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Computation on elliptic curves with complex multiplication

Pete L. Clark, Patrick Corn, Alex Rice and James Stankewicz

Abstract

We give the complete list of possible torsion subgroups of elliptic curves with complex
multiplication over number fields of degree 1–13. Additionally we describe the algorithm used
to compute these torsion subgroups and its implementation.

1. Introduction

1.1. The main results

The goal of this paper is to present a complete list of possible torsion subgroups of elliptic curves
with complex multiplication over number fields of small degree. Our main tool is an algorithm
whose input is a positive integer d. The output is a (necessarily finite) list of isomorphism
classes of finite abelian groups G such that G is isomorphic to E(K)[tors] for some number
field K of degree d and some elliptic curve E defined over K with complex multiplication.

Our algorithm requires a complete list of imaginary quadratic fields of class number h for all
integers h which properly divide d. Fortunately, Watkins [26] has enumerated all imaginary
quadratic fields with class number h 6 100, which would in theory allow us to run our algorithm
for all d 6 201 (and for infinitely many other values of d, for instance all prime values).

We implemented our algorithm using the MAGMA programming language [2] and ran it on
Unix servers in the University of Georgia Department of Mathematics. The result, after doing
some additional analysis, is a complete list of torsion subgroups for degree d with 1 6 d 6 13.
This list, for each degree d, is described in § 4. Note in particular the relative scarcity when d
is prime. This phenomenon will be explored in a further paper.

For d = 1 these computations were first done by Olson in 1974 [17], whereas for d = 2 and
3 they are a special case of work of Zimmer and his collaborators over a ten year period from
the late 1980s to the late 1990s [5, 16, 19]. We believe that our results are new for 4 6 d 6 13.

1.2. Connections to prior work

According to the celebrated uniform boundedness theorem of Merel [14], for any fixed d ∈ Z>0,
the supremum of the size of all rational torsion subgroups of all elliptic curves defined over all
number fields of degree d is finite.

In 1977, Mazur proved uniform boundedness for d = 1 (that is, for elliptic curves E/Q) [13].
Moreover, Mazur gave a complete classification of the possible torsion subgroups:

E(Q)[tors] ∈

{
Z/mZ for m = 1, . . . , 10, 12,

Z/2Z⊕ Z/2mZ for m = 1, . . . , 4.
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Work of Kamienny [8, 9] and of Kenku and Momose [10] gives the following result when K
is a quadratic number field:

E(K)[tors] ∈


Z/mZ for m = 1, . . . , 16, 18,

Z/2Z⊕ Z/2mZ for m = 1, . . . , 6,

Z/3Z⊕ Z/mZ for m = 3, 6,

and Z/4Z⊕ Z/4Z.

This and similar subsequent enumeration results over varying number fields are to be
understood in the following sense. First, for any quadratic field K and any elliptic curve
E/K , the torsion subgroup of E(K) is isomorphic to one of the groups listed. Second, for each
of the groups G listed, there exists at least one quadratic field K and an elliptic curve E/K

with E(K)[tors] ∼= G. A complete classification of torsion subgroups of elliptic curves over
cubic fields is not yet known.

Further results come from focusing on particular classes of elliptic curves. Notably H. Zimmer
and his collaborators have done extensive computations on torsion in elliptic curves with j-
invariant in the ring of algebraic integers. In [16], Müller, Stroher and Zimmer proved that in
the case of integral j-invariant, if K is a quadratic number field then

E(K)[tors] ∈


Z/mZ for m = 1, . . . , 8, 10,

Z/2Z⊕ Z/mZ for m = 2, 4, 6,

and Z/3Z⊕ Z/3Z.

In [19] Pethö, Weis and Zimmer showed that if E has integral j-invariant and K is a cubic
number field then

E(K)[tors] ∈

{
Z/mZ for m = 1, . . . , 10, 14,

Z/2Z⊕ Z/mZ for m = 2, 4, 6.

Here we study elliptic curves with complex multiplication (CM). Such curves form a subclass
of curves with integral j-invariant [24, Theorem. II.6.4], so our results are subsumed by the
above results for d 6 3; but, as we will see, the CM hypothesis allows us to extend our
computations to higher values of d, up to d = 13.

2. Background

2.1. Kubert–Tate normal form

The fundamental result on which our algorithm rests is the following elementary theorem,
which gives a parameterization of all elliptic curves with an N -torsion point for N > 4.

Theorem 2.1 (Kubert). Let E be an elliptic curve over a field K and P ∈ E(K) a point of
order at least 4. Then E has an equation of the form

y2 + (1− c)xy − by = x3 − bx2 (1)

for some b, c ∈ K, and P = (0, 0).

Proof. This first appeared in [11]. See for instance [16, § 3].
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We will call the equation (1) the Kubert–Tate normal form of E, and our notation for a
curve in Kubert–Tate normal form with parameters b, c as above will be simply E(b, c). The
j-invariant of this elliptic curve is

j(b, c) =
(16b2 + 8b(1− c)(c+ 2) + (1− c)4)3

b3(16b2 − b(8c2 + 20c− 1)− c(1− c)3)
. (2)

Remark 1. This form is unique for a given curve with a fixed point of order at least 4. In
practice we use this to find elliptic curves with some primitive N -torsion point, so an elliptic
curve E may have many isomorphic Kubert–Tate normal forms, depending on which torsion
point we choose to send to (0, 0).

Example 1. Here are some small multiples of the point (0, 0) on E(b, c):

[2](0, 0) = (b, bc),

[3](0, 0) = (c, b− c),

[4](0, 0) =

(
b(b− c)
c2

,
b2(c2 + c− b)

c3

)
,

[5](0, 0) =

(
bc(c2 + c− b)

(b− c)2
,
bc2(b2 − bc− c3)

(b− c)3

)
,

[6](0, 0) =

(
(b− c)(b2 − bc− c3)

A2
,
c(b− c)2(2b2 − bc(c− 3) + c2)

A3

)
,

[7](0, 0) =

(
Abc((b− c)2 +Ab)

(b2 − bc− c3)2
,

(Ab)2((b− c)3 + c3A)

(b2 − bc− c3)3

)
,

where A = b− c− c2. In particular we see that for N 6 3, (0, 0) cannot be an N -torsion point
on E(b, c).

2.2. Modular curves

The affine modular curve Y1(N) for N > 4 is a fine moduli space for pairs (E,P ) where E
is an elliptic curve and P is a point of exact order N on E. We will search for CM-points on
Y1(N) for various values of N > 4; that is, points over various number fields which correspond
to CM elliptic curves with an N -torsion point(the Y1(N) for 1 6 N 6 3 are coarse moduli
spaces and so will only give us the information we desire over an algebraically closed field).
Kubert curves give a down-to-earth way of constructing a defining equation for Y1(N).

Definition 2.2. Let Q(b, c) be a rational function field, and let E/Q(b,c) denote the elliptic
curve given by equation (1). If N > 3 is an integer, let n1, d1, n2, d2 ∈ Q[b, c] be such that
(ni, di) = 1, di is monic, and

x

([⌈
N

2

⌉
− 1

]
(0, 0)

)
=
n1(b, c)

d1(b, c)
, x

([⌊
N

2

⌋
+ 1

]
(0, 0)

)
=
n2(b, c)

d2(b, c)
.

Then we let fN (b, c) = n1d2 − n2d1 ∈ Q[b, c].

Lemma 2.3. Let k be a field, let Y/k be an integral algebraic variety, let q : A → Y be
a relative abelian variety, and let y be a closed point of Y . Then the specialization map
s : A(K(Y ))→ Ay(k(y)) is a group homomorphism.
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Proof. This result appears in [12, p. 40]. Lang’s (wonderful) text is rather informally written:
many results, including this one, are given there without proof or reference. For the convenience
of the reader we give a proof. It suffices to show this when k = k, which we assume hereon.

Step 1. Suppose Y is a nonsingular curve. Then A/Y is equal to the Néron model of its generic
fiber, so the map s is a homomorphism by [1, Proposition I.2.8].

Step 2. Suppose Y is a singular curve. Let π : Ỹ → Y be its normalization, and let ỹ be a
closed point of Ỹ with π(ỹ) = y. Let Ã = π∗(q) → Ỹ be the pullback of the family to Ỹ .
Then the fiber of Ã over ỹ is canonically identified with the fiber of A over y, and thus the
specialization map s̃ : Ã(K(Ỹ ))→ Aỹ(k(ỹ)) is canonically identified with s. We have reduced
to Step 1.

Step 3. In the general case we choose a chain of closed irreducible subvarieties Y0 = {y} ⊂
Y1 ⊂ . . . ⊂ Yd = Y containing y, with dimYi = i. We apply Step 2 repeatedly, specializing
from the generic point of Yi to the generic point of Yi−1.

Lemma 2.4. If b0, c0 ∈ Q and E(b0, c0) is an elliptic curve given by equation (1) then the
point (0, 0) on E(b0, c0) is an N -torsion point if and only if fN (b0, c0) = 0.

Proof. By Example 1 we must have N > 4.
Step 1. Suppose [N ](0, 0) = O. We claim that [dN/2e− 1](0, 0) and [bN/2c+ 1](0, 0) are finite
and have equal x-coordinates. Indeed, if [dN/2e−1](0, 0) = O, then (0, 0) is (2−2dN/2e+N)-
torsion, that is, 2-torsion if N is even and 1-torsion if N is odd, contradicting Example 1. A
similar argument shows that [bN/2c+ 1](0, 0) is finite. Moreover, we have[⌈

N

2

⌉
− 1

]
(0, 0) +

[⌊
N

2

⌋
+ 1

]
(0, 0) =

[⌈
N

2

⌉
+

⌊
N

2

⌋]
(0, 0) = [N ](0, 0) = O,

so [dN/2e − 1](0, 0)) = −[bN/2c + 1](0, 0). As for any points P,Q on a Weierstrass elliptic
curve, P = ±Q if and only if x(P ) = x(Q), this establishes the claim. Now, since
x([dN/2e − 1](0, 0)) = x([bN/2c + 1](0, 0)) ∈ Q, if d1(b0, c0) = 0 then also n1(b0, c0) = 0
hence fN (b0, c0) = n1(b0, c0)d2(b0, c0) − n2(b0, c0)d2(b0, c0) = 0. Similarly if d2(b0, c0) = 0.
Finally, if d1(b0, c0)d2(b0, c0) 6= 0, then

x

([⌈
N

2

⌉
− 1

]
(0, 0)

)
=
n1(b0, c0)

d1(b0, c0)
=
n2(b0, c0)

d2(b0, c0)
= x

([⌊
N

2

⌋
+ 1

]
(0, 0)

)
,

so fN (b0, c0) = 0.

Step 2. Suppose that fN (b0, c0) = 0. Thus there must be at least one irreducible factor g(b, c)
of fN (b, c) such that g(b0, c0) = 0. Then Z = Q[b, c]/〈g(b, c)〉 is an irreducible curve, and let
Y be obtained from Z by removing the finite set of closed points on which the Kubert curve
E(b0, c0) becomes singular. Then E(b, c) gives a relative elliptic curve over Y , and the elliptic
curve E(b0, c0) is its specialization at the closed point (b0, c0). By construction, [N ](0, 0) = O
on the generic fiber of Y , so by Lemma 2.3, [N ](0, 0) = O on E(b0, c0).

Example 2. We will make use of the explicit formulas of Example 1.
(a) Let N = 4. Setting x((0, 0)) = x([3](0, 0)) gives f4(b, c) = c.
(b) Let N = 5. The condition that (0, 0) is a 5-torsion point is b−c = 0. Setting x([2](0, 0)) =

x([3](0, 0)) gives f5(b, c) = b− c.
(c) Let N = 7. The condition that (0, 0) is a 7-torsion point is b2 − bc − c3 = 0. Setting

x([3](0, 0)) = x([4](0, 0)) gives f7(b, c) = b(b− c)− c(c2).
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As Examples 1 and 2 illustrate, the complexity of the rational functions giving the
coordinates of [N ](0, 0) increases rapidly with N . Our trick of computing [dN/2e − 1](0, 0)
and [bN/2c+ 1](0, 0) instead becomes a critical one to extend the range of our calculations.

In general, fN (b, c) = 0 is not the defining equation for Y1(N) as [N ]P = 0 implies only that
P has order d for some d | N . The polynomial fN (b, c) will have as irreducible factors defining
equations for Y1(d) for d | N , d > 3. However a simple Möbius inversion will furnish such
an equation. Although we do not explicitly write down equations for Y1(N) in our algorithm,
one could do so with relative ease. A more sophisticated version of this computation has been
undertaken by Sutherland [25].

Example 3. We computed 4(0, 0) and 2(0, 0) as part of our above examples, so f6(b, c) =
b2−bc−bc2. The divisors of 6 are 1, 2, 3 and 6. Thus by Möbius inversion, the equation for Y1(6)
in the (b, c)-plane is b− c− c2, a smooth plane curve. For higher N , Y1(N) is not naturally a
plane curve (for example, the genus of Y1(N) will usually not be of the form (d− 1)(d− 2)/2)
and so there will often be singularities in this plane model.

We note in general that if d > 3 and d | N then fd | fN . This is easy to see using the
group law when d > 4. For d = 3 we can see this by computing on the elliptic curve E(b, c)
over the function field Q(b, c). Namely, if (x, y) is any non-identity point it is possible to
compute that [3](x, y) ± (0, 0) has x-coordinate with b-adic valuation 1. Therefore b but not
b2 divides fN (b, c) when 3 | N . Therefore performing a Möbius inversion on the fN furnishes
a factorization fN =

∏
d|N
d>3

φd where if N > 4 then φN (b, c) is a defining equation for Y1(N)

in the (b, c)-plane.

2.3. Complex multiplication and bounds on j-invariants

If E(b, c) is a CM elliptic curve defined over a number field of degree d, then its j-invariant
j(b, c) must lie in a number field of degree dividing d. The degree of Q(j(b, c)) is equal to the
class number of End E, which is an order in an imaginary quadratic field.

Theorem 2.5 (Heilbronn [7]). For any positive integer d, there are only finitely many
imaginary quadratic fields with class number d.

Corollary 2.6. For any positive integer d, there are only finitely many imaginary quadratic
orders O such that the class number h(O) satisfies h(O) 6 d.

Proof. Since every quadratic order O must be of the form Z+fOK , this follows from Gauss’s
class number formula [4, Theorem 7.24].

Example 4. We find the least possible degrees for an elliptic curve over a number field K
with 7-torsion and j-invariant 0. If we have such a curve E, we can find a pair (b, c) ∈ K2 such
that E ∼= E(b, c). Since j(b, c) = 0, we have

16b2 + 8b(1− c)(c+ 2) + (1− c)4 = 0, (3)

and since (0, 0) is a nontrivial 7-torsion point, we have

b2 − bc− c3 = 0. (4)

The real solutions to equation (3) in the (b, c) affine plane may be seen in Figure 1, and
equation (4) in Figure 2.
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3.0

2.5

2.0

1.5c

b

1.0

0.5

0.0

0.0–0.5

–0.5

–1.0 0.5 1.0 1.5 2.0

Figure 1. The real (b, c) such that E(b, c) has j-invariant 0.

2.0

1.5

1.0

0.5

0.0

0 1–1–2 2

c

b

Figure 2. The real (b, c) such that (0, 0) is a 7-torsion point on E(b, c).

The resultant of these two polynomials with respect to c is

(b2 + b+ 1)(b6 − 325b5 + 5518b4 + 3655b3 + 718b2 + 51b+ 1).

The roots of this Kubert resultant identify the intersection points of our two affine curves,
as shown in Figure 3. We should note here that the first irreducible factor has no real roots.
Instead, the b-coordinates of the intersection points we see are four of the six real roots of the
second factor. In any case, looking at the first irreducible factor over Q, we see that we can
take b = ζ3.

We plug in ζ3 for b in the above polynomials and compute the greatest common divisor,
which is c+ 1. So the elliptic curve E(ζ3,−1) has a 7-torsion point over Q(ζ3). That is, on the
curve

y2 + 2xy − ζ3y = x3 − ζ3x2,
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3.0

2.5

2.0

1.5c

b

1.0

0.5

0.0

0–1–2
–0.5

1 2

Figure 3. The real (b, c) such that (0, 0) is a 7-torsion point on E(b, c) with j-invariant 0.

the point (0, 0) is a 7-torsion point†. Moreover, this curve acquires full 7-torsion over the
degree-12 cyclotomic field Q(ζ21).

We generalize the above construction as follows: writing j(b, c) = nj(b, c)/dj(b, c) as the
quotient of two polynomials, we see that there is an elliptic curve E(b, c) with j-invariant j0
and [N ](0, 0) = O if and only if (b, c) satisfy the equations

nj(b, c) = j0dj(b, c), (5)

fN (b, c) = 0.

If there are only finitely many pairs (j0, N) that we have to check, then since the resultant of
these equations with respect to c is a one-variable polynomial in b, there are only finitely many
elliptic curves E(b, c) over a small-degree number field with j-invariant j0 and with (0, 0) an
N -torsion point. To determine if Z/nZ⊕Z/NZ with n | N is a torsion subgroup of an elliptic
curve over a small-degree number field, we need only check the nth division polynomial [23,
Exercise 3.7] to see if E(b, c) acquires an additional n-torsion point over a small-degree number
field. There are finitely many n | N and for each such n, there are algorithms to compute the
nth division polynomial.

In this way, we see how a rough algorithm for enumerating torsion subgroups of CM elliptic
curves presents itself. Fix a degree d, so that we aim to tabulate CM torsion subgroups over
number fields of degree d. By Heilbronn’s theorem, there are only finitely many j-invariants of
elliptic curves with CM over all number fields of degree at most d. By Merel’s bound, we have
only finitely many possible torsion subgroups to check. Since there are only finitely many j0
and N , the procedure described above terminates for each d.

We note here that Merel’s bound is quite large and often impractical. We mention it only
to note that the above procedure terminates for any finite number of j-invariants, CM or not.
In the CM case, we have much better bounds to consider.

2.4. Possible torsion of CM elliptic curves

Let E be an elliptic curve over a number field F with CM. If E(F ) contains an N -
torsion point, then the size of N is severely restricted by the degree of F ; the following

†The reader who prefers standard Weierstrass models may verify that the origin corresponds to the 7-torsion
point (12(1− ζ3),−108ζ3) on the isomorphic elliptic curve y2 = x3 − (1296ζ3 + 6480).
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theorems of Silverberg [22] and Prasad–Yogananda [20] can be used to give an explicit upper
bound on N .

Theorem 2.7 (Silverberg, Prasad–Yogananda). Let E be an elliptic curve over a number
field F of degree d, and suppose that E has CM by the order O in the imaginary quadratic
field K. Let w(O) = #O× and e be the exponent of the torsion subgroup of E(F ). Then:

(a) ϕ(e) 6 w(O)d;
(b) if K ⊆ F , then ϕ(e) 6 w(O)d/2;
(c) if K * F , then ϕ(#E(F )[tors]) 6 w(O)d.

Proof. See [20, 22]. It can be deduced from Silverberg’s work that all above occurrences of
w(O) may be replaced with w(O)/h(O).

We will refer henceforth to the bounds obtained from the above theorem and proof as the
SPY bounds. Using merely the bound of part (a) and the well-known inequality

√
N 6 φ(N)

for N > 7, we see that we need only consider values of N that are at most w(O)2d2. The SPY
bounds also lead us to expect that the largest torsion subgroups occur when w(O) is largest,
namely when j = 0, 1728.

Any bound on the exponent above gives a bound on the size of the torsion subgroup. If the
exponent of E(F )[tors] is at most N , since E(C)[tors] ∼= (Q/Z)2 [23, Corollary V.1.1], we have
#E(F )[tors] 6 N2. In fact, there exist integers n | N such that E(F )[tors] ∼= Z/nZ⊕ Z/NZ.
Moreover in that case, the Weil Pairing [23, § III.8] shows that F ⊃ Q(ζn) and thus ϕ(n) |
[F : Q] = d.

In the case that E has CM by O, note that j(E) ∈ F so that Q(j(E)) ⊂ F and thus
h(O) | [F : Q] = d. Therefore, let deg = d/h(O). The strengthening of the SPY bounds
as noted in the proof of Theorem 2.7 implies that if e is the exponent of E(F )[tors] then
ϕ(e) 6 w(O) deg. Note also that if deg is odd, K 6⊂ F since K and Q(j(E)) are linearly
disjoint.

If deg = 2 then we may assume that j 6= 0, 1728 because the possible groups in that case
have already been determined [16]. Thus w(O) = 2, hence either E(F )[tors] is among the 12
possible torsion subgroups G such that ϕ(#G) 6 4 or F is the compositum of Q(j(E)) with
K, otherwise known as H(O), the ring class field of O. In the latter case, we have the following
theorem.

Theorem 2.8 (Parish). Let O be an imaginary quadratic order, j the j-invariant of an
elliptic curve with CM by O, L = Q(j). Then if E is an elliptic curve defined over H with
CM by O then E(H(O))[tors] contains only points of order 1, 2, 3, 4, or 6. Moreover, if E is
defined over L then E(L)[tors] can only be isomorphic to one of 0,Z/2Z,Z/3Z,Z/4Z,Z/6Z,
or Z/2Z⊕ Z/2Z.

Proof. See [18, §VI].

Much finer information is available in Parish’s paper. Except for j = 0 and Z/3Z ⊕ Z/3Z
or Z/7Z, each torsion subgroup G which is possible over H(O) has ϕ(#G) 6 4. Note that
as a further consequence, if E is an elliptic curve with CM by O over a number field F and
[F : Q] = h(O), then the only possible torsion subgroups are those found in degree 1. By the
Weil pairing, if E(F )[tors] ∼= Z/nZ ⊕ Z/NZ with n | N then ϕ(n) | d. In most cases though,
ϕ(n) | deg. We can however determine exactly the intersection of Q(ζn) with Q(j(O)) and
thus get closer to the ideal that ϕ(n) | deg.

Let H denote the ring class field of O and G the maximal abelian sub-extension of H over
Q, which is necessarily multiquadratic [4, § 6]. Hence G′, the intersection of Q(j(O)) with G,

https://doi.org/10.1112/S1461157014000072 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000072


computation on elliptic curves 517

must also be multiquadratic. Since any abelian extension must be contained in some Q(ζm)
[4, Theorem 8.8], the intersection of Q(ζn) with Q(j(O)) must be contained in G′. This G′

may be numerically determined via discriminants, but it is not computationally difficult to
simply list the discriminants of the quadratic subfields of Q(j(O)), which are all necessarily
real. If ∆ is a discriminant of a real quadratic field K, then K ⊂ Q(ζn) if and only if ∆ | n
[15, Example V.3.11]. Finally, if M is a multiquadratic field extension of degree 2m, then the
number of quadratic sub-extensions is 2m − 1.

Function 2.9 (CyclotomicIntersectionDegree). Let O be an imaginary quadratic order and
n a positive integer.

(1) Let L = {disc(K) : [K : Q] = 2,K ⊂ Q(j(O))}, the discriminants of the quadratic
subfields of the multiquadratic field G′ above.

(2) Let M = {D : D ∈ L,D | n}, the discriminants of the quadratic subfields of G′ ∩Q(ζn).
(3) Return # M + 1.

These steps restrict the groups which could possibly occur as torsion subgroups of an elliptic
curve with CM byO. We combine these steps into a function, which takes as input an imaginary
quadratic order O, a degree d, and a list of integers N which could be the exponent of a torsion
subgroup of an elliptic curve E over a number field F with CM by O. The output of this
function is a list of finite abelian groups G such that E(F )[tors] ∼= G for an elliptic curve E
with CM by O.

Function 2.10 (PossibleGroups). Let d ∈ Z>1, O an imaginary quadratic order such that
h(O) | d, and L a list of positive integers N .

(1) Set L′ = {Z/nZ⊕ Z/NZ : N ∈ L, n | N}, h = h(O), and deg = d/h.
(2) If deg = 1 then remove Z/nZ ⊕ Z/NZ from L′ unless n = N = 2 or n = 1 and

N ∈ {1, 2, 3, 4, 6}.
(3) If deg = 2 then remove Z/nZ ⊕ Z/NZ from L′ unless either (O ∼= Z[ζ3] and (N,n) =

(3, 3)) or ϕ(Nn) 6 4.
(4) If deg > 1 is odd then remove Z/nZ ⊕ Z/NZ from L′ unless ϕ(Nn) 6 w(O) deg and

ϕ(n) | d.
(5) If deg > 2 is even then remove Z/nZ⊕ Z/NZ from L′ unless

ϕ(n) | deg ×CyclotomicIntersectionDegree(O, n) (Function 2.9).
(6) Return L′.

In Function 2.10, one gets the best results when the list L is made up of integers N which
can be an order of a torsion point on an elliptic curve E with CM by O. Necessarily then,
ϕ(N) 6 w(O)d/h(O) = w(O) deg by the SPY bounds. We also have another tool for ruling
out possible orders of torsion.

Theorem 2.11. Let O be an imaginary quadratic order of discriminant D and let D0 be
the discriminant of the field K = Q(

√
D), so that D = f2D0. If p - D is an odd prime then let

(·/p) denote the Legendre symbol at p. If E is an elliptic curve over a number field of degree
d with CM by O with a point of order p then we have the following:

(a) if (D/p) = 1 then (p− 1)h(OK) | 2dw(OK);
(b) if (D/p) = −1 then (p2 − 1)h(OK) | 2dw(OK).

Proof. This was directly proven for D = D0 [3, Theorem 2], and can be extended to the
case p - D [3, Proposition 25].

In this way, we can additionally remove large primes from the divisors of possible exponents.
Starting from a list of integers up to w(O) deg, we can then very quickly sieve out impossible
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torsion exponents. For j = 0, performing the above procedure takes one hundredth of one
second to find

[2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 20, 21, 24, 26, 28, 30, 36, 42]

as a list of possible torsion exponents over a number field of degree 2.

Function 2.12 (PossibleExponents). Let O be an imaginary quadratic order and let deg be
a positive integer.

(1) Let L be the list of positive integers N such that ϕ(N) 6 w(O) deg.
(2) Let L′ be the set of integers N ∈ L such that if p | N is prime then p satisfies the

divisibility relations in Theorem 2.11 for d = h(O) deg .
(3) Return L′.

Note however that this list is still far too large to use in Function 2.10. We apply a sieve
to this list, using resultants as in Example 4, where we showed that 7-torsion occurred over
a number field of degree 2 for j = 0. We note especially that the Kubert degree sequence for
j = 0 and N = 7, or the sequence of degrees of irreducible factors of the resultant, is [2, 6].
On the other hand, the degree sequence for j = 0 and N = 14 is [6, 18]. Therefore we may
eliminate 14, 28, and 42 from our list of possible torsion exponents because 14-torsion is not
possible for j = 0 over a number field of degree not divisible by 6. Computing this degree
sequence takes 0.03 seconds†. If we recursively perform this sieve, it takes 0.24 seconds to find
that the torsion exponents which occur for j = 0 over a number field of degree 2 are

[2, 3, 4, 6, 7].

This may seem like a relatively short amount of time to be worried about, but for j = 0 and
a number field of degree 6 it takes about a minute to find [2, 3, 4, 6, 7, 9, 14, 19] as the list of
torsion exponents. For degree 12 it takes over an hour. We describe this process, along with
the adjustment we have to make for O with larger class numbers, in the following function.

Function 2.13 (SievedTorsion). Let O be an imaginary quadratic order and let deg be a
positive integer.

(1) Let L = PossibleExponents(O,deg) (Function 2.12).
(2) For N ∈ PossibleExponents(O,deg) such that N ∈ L and N > 4:

(i) let DegSeq be the sequence of integers Degree(f)h(O) where f is an irreducible
factor of the resultant corresponding to N -torsion on elliptic curves with CM by O;

(ii) unless m | h(O) deg for some m ∈ DegSeq, remove all multiples of N from L.
(3) Return L.

We structure our computation this way to minimize the number of times that we need
to compute multivariate resultants. While straightforward and much quicker than computing
torsion subgroups of elliptic curves, the computation of multivariate resultants is NP-Hard [6].
The memory demands for computing resultants over large degree number fields can also be
quite substantial. All told, the longest computation of torsion subgroups occurred in degree
12. Computing the lists of possible torsion subgroups of CM elliptic curves over a number
field of degree 12 for each possible quadratic order O using the above procedure took over
10 hours.

†This was computed on a very powerful machine, with four 6-core Xeon processors and 128 GB of memory.
These timings are meant to highlight the relative speed of small computations.
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3. Ruling out torsion subgroups of elliptic curves

Suppose we are given a finite group G ∼= Z/nZ⊕Z/NZ and we want to test whether it could
be a torsion subgroup of an elliptic curve E over a number field F of degree dividing d with CM
by an imaginary quadratic order O. If there is such an elliptic curve such that E(F )[tors] ∼= G,
then we can find b, c ∈ F such that E ∼= E(b, c), where the point (0, 0) is a point of order N .
Conversely if we have b, c ∈ F such that E(b, c) has CM by O and (0, 0) is a point of order N ,
it is not necessarily the case that E(b, c)(F )[tors] ∼= G. The first and easiest way for this to
fail is if E(b, c)(F )[tors] ) G.

Example 5. The resultant whose roots are the b such that (0, 0) is a 5-torsion point on
E(b, c) with CM by Z[ζ4] is

(x2 + 1)2(x4 − 18x3 + 74x2 + 18x+ 1)2.

However, any elliptic curve over a field F of characteristic zero with CM by Z[ζ4] has a
Weierstrass equation of the form y2 = x3 +Dx [23, §X.6] and thus a rational point of order 2.
Therefore if we search for Z/5Z as a torsion subgroup over a degree 2 field, we find Z/10Z as
the torsion subgroup of E(ζ4, ζ4).

It of course may also happen that G ( E(F )[tors] and that they have the same exponent.
The more typical situation is that E(F )[tors] ⊂ G. In that case, we have to check to see if
there is an extension field L of F of degree still dividing d such that E(L)[tors] ∼= G.

To rule this out, there are many options. Of course, we may compute all elliptic curves with
CM by O and with an N -torsion point using the Kubert resultant method of Example 4, base
extend each of these elliptic curves by roots of their nth division polynomials and then compute
the torsion subgroups of all those elliptic curves. For running time reasons, it is preferable to
rule this out before ever computing an elliptic curve or especially a torsion subgroup. Although
there are many ways to compute a torsion subgroup of an elliptic curve over a number field,
almost all of them involve reducing an elliptic curve modulo various primes in order to take
advantage of Schoof’s algorithm [21]. Unfortunately, irreducible factors of Kubert resultants
often have non-integral coefficients, making this process slow or un-supported in some computer
algebra systems. Even for computer algebra systems like magma v2-18.3 with robust support
for elliptic curves over number fields given by non-integral polynomials, it can be very time-
and memory-consuming to compute torsion subgroups over large degree number fields.

A crucial step is thus a variant of Step (5) of Function 2.10. If Z/nZ⊕ Z/NZ ∼= E(L)[tors]
with n | N for some field extension L of F , then we must have Q(ζn) ⊂ L. We have done
almost everything to numerically rule out the possibility that there is some field L of degree
dividing d which contains both F and Q(ζn). Now that we have computed F explicitly via the
Kubert resultant, we can compute the compositum of F with Q(ζn) and its degree over Q. If
this degree does not divide d, then we cannot base extend F to L and obtain E(L)[tors] ∼= G.
Moreover, we have ruled G out without computing any torsion on E.

Example 6. Let O = Z[(1 + 3
√
−11)/2], let d = 12, and let G ∼= Z/9Z ⊕ Z/9Z. Since

h(O) = 2, the Kubert degree sequence for O and N = 9 is [6, 12, 54]. An elliptic curve with
CM by O over the number field defined by the first irreducible factor or a degree two extension
thereof cannot have torsion subgroup G by a quick standard computation. Just computing the
torsion subgroup over the number field F given by the second irreducible factor ran for several
days before quitting due to a lack of memory. While we could not rule out G as a torsion
subgroup without computing with F , we found that the compositum of F with Q(ζ9) has
degree 36 over Q and therefore G is not a torsion subgroup of an elliptic curve with CM by O
over a number field of degree 12.
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We now describe the procedure for saying that a group G which could have been produced
by Functions 2.12 and 2.10 in fact cannot appear as the torsion subgroup of an elliptic curve
E with CM by O over a number field L of degree dividing d. We describe this procedure as
a function which returns True if G can be ruled out or False if G can occur, along with an
elliptic curve E over a number field L of degree dividing d.

Function 3.1 (RuledOut). Let G ∼= Z/nZ⊕Z/NZ, let d be a positive integer and let O be
an imaginary quadratic order.

(1) Compute the Kubert resultant whose roots are the b ∈ Q such that E(b, c) has CM by
O and (0, 0) is a point of exact order N . Factor it as

∏g
i=1 fi.

(2) If Degree(fi)h(O) | d then let Fi denote the number field given by fi, generated over
Q(j(O)) by bi. Let ci be the element of Fi (or possibly an extension) such that E(bi, ci)
is our CM elliptic curve. Compute the compositum of Fi with Q(ζn) and let di be its
degree over Q.

(3) If ci 6∈ Fi then raise an error.

(4) If di | d then let Ti be the torsion subgroup of E(bi, ci). If Ti ∼= G then Return False,
E(bi, ci)Fi

.

(5) If [Fi : Q] 6= d then it may be possible to base extend E(bi, ci) to obtain G as a torsion
subgroup.

(6) If Ti is a subgroup of G with the same exponent then Ti ∼= Z/n′Z ⊕ Z/NZ where
n′ | n | N . Compute the nth division polynomial of E(bi, ci), perform Möbius inversion
to obtain a polynomial whose roots are x-coordinates of points of exact order n, and
factor that polynomial as

∏m
j=1 pj .

(7) If Degree(pj) | d/[Fi : Q] then let Li,j be the number field given by pj , generated over
Fi by the x-coordinate aj . Let g = y2 + (aj(1− ci)− bi)y + (bia

2
j − a3j ), the polynomial

whose roots in Q are the y-coordinates of the points on E(bi, ci) with x-coordinate aj .
Let ng be the number of irreducible factors over Li,j of g and let ej = Degree(pj)(2/ng).

(8) If ej 6= 1 and ej | d/[Fi : Q] then let Mi,j be the field given by the polynomial g. Let Ti,j
be the torsion subgroup of the base change of E(bi, ci) to Mi,j .

(9) If Ti,j ∼= G then Return False, E(bi, ci)Mi,j
.

(10) If for all possible i and j there is some “If . . .”’ statement which begins one of Steps
(2)–(9) besides Step (3) which is false, then Return True.

We note that in Step 3.1(3), it is possible that ci 6∈ Fi and thus we must have an error-raising
statement. However, as one may intuit from Figure 3, the probability that two intersection
points in the (b, c)-plane have the same b value is zero by the properties of the Zariski topology.
We now give an algorithm which produces all torsion subgroups of elliptic curves with CM
over a number field of degree d.

Algorithm 3.2. Let d be a positive integer and L a list of finite groups which we know to
be torsion subgroups of CM elliptic curves over some number field of degree dividing d.

(1) Create an associative array or dictionary A, indexed by imaginary quadratic orders O
such that h(O) | d and either h(O) = 1 or h(O) 6= d. Let the Oth entry of A be

PossibleGroups

(
d,O,SievedTorsion

(
O, d

h(O)

))
.

(2) Let P be the union of all the sets A(O) and let R be P −L, the set of groups in P which
are not isomorphic to any element of L.

(3) Iterate over G ∈ R.
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• If RuledOut(G, d,O) returns True for all O such that G ∈ A(O), move onto the next
group.

• If not, append G to L and go to Step (2).

When Algorithm 3.2 is completed, L is the complete list of possible torsion subgroups. If
d = 2, then Algorithm 3.2 takes 0.87 s to complete when starting with the list given by Zimmer,
Müller and Stroher, and rules out only the group Z/5Z. If d = 12, then if we start from Step
(2) with a complete list L, the algorithm takes only 3.5 h to complete for a total time of roughly
14 h. Complete records of the ruling out computation may be found on stankewicz.net/torsion.

4. Isomorphism classes of torsion subgroups of CM elliptic curves E

4.1. K = Q

E(Q)[tors] ∈ {0,Z/2Z,Z/3Z,Z/4Z,Z/6Z,Z/2Z⊕ Z/2Z}.

Examples of these are:

Group Elliptic curve j-invariant

0 y2 = x3 + 2 0
Z/2Z y2 = x3 − 1 0
Z/3Z y2 = x3 + 16 0
Z/4Z y2 = x3 + 4x 1728
Z/6Z y2 = x3 + 1 0

Z/2Z⊕ Z/2Z y2 = x3 − 4x 1728

4.2. K is a number field of degree 2

E(K)[tors] ∈


Z/mZ for m = 1, 2, 3, 4, 6, 7, 10,

Z/2Z⊕ Z/mZ for m = 2, 4, 6,

and Z/3Z⊕ Z/3Z.

The only subgroups which do not occur over Q are:

E(K)[tors] ∈ {Z/7Z,Z/10Z,Z/2Z⊕ Z/4Z,Z/2Z⊕ Z/6Z,Z/3Z⊕ Z/3Z}.

Examples of these are:

Group Field extension Elliptic curve j-invariant

Z/7Z Q(ζ3) E(ζ3,−1) 0
Z/10Z Q(ζ4) E(ζ4, ζ4) 1728

Z/2Z⊕ Z/4Z Q(ζ4) y2 = x3 + 4x 1728
Z/2Z⊕ Z/6Z Q(ζ3) y2 = x3 + 1 0
Z/3Z⊕ Z/3Z Q(ζ3) y2 = x3 + 16 0

4.3. K is a number field of degree 3

E(K)[tors] ∈

{
Z/mZ for m = 1, 2, 3, 4, 6, 9, 14,

and Z/2Z⊕ Z/2Z.

The only subgroups which do not occur over Q are:

E(K)[tors] ∈ {Z/9Z,Z/14Z}.
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Examples of these are:

Group Defining polynomial Elliptic curve j-invariant

Z/9Z b3 − 99b2 − 90b− 9 E

(
b,
−2b2 + 318b− 75

753

)
0

Z/14Z b3 + 5b2 + 2/7b− 1/49 E

(
b,

133b2 + 749b+ 54

167

)
−3375

4.4. K is a number field of degree 4

E(K)[tors] ∈


Z/mZ for m = 1, . . . , 8, 10, 12, 13, 21,

Z/2Z⊕ Z/mZ for m = 2, 4, 6, 8, 10,

Z/3Z⊕ Z/mZ for m = 3, 6,

and Z/4Z⊕ Z/4Z.

The only subgroups which do not occur over Q or a number field of degree 2 are:

E(K)[tors] ∈

 Z/5Z,Z/8Z,Z/12Z,Z/13Z,Z/21Z,

Z/2Z⊕ Z/8Z,Z/2Z⊕ Z/10Z,Z/4Z⊕ Z/4Z,Z/3Z⊕ Z/6Z

 .

Examples of these are:

Group Field Elliptic Curve j

Z/5Z
Q[b]

(b4 − 4b3 + 46b2 + 4b+ 1)
E(b, b) −32768

Z/8Z
Q[b]

(b4 + 2b3 + b2 − b− 1

8
)

E

(
b,

8b3 + 36b2 + 46b+ 3

13

)
†

1728

Z/12Z
Q[b]

(b4 − 10b3 + 24b2 − 16b− 2)
E

(
b,
−6b3 + 52b2 − 70b− 9

7

)
0

Z/13Z
Q[b]

(b4 + 4b3 + 78b2 + 13b+ 1)
E

(
b,

16b3 + 44b2 + 1354b+ 45

483

)
0

Z/21Z
Q[e]

(e4 − e3 + 2e+ 1)
y2 = x3 −



371952e3+

3373488e2+

3777840e+

1228608


0

(
Z/2Z⊕
Z/8Z

)
Q[b]

(b4 − 4b3 + 4b2 − b− 1/8)
E(b, 32b3 − 108b2 + 58b+ 6) 287496(

Z/2Z⊕
Z/10Z

)
Q(ζ4)[x]

(x2 − ζ4x−
ζ4
2

)
E(ζ4, ζ4) 1728

(
Z/4Z⊕
Z/4Z

)
Q[x]

(x4 + 1)
E(−1/8, 0) 1728(

Z/3Z⊕
Z/6Z

)
Q(
√

3,
√
−3) E

(
6
√

3 + 10

3
,

2
√

3 + 3

3

)
1728

†Although j(Z[2i]) = 287496 and j(Z[i]) = 1728 and so one might reasonably guess two curves over number
fields of the same degree with those j-invariants and respective torsion subgroups Z/2Z⊕ Z/8Z and Z/8Z to
be rationally isogenous, this is not the case. Indeed the two fields are not isomorphic.
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4.5. K is a number field of degree 5

E(K)[tors] ∈ {0,Z/2Z,Z/3Z,Z/4Z,Z/6Z,Z/11Z,Z/2Z⊕ Z/2Z}.
The only subgroup which does not occur over Q is Z/11Z, which occurs over the maximal

real subfield of Q(ζ11). This occurs for j = −32768 in E(b, c) with the following quantities.
Hereon, unless otherwise stated, elliptic curves will be given by the values of b and c.

Field extension b c

Q[e]

(e5 − e4 − 4e3 + 3e2 + 3e− 1)
−7e4 − 2e3 + 16e2 − e− 1 2e3 − 4e+ 1

4.6. K is a number field of degree 6

E(K)[tors] ∈


Z/mZ for m = 1, 2, 3, 4, 6, 7, 9, 10, 14, 18, 19, 26,

Z/2Z⊕ Z/mZ for m = 2, 4, 6, 14,

Z/3Z⊕ Z/mZ for m = 3, 6, 9,

and Z/6Z⊕ Z/6Z.

The only subgroups which do not occur over Q or a number field of degree 2 or 3 are:

E(K)[tors] ∈

{
Z/18Z,Z/19Z,Z/26Z

Z/2Z⊕ Z/14Z,Z/3Z⊕ Z/6Z,Z/3Z⊕ Z/9Z,Z/6Z⊕ Z/6Z

}
.

Examples of these are:

Group Z/18Z

j,Field 8000,Q[e]/(e6 − 2e5 + 3e4 − 2e3 + 2e2 + 1)

b
1

9
(28e5 − 79e4 + 86e3 − 30e2 + 11e− 31)

c
1

3
(−8e5 + 7e4 − e3 − 8e2 − 9e− 5)

Group Z/19Z

j,Field 0,Q[e]/(e6 + e4 − e3 − 2e2 + e+ 1)

b 2e5 − e4 + 2e3 − 4e2 + 2

c 2e5 − 2e4 + 4e3 − 4e2 − 2e+ 3

Group Z/26Z

j,Field 1728,Q[e]/(e6 − e4 + 2e3 − 2e+ 1)

b
1

13
(53e5 + 6e4 − 70e3 + 75e2 + 5e− 136)

c
1

13
(−49e5 − 44e4 + 14e3 − 78e2 − 65e+ 46)
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Group Field extension Elliptic curve j(
Z/2Z⊕
Z/14Z

)
Q(
√
−7)[b]

(b3 + 5b2 + 2/7b− 1/49)
E

(
b,

133b2 + 749b+ 54

167

)
−3375(

Z/3Z⊕
Z/6Z

)
Q(ζ3,

3
√

2) y2 = x3 − 15x+ 22 54000(
Z/6Z⊕
Z/6Z

)
Q(ζ3,

3
√

4) y2 = x3 + 1 0(
Z/3Z⊕
Z/9Z

)
Q(ζ9) y2 = x3 + 16 0

4.7. K is a number field of degree 7

E(K)[tors] ∈ {0,Z/2Z,Z/3Z,Z/4Z,Z/6Z,Z/2Z⊕ Z/2Z}.

No subgroups occur in degree 7 which do not occur over Q.

4.8. K is a number field of degree 8

E(K)[tors] ∈



Z/mZ for m = 1, . . . , 8, 10, 12, 13,

15, 16, 20, 21, 28, 30, 34, 39,

Z/2Z⊕ Z/mZ for m = 2, 4, 6, 8, 10, 12, 16, 20,

Z/4Z⊕ Z/mZ m = 4, 8, 12,

Z/mZ⊕ Z/mZ for m = 3, 5, 6,

Z/mZ⊕ Z/2mZ for m = 3, 5.

The only subgroups which do not occur over Q or a number field of degree dividing 8 are:

E(K)[tors] ∈



Z/15Z,Z/16Z,Z/20Z,Z/30Z,Z/34Z,Z/39Z

Z/2Z⊕ Z/12Z,Z/2Z⊕ Z/16Z,Z/2Z⊕ Z/20Z

Z/6Z⊕ Z/6Z,Z/4Z⊕ Z/8Z,Z/4Z⊕ Z/12Z

Z/5Z⊕ Z/5Z,Z/5Z⊕ Z/10Z


.

We give examples of these and hereon, unless otherwise stated, their fields of definition will
be given only by the defining polynomial over Q.

Group Z/15Z

j,Field 0, e8 − 3e7 − 2e6 + 9e5 − 6e3 − 2e2 − 3e+ 1 = 0

b
1

61

599e7 − 303e6 − 1758e5 + 786e4

+1411e3 + 632e2 + 755e− 307


c

1

61
(−8e7 + 68e6 + 8e5 − 238e4 + 28e3 + 260e2 + 50e− 7)
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Group Z/16Z

j,Field 16581375, e8 − 2e7 + 6e6 − 9e5 + 10e4 − 8e3 + 6e2 − 3e+ 1 = 0

b
1

2
(−16e7 + 131e6 − 234e5 + 268e4 − 227e3 + 175e2 − 90e+ 28)

c
1

2
(−e7 + 7e6 − 15e5 + 16e4 − 14e3 + 10e2 − 6e+ 1)

Group Z/20Z

j,Field 287496, e8 − 4e7 + 6e6 − 8e4 + 8e3 − 4e+ 2 = 0

b 280e7 − 876e6 + 873e5 + 873e4 − 1553e3 + 710e2 + 762e− 487

c −25e7 + 82e6 − 88e5 − 71e4 + 154e3 − 77e2 − 66e+ 55

Group Z/30Z

j j2 + 191025j − 121287375 = 0

Field e8 − 3e7 − 2e6 + 9e5 − 6e3 − 2e2 − 3e+ 1 = 0

b
1

61

(
−1926e7 + 7953e6 − 4967e5 − 12311e4

+13878e3 − 2797e2 + 7188e− 1853

)

c
1

61
(97e7 − 367e6 + 147e5 + 583e4 − 492e3 + 172e2 − 286e+ 62)

Group Z/34Z

j,Field 1728, e8 + 4e7 + 7e6 + 8e5 + 8e4 + 6e3 + 4e2 + 2e+ 1 = 0

b
1

17
(−11e7 − 34e6 − 38e5 − 16e4 − 11e3 − 11e2 − e+ 3)

c
1

17
(9e7 + 31e6 + 59e5 + 60e4 + 50e3 + 30e2 + 25e+ 6)

Group Z/39Z

j,Field 0, e8 − 2e6 − 3e5 + 3e4 + 3e3 − 2e2 + 1 = 0

b −12e7 − 25e6 + 7e5 + 82e4 + 77e3 − 47e2 − 95e− 35

c −8e7 − 4e6 + 18e5 + 34e4 − 14e3 − 46e2 + 13
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Group Z/2Z⊕ Z/12Z

j,Field 54000, e8 − 4e7 + 2e6 + 8e5 − 8e4 + 4e3 − 16e2 + 16e− 2 = 0

b
1

13

(
−1083e7 + 2865e6 + 1673e5 − 6205e4

−5e3 − 4167e2 + 11397e− 1570

)

c
1

13

(
−306e7 + 805e6 + 500e5 − 1801e4

+27e3 − 1218e2 + 3282e− 453

)

Group Z/2Z⊕ Z/16Z

j,Field −3375, e8 + 3e7 + 6e6 + 8e5 + 10e4 + 9e3 + 6e2 + 2e+ 1 = 0

b
1

2
(20e7 + 47e6 + 79e5 + 96e4 + 110e3 + 89e2 + 26e+ 18)

c
1

2
(7e7 + 12e6 + 22e5 + 22e4 + 30e3 + 17e2 + 7e+ 3)

Group Z/2Z⊕ Z/20Z

j,Field 1728, e8 − 4e7 + 6e6 − 8e4 + 8e3 − 4e+ 2 = 0

b −5e7 + 17e6 − 20e5 − 12e4 + 34e3 − 21e2 − 15e+ 13

c −4e7 + 13e6 − 13e5 − 13e4 + 24e3 − 8e2 − 10e+ 7

Group Z/6Z⊕ Z/6Z

j,Field −3375, e8 + 3e7 + 4e6 + 3e5 + 3e4 + 3e3 + 4e2 + 3e+ 1 = 0

b
1

15
(132e7 + 513e6 + 681e5 + 267e4 + 143e3 + 629e2 + 602e+ 193)

c
1

15
(−21e7 − 39e6 − 3e5 + 29e4 − 39e3 − 32e2 + 9e+ 11)

Group Z/4Z⊕ Z/8Z

j,Field −3375, e8 − e6 − 2e5 + e4 + 8e3 + 12e2 + 8e+ 2 = 0

b
1

11
(103e7 − 85e6 − 43e5 − 153e4 + 222e3 + 655e2 + 663e+ 235)

c
1

11
(63e7 − 27e6 − 64e5 − 86e4 + 114e3 + 452e2 + 534e+ 206)
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Group Z/4Z⊕ Z/12Z

j,Field 0, e8 − 2e7 + 2e6 − 2e5 + 7e4 − 10e3 + 8e2 − 4e+ 1 = 0

b
1

11
(−32e7 + 66e6 − 53e5 + 57e4 − 220e3 + 320e2 − 188e+ 115)

c
1

11
(−28e7 + 66e6 − 56e5 + 54e4 − 198e3 + 324e2 − 214e+ 91)

Group, Field Z/5Z⊕ Z/5Z,Q(ζ15)

j, b = c (0, 4ζ715 + 2ζ615 − 2ζ515 − 2ζ315 + 4ζ15 + 1)

Group, Field Z/5Z⊕ Z/10Z,Q(ζ20)

j, b = c (1728, ζ4)

4.9. K is a number field of degree 9

E(K)[tors] ∈

{
Z/mZ for m = 1, 2, 3, 4, 6, 9, 14, 18, 19, 27,

and Z/2Z⊕ Z/2Z.

The subgroups which do not occur over Q or a number field of degree 3 are:

E(K)[tors] ∈ {Z/18Z,Z/19Z,Z/27Z}.

Examples of these are:

Group Z/18Z

j 54000

Field e9 − 3e8 + 3e7 − 6e6 + 12e5 − 3e4 − 15e3 + 15e2 − 6e+ 1 = 0

b
1

3

(
217e8 − 235e7 + 202e6 − 904e5 + 841e4

+971e3 − 1364e2 + 617e− 113

)

c
1

3
(7e8 − 8e7 + 7e6 − 31e5 + 32e4 + 29e3 − 50e2 + 25e− 5)

Group Z/19Z

j −884736

Field e9 − e8 − 8e7 + 7e6 + 21e5 − 15e4 − 20e3 + 10e2 + 5e− 1 = 0

b −31e8 + 73e7 + 112e6 − 319e5 − 80e4 + 397e3 − 26e2 − 139e+ 22

c (−2e8 + 16e6 − 4e5 − 38e4 + 14e3 + 26e2 − 10e+ 1)

https://doi.org/10.1112/S1461157014000072 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000072


528 p. l. clark, p. corn, a. rice and j. stankewicz

Group† Z/27Z

j −12288000

Field e9 − 9e7 + 27e5 − 30e3 + 9e− 1 = 0

b

(
−4282e8 − 507e7 + 38492e6 + 4523e5 − 115156e4

−13456e3 + 126990e2 + 14789e− 36852

)

c (16e8 + 2e7 − 140e6 − 18e5 + 410e4 + 54e3 − 444e2 − 58e+ 125)

4.10. K is a number field of degree 10

E(K)[tors] ∈


Z/mZ for m = 1, 2, 3, 4, 6, 7, 10, 11, 22, 31, 50,

Z/2Z⊕ Z/mZ for m = 2, 4, 6, 22,

and Z/3Z⊕ Z/3Z.

The only subgroups which do not occur over Q or a number field of degree 2 or 5 are:

E(K)[tors] ∈ {Z/22Z,Z/31Z,Z/50Z,Z/2Z⊕ Z/22Z}.

Examples of these are:

Group Z/22Z

j 16581375

Field e10 − e9 + 2e8 − 4e7 + 5e6 − 3e5 + 3e4 − 6e3 + 7e2 − 4e+ 1 = 0

b

(
−184243e9 + 88117e8 − 299927e7 + 589670e6 − 568675e5

+223462e4 − 395246e3 + 908033e2 − 759722e+ 279034

)

c

(
1905e9 − 643e8 + 3210e7 − 5564e6 + 5493e5

−1825e4 + 4191e3 − 8721e2 + 7124e− 2426

)

Group Z/31Z

j 0

Field e10 + 2e8 − 3e7 + 3e6 − 7e5 + 8e4 − 7e3 + 7e2 − 4e+ 1 = 0

b

(
43e9 − 33e8 + 45e7 − 222e6 + 133e5

−335e4 + 508e3 − 326e2 + 368e− 252

)

c

(
24e9 + 10e8 + 50e7 − 54e6 + 44e5

−148e4 + 130e3 − 104e2 + 122e− 43

)

†The discriminant of the CM order is -27 and the SPY bounds are sharp here. Typically when the SPY
bounds are sharp, gcd(disc(O), N) > 1.
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Group Z/50Z

j 1728

Field e10 − 4e9 + 9e8 − 14e7 + 15e6 − 10e5 + 3e4 + 2e3 − 2e2 + 1 = 0

b (20e8 − 59e7 + 87e6 − 79e5 + 31e4 + 17e3 − 12e2 + 4e+ 8)

c (e9 − 6e8 + 10e7 − 10e6 + 7e5 − e4 − e3 − 2e2 − 2e− 1)

Group Z/2Z⊕ Z/22Z

j −3375

Field e10 − e9 + 2e8 − 4e7 + 5e6 − 3e5 + 3e4 − 6e3 + 7e2 − 4e+ 1 = 0

b

(
−14e9 + 4e8 − 22e7 + 41e6 − 35e5

+9e4 − 30e3 + 63e2 − 46e+ 10

)
c (−6e9 + 5e8 − 9e7 + 23e6 − 22e5 + 10e4 − 13e3 + 33e2 − 32e+ 11)

4.11. K is a number field of degree 11

E(K)[tors] ∈ {0,Z/2Z,Z/3Z,Z/4Z,Z/6Z,Z/2Z⊕ Z/2Z}.

No subgroups occur in degree 11 which do not occur over Q.

4.12. K is a number field of degree 12

E(K)[tors] ∈



Z/mZ for m = 1, . . . , 10, 12, 13, 14,

18, 19, 21, 26, 37, 42, 57,

Z/2Z⊕ Z/mZ for m = 2, 4, 6, 8, 10, 12, 14, 18, 26, 28, 42,

Z/3Z⊕ Z/mZ for m = 3, 6, 9, 12, 18, 21,

Z/mZ⊕ Z/mZ for m = 4, 6, 7.

The only subgroups which do not occur over a number field of degree dividing 12 are:

E(K)[tors] ∈


Z/mZ for m = 28, 37, 42, 57,

Z/2Z⊕ Z/mZ for m = 12, 18, 26, 28, 42,

Z/3Z⊕ Z/mZ for m = 12, 18, 21,

and Z/7Z⊕ Z/7Z.
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These are:

Group Z/28Z

j 54000

Field
e12 − 4e11 + 8e10 − 6e9 − 7e8 + 20e7

−18e6 − 4e5 + 25e4 − 8e3 − 6e2 + 2e+ 1 = 0

b
1

402

(
110e11 − 95e10 − 24e9 − 47e8 − 19e7 − 232e6

−119e5 + 1480e4 + 369e3 − 1017e2 + 149e+ 197

)

c
1

402

(
116e11 − 423e10 + 853e9 − 655e8 − 768e7 + 2238e6

−1982e5 − 766e4 + 2806e3 − 277e2 − 441e− 3

)

Group Z/37Z

j 0

Field
e12 − 4e11 + 11e10 − 21e9 + 32e8 − 40e7

+45e6 − 46e5 + 40e4 − 26e3 + 12e2 − 4e+ 1 = 0

b
1

37

(
−196e11 + 657e10 − 1789e9 + 3384e8 − 5292e7 + 6890e6

−7695e5 + 7154e4 − 4851e3 + 2221e2 − 773e+ 181

)

c
1

37

(
24e11 − 162e10 + 432e9 − 952e8 + 1462e7 − 1928e6

+2090e5 − 2060e4 + 1630e3 − 870e2 + 294e− 109

)

Group Z/42Z†

j 54000

Field
e12 − 4e11 + 8e10 − 11e9 + 13e8 − 14e7

+15e6 − 14e5 + 7e4 + 3e3 − 5e2 + e+ 1 = 0

b

(
1416e11 − 6140e10 + 13362e9 − 19953e8 + 24872e7 − 27802e6

+30076e5 − 29333e4 + 19087e3 − 1483e2 − 7097e+ 4041

)

c

(
27e11 − 138e10 + 342e9 − 563e8 + 754e7 − 896e6

+1000e5 − 1038e4 + 847e3 − 370e2 − 7e+ 66

)

†Note that this elliptic curve is rationally isogenous to the one with j = 0 and torsion Z/2Z⊕ Z/42Z.
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Group Z/57Z

j 0

Field
e12 − 2e11 + 5e10 − 10e9 + 16e8 − 22e7

+30e6 − 31e5 + 28e4 − 27e3 + 19e2 − 7e+ 1 = 0

b


18509e11 − 25122e10 + 76123e9 − 135966e8

+207749e7 − 272291e6 + 378051e5 − 328154e4

+303397e3 − 302371e2 + 154326e− 27788



c

(
128e11 − 62e10 + 446e9 − 532e8 + 876e7 − 986e6

+1542e5 − 670e4 + 1136e3 − 872e2 + 18e+ 71

)

Group Z/2Z⊕ Z/12Z

j j3 + 3491750j2 − 5151296875j + 12771880859375 = 0

Field
e12 − 4e11 + 11e10 − 28e9 + 63e8 − 114e7

+161e6 − 174e5 + 141e4 − 82e3 + 33e2 − 8e+ 1 = 0

b
1

8

(
46e11 − 165e10 + 327e9 − 914e8 + 1949e7 − 2883e6

+3279e5 − 2583e4 + 1240e3 − 576e2 + 169e− 34

)

c
1

8

(
86e11 − 295e10 + 760e9 − 1947e8 + 4217e7 − 7168e6

+9344e5 − 9004e4 + 6265e3 − 2894e2 + 769e− 103

)

Group Z/2Z⊕ Z/18Z

j 8000

Field
e12 − 4e11 + 4e10 + 8e9 − 25e8 + 24e7

+4e6 − 36e5 + 46e4 − 32e3 + 14e2 − 4e+ 1 = 0

b
1

369

(
−1450e11 + 3898e10 + 304e9 − 13733e8 + 17660e7 − 2419e6

−19740e5 + 26634e4 − 18553e3 + 5681e2 − 2148e+ 155

)

c
1

123

(
1108e11 − 3354e10 + 756e9 + 10638e8 − 17099e7 + 6109e6

+14805e5 − 25449e4 + 20608e3 − 8740e2 + 2841e− 680

)
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Group Z/2Z⊕ Z/26Z

j 0

Field
e12 − 5e11 + 11e10 − 9e9 − 7e8 + 24e7

−21e6 + 21e4 − 25e3 + 16e2 − 6e+ 1 = 0

b
1

91

(
−781e11 + 3351e10 − 5753e9 + 969e8 + 9554e7 − 12544e6

+1862e5 + 8736e4 − 11312e3 + 6330e2 − 1292e− 19

)

c
1

91

(
−198e11 + 1336e10 − 3552e9 + 3848e8 + 1816e7 − 9198e6

+8344e5 + 1134e4 − 8428e3 + 8618e2 − 4202e+ 785

)

Group Z/2Z⊕ Z/28Z

j −3375

Field
e12 − 4e11 + 5e10 + 3e9 − 11e8 − 3e7

+35e6 − 47e5 + 27e4 − 4e3 − e2 − e+ 1 = 0

b
1

43

(
1252e11 − 3557e10 + 1151e9 + 6917e8 − 4746e7 − 13843e6

+26751e5 − 17575e4 + 2938e3 + 964e2 + 523e− 674

)

c
1

43

(
103e11 − 501e10 + 525e9 + 659e8 − 1439e7 − 1039e6

+4489e5 − 4371e4 + 1157e3 + 216e2 − 45e− 219

)

Group Z/2Z⊕ Z/42Z

j 0

Field
e12 − 4e11 + 8e10 − 11e9 + 13e8 − 14e7

+15e6 − 14e5 + 7e4 + 3e3 − 5e2 + e+ 1 = 0

b

(
17e11 − 40e10 + 61e9 − 71e8 + 82e7 − 81e6

+95e5 − 59e4 − 12e3 + 41e2 − 6e− 7

)

c

(
6e11 − 18e10 + 28e9 − 34e8 + 38e7 − 40e6

+44e5 − 36e4 + 20e2 − 8e− 5

)
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Group Z/3Z⊕ Z/12Z

j 54000

Field
e12 − 3e10 − 2e9 + 12e8 − 6e7 − 3e6

−12e5 + 36e4 − 38e3 + 21e2 − 6e+ 1 = 0

b
1

7843

−208660e11 − 118345e10 + 606681e9 + 844271e8

−2044930e7 − 126154e6 + 712244e5 + 3124663e4

−5460349e3 + 4188689e2 − 1329972e+ 272478



c
1

7843

 55805e11 + 25237e10 − 174599e9 − 227269e8

+578726e7 + 22958e6 − 227941e5 − 894570e4

+1575065e3 − 1231382e2 + 392162e− 82582



Group Z/3Z⊕ Z/18Z

j 8000

Field
e12 − 4e11 + 12e10 − 24e9 + 38e8 − 50e7

+52e6 − 48e5 + 36e4 − 24e3 + 15e2 − 6e+ 3 = 0

b
1

53

(
−262e11 + 1376e10 − 4458e9 + 10137e8 − 17241e7 + 23682e6

−25526e5 + 22112e4 − 14766e3 + 6941e2 − 2382e+ 151

)

c
1

53

(
131e11 − 476e10 + 1328e9 − 2339e8 + 3188e7 − 3414e6

+2481e5 − 1304e4 + 69e3 + 319e2 − 293e+ 110

)

Group Z/3Z⊕ Z/21Z

j 0

Field
e12 − 6e11 + 18e10 − 35e9 + 54e8 − 72e7

+84e6 − 81e5 + 66e4 − 44e3 + 21e2 − 6e+ 1 = 0

b
1

49


−4894e11 + 30046e10 − 87461e9 + 154268e8

−201926e7 + 235109e6 − 256228e5 + 214939e4

−117237e3 + 38057e2 − 7246e+ 352


c

1

49

(
290e11 − 1742e10 + 4986e9 − 8686e8 + 11366e7 − 13286e6

+14434e5 − 12010e4 + 6618e3 − 2248e2 + 458e− 41

)
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Group, Field Z/7Z⊕ Z/7Z,Q(ζ21)

(j, b, c) (0, ζ3,−1)

4.13. K is a number field of degree 13

E(K)[tors] ∈ {0,Z/2Z,Z/3Z,Z/4Z,Z/6Z,Z/2Z⊕ Z/2Z}.

No subgroups occur in degree 13 which do not occur over Q.
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