i=1}^{\infty} \mu(B_i) = \mu(\bigcup_{i=1}^{\infty} B_i).$$
Thus
\[\mu(E) \geq \mu(A) \geq \mu\left(\bigcup_{i=1}^{n} B_i \right) = \mu(E) - r_n \geq \mu(E)(1 - 1/2^n) \]
for all \(n \). It follows that \(\mu(A) = \mu(E) \).

Case 2. \(\mu(E) = \infty \). By \(\sigma \)-finiteness of \(\mu \), there is a sequence of pairwise disjoint sets \(\{E_i\} \) of \(M_{\mu} \) such that \(E = \bigcup E_i \), \(0 < \mu(E_i) < \infty \) for each \(i \). The conclusion follows easily from case 1 and lemma 2.

Finally, we proceed to the construction of a counter-example. Let \(E = [0, 1] \).

By the above theorem, there is a \(Q \subset E \) such that \(Q \notin M_{\mu} \) and \(\mu(Q) = \mu(E) = 1 \).

Let \(A = (-\infty, 0) \cup Q \cup (1, \infty) \).

Obviously \(A \notin M_{\mu} \), and therefore \(\mu(A^c) \neq 0 \). We assert that \(\mu(A \cap I) = \mu(I) \) for every interval \(I \) of \(R \).

Case 1. \(I \in [0, 1] \).

1.1. \(0 \in I \) or \(1 \in I \): There is a subinterval \(J \) of \([0, 1] \) such that \(I \cap J = \emptyset \), \(I \cup J = [0, 1] \), where \(J \) may be empty or a singleton. Thus
\[1 = \mu(Q) = \mu(Q \cap I) + \mu(Q \cap I^c) = \mu(Q \cap I) + \mu(Q \cap J). \]

If \(\mu(Q \cap I) < \mu(I) \), then we would have
\[1 = \mu(Q) = \mu(Q \cap I) + \mu(Q \cap J) < \mu(I) + \mu(J) = 1. \]

This leads to a contradiction. Thus \(\mu(Q \cap I) = \mu(I) \) and hence \(\mu(A \cap I) = \mu(Q \cap I) = \mu(I) \).

1.2. \(0 \notin I \) and \(1 \notin I \): There are two subintervals \(J_1, J_2 \) of \([0, 1] \) such that \(J_1, J_2 \) are pairwise disjoint and \(J_1 \cup I \cup J_2 = [0, 1] \). Since \(J_1 \cup I \in M_{\mu}, J_1 \in M_{\mu} \), we have
\[1 = \mu(Q) = \mu(Q \cap (J_1 \cup I)) + \mu(Q \cap J_2) = \mu(Q \cap J_1) + \mu(Q \cap I) + \mu(Q \cap J_2). \]

If \(\mu(Q \cap I) < \mu(I) \), then we would have
\[1 = \mu(Q) < \mu(J_1) + \mu(I) + \mu(J_2) = 1. \]

This leads to a contradiction too. Thus \(\mu(A \cap I) = \mu(Q \cap I) = \mu(I) \).

Case 2. \(I \notin [0, 1] \). Let \(I_1 = I \cap (-\infty, 0) \), \(I_2 = I \cap [0, 1] \) and \(I_3 = I \cap (1, \infty) \) (some of them may be empty). Since \(I_1, I_2 \in M_{\mu}, I_3 \in M_{\mu} \),
\[\mu(A \cap I) = \mu(A \cap I_1) + \mu(A \cap (I_2 \cup I_3)) = \mu(A \cap I_1) + \mu(A \cap I_2) + \mu(A \cap I_3) = \mu(I_1) + \mu(A \cap I_2) + \mu(I_3). \]
By case 1, we have

$$\mu(A \cap I) = \mu(I_1) + \mu(A \cap I_2) + \mu(I_3) = \mu(I_1) + \mu(I_2) + \mu(I_3) = \mu(I).$$

References

Texas A & M University
College Station, Texas