Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T15:48:55.516Z Has data issue: false hasContentIssue false

In vitro fermentation of four tropical browse legumes: estimation of the effect of tannins by gas production

Published online by Cambridge University Press:  27 February 2018

Rafael Rodríguez
Affiliation:
Instituto de Ciencia Animal, Carretera Central km 47, 5, Apdo. Postal 24, San José de las Lajas, La Habana, Cuba
Mariano Mota
Affiliation:
Departamento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza. Miguel Servet 177, 50013 Zaragoza (Spain). FAX 34-976 761590 E-mail: mfonde@unizar.es
Manuel Fondevila
Affiliation:
Departamento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza. Miguel Servet 177, 50013 Zaragoza (Spain). FAX 34-976 761590 E-mail: mfonde@unizar.es
Gabriel de la Fuente
Affiliation:
Departamento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza. Miguel Servet 177, 50013 Zaragoza (Spain). FAX 34-976 761590 E-mail: mfonde@unizar.es
Get access

Summary

The microbial fermentation of the tropical leguminous browses Acacia cornigera (ACA), Albisia lebbekoides (ALB), Enterolobium cyclocarpum (ENT) and Leucaena leucocephala (LEU) was estimated in vitro as the final production of gas. ACA gave the greatest final (asymptotic) gas volume (D; 179 ml/g DM) and fractional rate constant (0.070). Although ENT showed the greatest rate constant (0.87), reaching half its maximum gas production in 7.8 h, it produced less gas than ACA by 9 h incubation, and did not differ from LEU by 24 h ALB gave the lowest gas production. In another trial the negative effect of tannins was estimated over 48 h as ameliorated by the addition of PEG. The effect was variable between species, the greatest being with ALB (Restriction of 0.60-0.68 of the potential gas volume due to the presence of tannins) and increasing slowly, reaching its’ maximum at 12 or 24 h with ACA (0.33) or LEU (0.16). There was no response to the addition of PEG with ENT indicating that other secondary compounds distinct from the condensed tannins were affecting microbial utilisation.

Resumen

Resumen

Se estimó in vitro la fermentación microbiana de las leguminosas arbustivas tropicales Acacia cornigera (ACA), Albisia lebbekoides (ALB), Enterolobium cyclocarpum (ENT) and Leucaena leucocephala (LEU) en términos de producción de gas. ACA registró elevados volumen máximo de gas (D; 179 ml/g MS) y tasa fraccional de fermentación (0,070). Aunque ENT mostró la mayor tasa (0,087), alcanzando la mitad de su volumen máximo tras 7,8 h, produjo menos gas que ACA a partir de las 9 h de incubación, y no difirió de LEU a partir de las 24 h. ALB registró la menor producción de gas. En otra prueba se estimó durante 48 h el efecto negativo de la concentración de taninos mediante la adición de PEG. El efecto fue variable entre especies, siendo mayor con ALB (restricción del 0,60-0,68 en el volumen potencial de gas debido a la presencia de taninos), y aumentando lentamente hasta alcanzar su máximo a las 12 o 24 h con ACA (0,33) o LEU (0,16). No hubo respuesta a la adición de PEG con ENT, indicando que otros compuestos secundarios distintos a los taninos condensados pueden afectar su utilización microbiana.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Analytical Software (2000). Statistix 7. Tallahasee, FL, USA. Association of Official Analytical Chemists (1990). Official methods of analysis, 15th Edn. Arlinton, USA.Google Scholar
Butter, N.L., Dawson, J.M. and Buttery, P.J. (1999). Effects of dietary tannins on ruminants. In: Secondary plant products. Antinutritional and beneficial actions in animal feeding, Edited by Caygill, J.C. and Mueller-Harvey, I. Nottingham University Press, Nottingham, UK, pp. 5170.Google Scholar
Galindo, J., González, N., Aldama, A.I. and Marrero, Y. (2001). Effect of Enterolobium cyclocarpum on rumen microbial population and its activity under in vitro conditions. Cuban Journal of Agricultural Science 35: 229234 Google Scholar
Jackson, F.S., Arry, T.N., Lascano, C. and Palmer, B. (1996). The extractable and bound condensed tannin content of leaves from tropical tree, shrub and forage legumes. Journal of the Science of Food and Agriculture 71: 103110 3.0.CO;2-8>CrossRefGoogle Scholar
Krishnamoorthy., U., Soller., H., Steingass, H. and Menke, K.H. (1991). A comparative study on rumen fermentation of energy supplements in vitro. Journal of Animal Physiology and Animal Nutrition 65: 2835 CrossRefGoogle Scholar
Makkar, H.P.S., Blümmel, M. and Becker, K. (1995). Formation of complexes between polyvinyl pyrrolidone or polyethylene glycol and tannins, and their implication in gas production and true digestibility in in vitro techniques. British Journal of Nutrition 73: 897913 CrossRefGoogle ScholarPubMed
Reed, J.D. (1995). Nutritional toxicology of tannins and related polyphenols in forage legumes. Journal of Animal Science 73: 15161528 CrossRefGoogle ScholarPubMed
Theodorou, K.M., Williams, B.A., Dhanoa, M.S., McAllan, A.B., and France, J. (1994). A simple gas production method using a pressure transducter to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology 48: 185197 Google Scholar
Van Soest, P.J., Robertson, J.B. and Lewis, B.A. (1991). Methods for dietary fibre, neutral detergent fibre and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74: 35833597 CrossRefGoogle ScholarPubMed