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Abstract Let S and T be smooth projective varieties over an algebraically closed field k. Suppose that S
is a surface admitting a decomposition of the diagonal. We show that, away from the characteristic of k,
if an algebraic correspondence T'— S acts trivially on the unramified cohomology, then it acts trivially
on any normalized, birational and motivic functor. This generalizes Kahn’s result on the torsion order of
S. We also exhibit an example of S over C for which S x S violates the integral Hodge conjecture.

1. Introduction

Let k& be an algebraically closed field, and let Chow%ﬂ be the covariant category of
effective Chow motives over k with Z-coefficients. Until §1.3 we assume the characteristic
p of k is zero for simplicity, although most results remain valid away from p if p > 0.

1.1. Main exact sequence

Recall that a smooth projective variety X over k is said to admit a decomposition of the
diagonal if the degree map induces an isomorphism CHg(X(x)) ® Q = Q, where k(X)
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2284 K. Sato and T. Yamazaki

denotes the total ring of fractions of X. This condition implies that X is connected, and
HO(X,Q}(/k) = HO(X,QA%(/k) = 0. If dim X = 2, Bloch’s conjecture predicts the converse
(see §2.6 for details).

Let S be a projective smooth surface over k£ which admits a decomposition of the

nor

diagonal. In his paper [29], Kahn introduced a new category Chow7;"", the category of
normalized birational motives, which is defined as a quotient category of Chow%ﬁf and

has the property that there is a canonical isomorphism
Chowy (T',S) =2 CHo(Sk()) Tor (cf. (6.2))

for any smooth projective variety T over k. By this isomorphism for T'= S, the motive of
nor

S is a torsion object in Chowy”" (cf. Definition 2.13). To compute its order, he established
an exact sequence

0 — Chow’"(S,S) — Tor(H! (S),H?.(5))®? — H?

ur

(Sx8)—=0 (1.1)

in [29, Corollary 6.4(a)]; cf. Example 7.6 below. Here, for a smooth scheme X over k and
i € Zo, Hi.(X) is the unramified cohomology of X, defined as follows:

H&r(X) = H%ar(Xﬂ%mL (1'2)

where 7 is the Zariski sheaf on X associated to the presheaf U — H{ (U,Q/Z(i —1)).
As is well known, we have H! (X))~ H} (X,Q/Z) and H2 (X) = Br(X), the Brauer group
of X (see §2.5 for details).

Kahn deduced (1.1) by applying T'= S to a complicated result [29, Theorem 6.3] that
involves Chowy” (T,S) for a general smooth projective variety T over k. Attempting
to foster a better understanding of it, we found the following simple statement. (See

Remark 7.2 below for more discussion.)

Theorem 1.1 (Theorem 7.1). Let k and S be as above, and let T be a smooth projective
variety over k. Then there is an exact sequence

0 — Chow}"(T,5) — @ Hom (H:.(S),H. (T)) — H3 (S xT) — 0. (1.3)

i=1,2
We shall prove the exactness of (1.3) by computing the image of the cycle class map
CHo (Sk(r))tor — Hé (Sk(ry 1)

for a sufficiently large m, using Vishik’s method [44], which gives an alternative proof
of (1.1).

1.2. Motivic, birational and normalized functors
Recall from [29] that a contravariant functor F defined on the category of smooth
projective varieties over k and with values in the category of abelian groups is called

e motwic if F factors through an additive functor on Chow%ﬁ,

e birational if F(f) is an isomorphism for any birational morphism f, and
e normalized if F(Speck)=0.
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A normalized, birational and motivic functor is equivalent to a functor which factors
through an additive functor on Chowy;“". See §2.4 for details. Fundamental examples of
such functors include H°(—, Q% si) for i >0 and the unramified cohomology (1.2). We
deduce the following result from the injectivity of the first map in (1.3):

Theorem 1.2 (Theorem 7.3). Let S and T be smooth projective varieties over k. Suppose
that S admits a decomposition of the diagonal and dim S =2. Let f:T — S be an algebraic
correspondence such that HE (f): Hi.(S) — H! (T) vanishes for i = 1,2. Then F(f):
F(S) — F(T) vanishes for any normalized, birational and motivic functor F.

Theorem 1.2 will be applied to the K3 cover f:T — S of an Enriques surface S over C
to interpret Beauville’s result [4] in Example 7.5 below.

1.3. Explicit computation of CHg(Sk(s))1or and H2 (S x S)

The groups appearing in (1.3) attracted some attention. Kahn [29, p. 840, footnote] raised
a question asking the structure of CHg(Sy(s))Tor for an Enriques surface S. The group
H32.(X) for a smooth projective variety X over C is studied by many authors since it
gives an obstruction to the integral Hodge conjecture by a theorem of Colliot-Thélene
and Voisin [14] (see Theorem 7.12). Therefore, there is some interest in making each term
in (1.3) explicit. In this direction, we obtain the following result.

Theorem 1.3 (Theorem 7.8). Let S be a smooth projective surface over k having a
decomposition of the diagonal. Suppose moreover that H}.(S) is a cyclic group of prime
order £. Then we have

|CHo (Sk(s))Tor| = [Hp (S x )| = ¢.

This applies to an Enriques surface S (with £ =2), thereby answering Kahn’s question.
(See Example 7.13 for this point and for more examples.) It also provides us with
counterexamples for the integral Hodge conjecture (see Corollary 7.11).

1.4. A remark on the p-part in characteristic p > 0

Suppose now that k has characteristic p > 0. As alluded to in the beginning of the
introduction, most of our proof works over £ for the non-p-primary torsion part, with the
help of an isomorphism Z/mZ = u,, for m € Z~ invertible in k.

To pursue a p-primary analogue of our arguments, one may consider a p-adic
counterpart of the unramified cohomology, which is defined, for i,j € Z>( and a smooth
k-scheme X, as

HE (X) {p} = lim HY,, (X, 557,
n>1
Here, 7’ is the Zariski sheaf on X7,, associated to the presheaf U — HS, 7 (U, W, QJU log)
and WnQ{J log 15 the étale subsheaf of the logarithmic part of the Hodge-Witt sheaf WnQ{J
(see [28]). The functors H%J (—){p} are birational and motivic by [32, Proposition 1.3] and
Proposition 9.1 below, and normalized for (i,5) # (0,0). However, the groups H%/ (S){p}
do not necessarily detect the p-primary torsion part CHo(Sk(r))p-Tor- In fact, when S is
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a supersingular Enriques surface over k with ch(k) = 2, we have H:J(S){2} =0 for all
(4,7) # (0,0), but CHg(Sk(s))2-Tor is nonzero. We will discuss this example in detail, later
in Remark 3.9 (2) below.

Organization of the paper

§2 is a recollection on the Chow motives and birational motives. We then study a torsion
direct summand of the Chow motive of a surface admitting a decomposition of the
diagonal in §3. A key result is Proposition 3.6. §4 is devoted to a preliminary computation
of cohomology of torsion motive of a surface. In §5, we employ the method of Vishik [44]
to study the motivic cohomology of a torsion motive constructed in §3. This result is then
applied to deduce an exact sequence in §6, which relates the Chow group CHg(Sk(s))Tor
appearing in Theorems 1.1 and 1.3 with the unramified cohomology. The main results
(Theorems 7.1, 7.3, 7.8) are proved in §7, which also contains a discussion of examples
and related topics. §8 is an appendix where we prove elementary results on homological
algebra that are used in the body of the paper. Another appendix §9 contains a proof of
the proposition saying that a Pl-invariant Nisnevich sheaf with transfer is a motivic and
birational functor.

Notations and conventions

We use the following notations throughout this paper.

e [ is a field, which will be assumed to be algebraically closed from §3 onward.
e p is the characteristic of k if it is positive, and p := 1 otherwise.
e A is either Z,Z[1/p] or Q. From §3 onward, we assume A = Z[1/p].

Notations relative to k.

e Fild is the category of fields over k£ and k-homomorphisms. Denote by Fld' (resp.
F1d™) its full subcategory consisting of those which are finitely generated over k
(resp. algebraically closed).

e Sch is the category of separated k-schemes of finite type and k-morphisms. Its
full subcategory consisting of smooth (resp. smooth and projective) k-schemes is
denoted by Sm (resp. SmProj). We write x for the product in Sch (i.e., the fiber
product over Speck in the category of all schemes).

Notations relative to X € Sch:

Xp =X Xgpeck Spec R for a k-algebra R.

K (X) is the total ring of fractions of Xy for K € Fld.

X (4) is the set of all points of X of dimension i for i € Z.
CH;(X) is the Chow group of dimension ¢ cycles on X for i € Z.
Pic(X) is the Picard group of X.

NS(X) is the Néron-Severi group if X € Sm.

Additional general notations, where A is an abelian group:

o A[m]:={ae€ A|ma=0} for m € Z=o, Ator := Umez.,A[m], and Ag := A/Aro,.
o exp(A):=inf{m e Z-o|mA=0} € Z-oU{c0}.
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o Ap:= A®y R for a commutative ring R.
e The set of all morphisms from X to Y in a category % is written by €(X,Y).
e Mod, is the category of all A-modules and A-homomorphisms.

2. Preliminaries

In this section, we recall some definitions and results from [12, 22, 29, 30, 43, 44] that
will be used later.

2.1. Chow motives

We write Chow (k) for the covariant category of Chow motives over k with coefficients
in A, defined, for example, in [29, §1.5, 1.6], [43, §4, p.2092]. (This is opposite of the
more frequently used contravariant version; see, for example, [39].) It is a A-linear rigid
symmetric monoidal pseudo-abelian category. Any object of Chow (k) can be written
as (X,m,r) for some equidimensional X € SmProj, a projector 7 of X, and r € Z. (By a
projector of X, we mean m € CHgjpm x (X X X)a such that mom =7, where o denotes the
composition of algebraic correspondences.) We have

ChOW(k)A((X,ﬂ',’I"),(Y,p,S)) =po CHdimX+7~75(X X Y)A o,

where X,Y € SmProj (with X equidimensional), m,p projectors of X,Y, and r,s € Z.
We write A(r) := (Speck, idgpeck,r) and M(r) := M @ A(r) for M € Chow(k)a. Thus,
A := A(0) is a unit object for the monoidal structure. We denote by MV the dual object
of M.

The category of effective Chow motives Chow (k)5 is the full subcategory of Chow (k)
consisting of all objects isomorphic to those of the form (X,m,r) with » > 0. There is a
covariant functor

h°® . SmProj — Chow(k){T,  h*T(X) = (X,idx,0). (2.1)
We have h*f(X) = h*f(X)V(d) if X € SmProj is purely d-dimensional. For M €
Chow (k)s and r € Z, we write CH,(M)p := Chow(k)s(A(r),M) so that we have
CH, (h*f(X))a = CH,(X)4 for any X € SmProj.

We abbreviate Chow, := Chow(k), and Chow$! := Chow (k). For any K € FId,
there is a base change functor Chow, — Chow(K), written by M — M.

2.2. Torsion motives

Vishik [44, Definition 2.4] defines a torsion motive to be an object M € Chow, such that
m-idys = 0 for some m € Z~. Since we will need a similar notion considered in different
categories, we introduce the following general terminology:

Definition 2.1. We say an object A of an additive category % is torsion if there exists
m € Zso such that m-id4 =0 in (A4, A). This is equivalent to saying that ¢ (A,B) (or
% (B,A)) is a torsion abelian group for any B € €.

The following is an obvious variant of a result of Gorchinskiy-Guletskii [22, Lemma 1]
(compare [17, Proposition 2.1]).

https://doi.org/10.1017/51474748025100996 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748025100996

2288 K. Sato and T. Yamazaki

Lemma 2.2. For M € Chowy, the following conditions are equivalent.

1) M is a torsion object of Chow,.

2) CH,(Mg)a is torsion for any n € Z and for any K € Fld.

3) CH,(Mxk)a is torsion for any n € Z and for any K € F1d*°.
)

(
(
(
(4) CH,,(Mxk)a 1s torsion for any n € Z and for any K € F1d.

Proof. (2) = (3) and (2) = (4) are obvious. (3) = (2) holds because ker(CH,, (M) —
CH,,(M3)4) is torsion, where K is an algebraic closure of K € Fld. (4) = (2) is seen by
taking colimit. We have shown the equivalence (2) < (3) & (4).

Let us show (1) = (4). By the shown equivalence (3) < (4), we are reduced to the
case k is algebraically closed (in particular, k is perfect). Take K € Fld'. By Nagata’s
compactification and de Jong’s alteration (see [15, Theorem 4.1], [16, Theorem 4.1]), we
can find an integral proper k-scheme X € Sch with K = k(X) and a proper surjective
generically finite morphism f:Y — X with Y € SmProj integral. We then have a

sequence of induced maps

CHpydy (M ®@Y)A — CHp(Myeyy)a 5 CHp (Mg (x))as

where dy := dimY. The first map is surjective, and the cokernel of the second map is
annihilated by [k(Y) : k(X)]. Since CHy 44y, (M ®@Y)p = Chowp(A(n+dy),M QY) is
torsion by the assumption (1), we conclude that CH,, (Mj,x))a is torsion as well.

It remains to prove (2) = (1), for which we follow [22, Lemma 1]. Write M = (X,7,r) €
Chow, with X equidimensional and put dx := dim X. We take N € Chow, and show
that Chow (M, N) is torsion. We may assume N = h*(Y) for connected Y € SmProj
(by replacing r if necessary). Given Z € Sch, we define CH,, (M ® Z), as the image of an
idempotent operator

CH?L (X X Z)A - CHTL (X X Z)Aa a— D23x (p>1k3 (a) ‘P12 ﬂ-)a

where p;; are respective projections on X x X x Z, and -, is the global product along p12
defined in [18, §8.1]; this product exists since X x X is smooth. We show that CH, (M ®
Z) is torsion for any integral Z € Sch and for any n by induction on dz := dim Z.
The case dz =0 is immediate from the assumption (2). If dz > 0, from the localization
sequence for X x Z, we deduce an exact sequence

P CH. (M @W)a = CHL(M & Z)s = CHp g, (Myz))a — 0,
w
where W runs through integral proper closed subschemes of Z. The claim now follows

by induction. Applying this to Z =Y and n=dx +r, we conclude CHgy,, 4-(M @Y ) =
Chow (M, N) is torsion. O

2.3. Birational motives

We write Chowl}\ir for the category of birational motives over k with coefficients in A
from [30, Definition 2.3.6]. (This is denoted by Chow®(k,A) in [30].) It comes equipped
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bir

with a functor Chowj’\ff — ChowR". We write the composition of it with h¢® by

AP : SmProj — Chowh" . (2.2)
‘We then have
Chow " (A" (X),h"" (V) = CHo (Yi(x))a

for any X,Y € SmProj (see [30, Lemma 2.3.7]).

bir

Remark 2.3. There are several variants of Chow,"'. We recall two of them.

(1) Denote by Choler' the pseudo-abelian envelope of the category obtained from
Chow$f A by inverting all birational morphisms.

(2) Denote by Chowblr % the pseudo-abelian envelope of Chow /L, where L is the
ideal of ChowS! %\ consisting of all morphisms which factor through an object of the
form M (1) with M € Chow$".

There are functors
Chow}™? = Chow ™! — Chowh"

The first one is always an equivalence, and so is the second at least if p is invertible in
A (see [30, Proposition 2.2.9, Corollary 2.4.3]). As ChowS® — Chow}" factors through
Chow’"?, the image of M (1) vanishes in Chow}" for any M € Chow$!

Finally, we write Chow’" for the quotient category of Chow?}" by the ideal consisting

of all morphisms which factor through A = " (Speck), introduced in [29, Definition 2.4].
Denote by

h*°* : SmProj — Chow”" (2.3)
the composition of 2" and the localization functor Chow}" — Chow’*". We have
Chow}{”" (R"*"(X),h""(Y')) = Coker(CHo(Y ')A — CHo(Yi(x))a) (2.4)
for any X,Y € SmProj (see loc. cit.).

Remark 2.4. If no confusion is likely, we abbreviate h®f(X), hP"(X), and h"*(X) by
X for X € SmProj. Similarly, for M € Chow‘f\ﬁ, we use the same letter M to denote its

images in Chow}" and Chow’,". For instance, the left-hand side of (2.4) will be written
by Chow*"(X,Y).

2.4. Motivic invariants

Denote by Mod, the category of A-modules. Following [29, Definition 2.1], we introduce
some definitions.

Definition 2.5. Let F': SmProj°® — Mod, be a functor.
(1) We say F is birational if F(f) is an isomorphism for any birational morphism f.

(2) We say F is motivic if F' factors through an additive functor ChowEH °P 3 Mod,.
(3) We say F' is normalized if F(Speck) = 0.
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Lemma 2.6. Suppose that p is invertible in A. A functor F : SmProj°® — Mod, is
birational and motivic (resp. normalized, birational and motivic) if and only if F factors
through an additive functor Chow]R""’Op — Mod, (resp. Chow,”"P — Mod, ).

Proof. This is immediate from what we recalled in §2.3. O

Remark 2.7. Given a motivic (resp. birational and motivic, resp. normalized, birational
and motivic) functor F : SmProj°® — Mod,, its extension to Chow$ (resp. Chow}",

resp. Chow,") is denoted by the same letter F.

Example 2.8.

(1) Suppose p=1 or A =7Z. It is a classical fact that HO(—7Qi/k) is birational and
motivic for any ¢ € Z>o; it is also normalized if ¢ > 0. It is less classical that the
same is true of H'(—,0) if k is perfect (see [10]).

(2) It is obvious from the definition that the functor
Chow,”"(—,S) : T = Chow,”"(T,S) = Coker(CHo(S)a — CHo(Sk(r))a) (2.5)

is birational, motivic and normalized for any fixed S € SmProj.

(3) Let M be a cycle module in the sense of Rost [38]. Then its 0-th cycle cohomology
A%(—,M,,) is birational and motivic by [30, Corollary 6.1.3]. We will only use a
special case of unramified cohomology, which will be recalled in the next subsection.

(4) A Pl-invariant Nisnevich sheaf with transfers is birational and motivic. We include
a proof of this fact, due to Bruno Kahn, in an appendix (see Proposition 9.1 below).
This recovers all examples discussed above, except H'(—,0).

2.5. Unramified cohomology

A general reference for this subsection is [12]. Let K € Fld and ¢ € Z. For n € Z~ invertible
in k, the unramified cohomology of K/k is defined by

Hi. ,(K/k) :=ker (Hém(K»N%(i_l)) - @H&%(Fv,u;?“-?))) : (2.6)

where v ranges over all discrete valuations of K that are trivial on k, and F;, is the residue
field of v. The maps appearing in the definition are the residue maps (see [12, (3.6)]). We
set

Hi(K/k):= lim H,, (K/k), (2.7)
(n,p)=1

where n ranges over all n € Z-y that is invertible in k. By Rost-Voevodsky’s norm
residue isomorphism theorem (which is the former Bloch-Kato conjecture and proved in
[48, Theorem 6.16]), we may identify H, , (K/k) with the n-torsion part of H} (K/k):

Hy, (K /k) 2= Hy (K E)[n). (2.8)
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Let X € Sm and i € Z. For n € Z~ invertible in k, the unramified cohomology of X is

defined as
lelrn(X) = Hgar(Xﬂ%ni)? HLzlr(X) = h_r>n Hlilr,n(X)’ (29)
(n,p):l

where 7 is the Zariski sheaf on X associated to the presheaf U Hgt(U7ug(i71)), and
the colimit in the second formula is taken in the same way as (2.7). We have canonical
isomorphisms (see [12, Propositions 4.2.1, 4.2.3])

H! (X)=H}(X,Z/n7Z), H? . (X)=Br(X)[n], (2.10)

where Br(X) := H% (X,G,,) is the Brauer group of X. If further X is integral and proper

over k, we also have (see [12, Theorem 4.1.1])

Hyy o (X) 22 Hy o (R(X) /), Hiy(X) 2 Hy (K(X) /K). (2.11)

ur,n ur,n
The following well-known fact plays an essential role in this paper:

Proposition 2.9. Let i,n € Z and suppose that n is invertible in k. Then the functor
H! :SmProj— Modgz1/p) is birational and motivic. The same is true for H!.. They

ur,n

are also normalized if i >0 and k is algebraically closed.

Proof. The first statement follows from [12, Theorem 4.1.1] (see also [38, (2.5)]) and [30,
Corollary 6.1.3], and the second from the first. The third statement is obvious from the
definition. O

2.6. Varieties admitting a decomposition of the diagonal
Proposition 2.10. The following conditions are equivalent for X € SmProj:
(1) The degree map induces an isomorphism CHo(Xy(x))o = Q.
(2) The class of the generic point of X in CHo(Xy(x))q belongs to
Im(CH(X)g — CHo(Xk(x))q)-
(3) The structure map induces an isomorphism hP*(X) = Q in Chowgr
(4) The object h™°*(X) of Chowy " is torsion in the sense of Definition 2.1.

Proof. See [30, Proposition 3.1.1] for (1)—(3). Equivalence of (2) and (4) is obvious from
the definition and (2.4) (see also [29, §2.3]). O

Remark 2.11. If %k is an algebraically closed field with infinite transcendental degree
over its prime subfield, then these conditions are also equivalent to the following:

(1)’ The degree map induces an isomorphism CHy(X ) = A for either A =7 or Q.
(See [30, Proposition 3.1.1].)

Definition 2.12. We say X € SmProj admits a decomposition of the diagonal if the
conditions of Proposition 2.10 are satisfied.
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This notion goes back to Bloch-Srinivas [8]. For such X, Kahn [29, Definition 2.5] and

Chatzistamatiou-Levine [9, Definition 1.1] defined a numerical invariant called the torsion

order, which can be written as Tory” (X) in terms of the following definition:

Definition 2.13.

(1) Let A be an object of an additive category ¢ that is torsion in the sense of Definition

2.1. The smallest m € Z~ such that m-id4 =0 is called the torsion order of A.

(2) The torsion order of a torsion object M of ChowS$ (resp. Chow’”, resp. Chow’,")

is denoted by Tor§T (M) (resp. Tor}" (M), resp. Tory (M)).
We write b;(X) and p(X) for the Betti and Picard numbers of X € SmProj:
bi(X) = dimg, Hi (X7 Qe),  p(X) = rankz NS(X7)/NS(X7) tor,
where k is an algebraic closure of k, and ¢ is any prime number different from p.

Proposition 2.14. Suppose that X € SmProj admits a decomposition of the diagonal.
(1) We have b1(X) =0, ba(X) = p(X) and Pic(X) = NS(X).

(2) Suppose that k is algebraically closed. For any prime number £ invertible in k, we
have canonical isomorphisms

Hiy (X, Qe/Z(1)) = NS(X) 7o 2,
Hy\(X)z, 2 Hy, (X, Qe/Z0) = HE (X, Zo)Tor,
H3(X)z, 2 Br(X)z, = HG (X, Ze(1)) Tor-
(3) Suppose that p is invertible in A, and put m := Tor”" (X). Then we have mF(X)=0

for any normalized, birational and motivic functor F : SmProj°® — Mod,.

Proof. See [30, Proposition 3.1.4] for the proof of (1) and [29, Lemma 2.6] for (3). (2)
follows from (1), (2.10) and the following Lemma. O

Lemma 2.15. Suppose that k is algebraically closed. Let ¢ be a prime number invertible
in k. For any X € SmProj, we have a canonical isomorphism

Heo(X,Qe/Ze(1)) 2 Pic(X) tor, 2, (2.12)
and canonical surjective morphisms
Hélt (X,Q¢/Zs) — HéQt(szé)Tory Br(X)z, — Hégt (X,Ze(1)) o (2.13)

Moreover, the first (resp. second) morphism in (2.13) is bijective if bi(X) =0 (resp.
ba(X) = p(X)).

Proof. For any m,n € Z with m,n > 0, we have exact sequences of étale sheaves:
0 — pgm —> ppmtn —> phgn — 0, 0— ppm =Gy, — G,y — 0.

From the second sequence, we obtain an isomorphism HJ (X, ) = Pic(X)[¢"], from
which we deduce (2.12) by taking a colimit over n. The upper exact row in the following
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diagram is obtained in a similar way, while the lower row is obtained by taking a limit
over m and a colimit over n of the long exact sequence deduced from the first sequence:

04>P1C(X)®QZ/Z£%-H XQ[/Zg ))—>BI‘(X)Z

| |

0 —— HZ (X, Z(1)) ® Qe /Zp — HZ(X,Q¢/Z(1)) — HE (X, Z¢(1))10r — 0.

z—>0

(The limit preserves the exactness of the lower low since HZ, (X, ¢ ) is finite for each i,m.)
The left and the right vertical maps are induced since the composition Pic(X)®Q/Z —
H3.(X,Z¢(1))1or vanishes (as the source is divisible and the target is finite). The second
surjection in (2.13) is obtained as the right vertical map in this diagram, which is bijective
if b2(X) = p(X) because so is the left vertical map under this hypothesis.

By a similar argument with different Tate twist, we get an exact sequence

0 — Hi (X, Zo(r) @Qu/Ze — Hi (X, Qu/Zo (7)) = HET (X, Zo(r)) Tor — 0 (2.14)

for any i,r € Z. The first surjection in (2.13) is obtained as the second arrow in this
sequence for (i,r) = (1,0), which is bijective if by (X) = 0 because the first term vanishes
under this hypothesis. (We will use (2.14) for other (i,r) later.) O

Remark 2.16.

(1) If S € SmProj is a surface such that b;(S) =0 and b2(S) = p(5), then Bloch’s
conjecture predicts that S should admit a decomposition of the diagonal (see [30,
Proposition 3.1.4]).

(2) It is obvious that Tori® (M) | Tor} (M) | TorS¥ (M) for torsion M € Chow$T. The
opposite divisibility does not hold in general. (For example, we have Tor?\H(M )=
Tor$T (M (1)), but the image of M (1) vanishes in Chow3".) Yet, it can hold in some
nontrivial cases, as seen in Proposition 3.6 below.

3. Torsion motives of surfaces

Setting 3.1. From now on, we suppose k is algebraically closed and A = Z[1/p]. Fix
S € SmProj admitting a decomposition of the diagonal and such that dim S = 2.

3.1. Surfaces admitting a decomposition of the diagonal
Lemma 3.2. For any prime number £ # p, we have the following:
(1) bp(S) =b4(S) =1, b2(S) = p(S), and b;(S) =0 for any i #0,2,4.
(2) H(S,Ze) = H5 (S, 24(2)) = Ze, H}(S,Z¢) =0, and HZ (S, Ze(1)) is finite.
(3) Pic(S) =NS(95) is a finitely generated Z-module; NS(S)1or, o and Br(S)a are finite
abelian groups canonically dual to each other.
(4) CH1(Sk) 2 NS(S) for any K € Fld and CHy(S%) 2 Z for any K € F1d™.

Proof. (1) Proposition 2.14 shows the statement for ¢ < 2. Then the Poincaré duality
bs—;(X) = b;(X) completes the proof for other i.
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(2) All assertions follow from (1), plus a fact H}, (5,Z¢)1or = 0 which is seen from (2.14).

(3) Proposition 2.14 shows the first statement. It also shows NS(S)rorz, =
HZ (S,Z¢(1))Tor and Br(S)a =2 H2, (S,Z¢(1))1or; hence, they are dual to each other by the
Poincaré duality.

(4) Proposition 2.14 shows the vanishing of the Picard variety of X, whence the first
statement. Since this implies the vanishing of the Albanese variety Albg of S, the last
statement of (4) follows from Roitman’s theorem [37, p. 565, Consequence III] (which
says CHo(S%)[m] = Albg(K)[m] for any m € Z invertible in k). O

Lemma 3.3. Let p:= p(S) and take ey,...,e, € NS(S) such that their classes form a
Z-basis of NS(S)/NS(S)ror- Let a;j := (ei,e;) € Z, where (-,-) denotes the intersection
form on S. Then 6 :=det((asj)i j=1,...,p) is invertible in A.

Proof. It suffices to show that § € Z;* for any prime number ¢ # p. By Proposition 2.14 we
have an isomorphism NS(S)z, & HZ (S,Z,(1)) which is compatible with the intersection
pairing and the cup product. Therefore, it suffices to show that the cup product induces
an isomorphism

Hgt(suzf(l))fr i Homg, (Hgt(S,Zg(l))fr,Zz),

where we put M, := M /M., for a Zs-module M. This follows [49, Corollary 1.3]. O
Proposition 3.4. There exists a direct sum decomposition h*f(S) = Lo M O N in
Chowf{f satisfying the following conditions:

(1) We have isomorphisms L= A® A(2) and N = A(1)P(5);

(2) M is torsion in ChowST in the sense of Definition 2.1;

(3) We have isomorphisms L = LY(2), M = MY(2) and N = NY(2) which are

compatible with those in (1) and the Poincaré duality h*(S) = hef(S)V(2).

Proof. The statement without the condition (3) is shown by Gorchinskiy-Orlov in (the
proof of) [23, Proposition 2.3, Remark 2.5] when k = C, and the full statement by Vishik
in [44, Proposition 4.1] when § is the classical Godeaux surface. The same proof works
without any essential change, but for the sake of completeness, we give a brief account.
Let p:= p(S) and take e1,...,e, € NS(S) such that their classes form a Z-basis of
NS(S)/NS(S)1or- Let a;; be as in Lemma 3.3, and set A := (a;;) € GL,(A). Write A~ =
(bij) € GL,(A). Take also a closed point zg € (). We then define orthogonal projectors

=[S Xzl +[xo %S|, wN:= Zbij[ei xej] € ChowSi(S,5) = CHy(S x S)a.
2%}

Set L := (S,71,0),N := (8,7,0),M :=(S,1 -7, —ny) € Chow$'. Then we have (1) and
(3). Observe that (1) and Lemma 3.2 imply that for any K € F1d*°,

CHy (My)a = NS(S)ator  and  CH;(Me)s = 0 for i # 1. (3.1)
It then follows by Lemma 2.2 that M satisfies (2) too. We are done. O

The summand M is not necessarily unique. We choose one and fix it.
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Setting 3.5. In what follows, we denote by M € Chow a Chow motive constructed
in Proposition 3.4. Observe that we have S = M in Chownor because A(r) vanishes in
Chow,™" for any r > 0 by Remark 2.3.

3.2. Injectivity
The following proposition proves the injectivity of the first map in (1.3).

Proposition 3.6.

(1) We take T € SmProj and consider the maps

Chow? (T, M) ~+ Chow™ (T, M) — (P Hom(H,(M),H:,(T)),

1=1,2

where a is induced by the functor ChowSt — Chow'\™, and b is induced by the
functors H., for i=1,2 using Lemma 2.6 and Proposition 2.9. Then a is bijective
and b is injective.

(2) We have
Tor{F (M) = Tori™ (M) = Tor"(S) = exp(NS(S)or.2) = exp(Br(S)a),  (32)
where exp(A) := min{m € Z~q | mA =0} for an abelian group A.

Proof. (1) (Compare [23, Proposition 2.3].) We consider a commutative diagram

Chow$T (T, M) Chow!\" (T, M)

Chow$(T,S) —2> @ Hom(H:.(M),H.(T)).
i=1,2

The maps a and c are surjective by definition. Therefore, it suffices to prove the injectivity
of e. Take f € Chow$! (T, M) such that e(f) = 0. By Proposition 2.14 (2) and Lemma
2.15, this implies that, for any prime number ¢ # p, we have

=0 Hi (M, Ze(1))tor — Hiy (T, Ze(1))10r for i =2,3. (3.3)
However, we have a commutative diagram
CHZ(M(X)T)TM,Z@(# Hgt (M®T7QZ/Z€(2))

cyc \LZ

Chow{ (T, M)z, — HA(M @T,Z(2))or-

Here, cyc is the cycle map. The upper horizontal injective map is the one constructed
by Bloch (see [11, Théoreme 4.3]). The upper right triangle is commutative by
[13, Corollaire 4]. The right vertical map is bijective since we have HJ, (M ®T,Q¢(2)) =0
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(as M is torsion). We have shown the injectivity of cyc. We consider isomorphisms

HE (M ®T,Z4(2)) o = €D Tor(Hy, * (M, Zs(1))ror, Hyy (T, Z(1) ) Tor)
1=2,3

@ Hom (H(, (M, Z,(1 ))Torngt(TaZZ(l))Tor)
1=2,3

induced by the Kiinneth formula, Poincaré duality (together with Proposition 3.4 (3)),
and Lemma 8.3 below. Their composition sends « to the correspondence action (that
is, B+~ pry, (pri(8)Ua), where pr; are projections on M ® T'). Hence, it fits in the right
vertical arrow of a commutative diagram

cyc

CH2(M ®T) 1o, 2, HL(M T, Z¢(2))Tor

1R

Chow (T, M)z, — @ Hom(H} (M, Z¢(1))tor, Hy, (T, Ze(1)) 10r),
i=2,3

where the lower horizontal map is induced by the functors HZ (—,Z¢(1))or for i = 2,3.
Now (3.3) shows that f =0 in ChowS (T, M)z,. We are done.
(2) The relations

exp(NS(S) tor,a) = exp(Br(S)a) | Tory (S) = Tork® (M) | Tor$ (M)

are seen by Lemma 3.2 (3), Propositions 2.9 and 2.14 (3) applied to F' = Br(—),, the
equality S = M in Chow}”", and Remark 2.16 (2), respectively. To conclude, it suffices to
apply (1) to T=S and f =m-idg with m € Z+ to get Tor{ (M) | exp(NS(S)Tor.a). O

We record the following corollary for later use.

Corollary 3.7.

(1) If F: SmProj°®® — Mod, is a motivic functor, then F(M) is annihilated by the
integer in (3.2). (We used the convention of Remark 2.7.)

(2) We have H (M, Zy) = H} (S, Z¢)or for any i € Z and any prime £ # p.
Proof. (1) and (2) follows from Propositions 3.6 and 3.4, respectively. O

Problem 3.8. Let € be the full subcategory of Chowf\ff consisting of torsion direct
summands of the motives of surfaces (not necessarily admitting a decomposition of the
diagonal). Is the functor ¢ — Chow,*" fully faithful?

We end this section with two remarks concerning the p-adic counterpart of our results.

Remark 3.9. Assume that p > 0, and let S be as before.

(1) The number ¢ for S in Lemma 3.3 is not necessarily invertible in Z. For example,
when S is a unirational (hence supersingular) K3 surface, S admits a decomposition
of the diagonal, and we have § = —p?°° for some 1 < o < 10; cf. [28, Chapter II,
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§7.2]. This example also shows that the decomposition of motives in Proposition
3.4 does not hold integrally, in general.

(2) Assume further that ¢ for S in Lemma 3.3 is invertible in Z; this is the case for an
Enriques surface [28, Chapter II, Corollary 7.3.7]. Under this assumption, one can
take a torsion motive M of S in Chow%ﬂ, and consider the canonical homomorphism

by : Chows™ (T, M) — €D Hom(H3 (M){p},Hi (T){p}).

0,520

Here, H/ (—){p} (i,j > 0) is as in §1.4, which is birational and motivic, and
normalized for (4,5) # (0,0). However, the map b, is not injective in general, even
when T'=S. We explain this claim in what follows. First, note that H%J (X){p}
is zero unless (4,7) = (0,0),(1,0),(1,1),(2,1),(2,2) for any surface X € SmProj; see
[41, Lemma 2.1] for the vanishing of H2?(X){p}. For the torsion motive M, we
have H:J(M){p} = 0 unless (4,5) = (1,0),(1,1),(2,1),(2,2). Noting that H%J (M){p}
is killed by Torg! (M), we have

H (M){p} = lim He? (MW 1) = He 7T (S WQ ) Tory
n>1

where the left isomorphism follows from the Gersten resolution and the purity of
logarithmic Hodge-Witt sheaves [25], [24]; one also needs the fact that Pic(M)
is killed by TorS (M) for (i,7) = (2,1). See [28, Chapter I, 5.7.5] for the right
isomorphism. Now assume that S is a supersingular Enriques surface over k with
ch(k) =2, which satisfies Picg,,, = as [28, Chapter I, 7.3.1 (d)]. Then the unramified
cohomology groups are computed as follows:

(a) We have H?(S,W0s) = k, on which the Frobenius operator F is 0 [28, Chapter
11, 7.3.2]. Hence, HZ (S,Zs) = H*(S,W0s)F=! =0, and HL?(M){2} = 0.

(b) Since Picg);, = aa, Hi(S,W g 1,e)2-Tor i zero (e, Hy'(M){2} =0).

(c) Since H?(S,WQg) =k [28, Chapter II, 7.3.6 (b)], we have HZ (S,WQg ,,,) =
Z[2Z or 0. Since Picg/, = az, the perfect group scheme ﬂ%t(svg,ls’,log) is
isomorphic to as, and the étale part of H Qét (S ,Q}q, IOg) is zero by the flat duality
of Milne [35, 2.7 (¢)] (i.e., HZ(S,Q% log) = 0). Therefore, HZY(M){2} =0.

(d) Since H'(S,WQ%) =0, Hi, (S,WQ% ,,) is zero (i.e., H3*(M){2} =0).

Thus, we have HuJ(M){2} =0 for all i,j. However, we have H?(S,0s) = k.
Since the functor H?(—,0_) is normalized, birational and motivic [10], we have
H?(M,0)) =k and M is nonzero in Chowy,". These facts imply that by for T =S
is not injective.

4. Cohomology of the torsion motive of a surface

We retain the assumptions and notations introduced in Setting 3.1 and 3.5. We prove a
few preliminary lemmas in this section. To ease the notation, put

Ng :=NS(S)tor,n  Bs :=DBr(9)a. (4.1)
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For a positive integer m invertible in k, we denote the Bockstein operator for m by
Q:Hét(*vﬂm) HHéjl(*vﬂm) (4.2)

(i.e., the connecting map associated to the short exact sequence 0 — pm — Lz —
fim — 0).

Lemma 4.1. For any m € Z~ invertible in k, we have canonical isomorphisms

0 (i #1,2,3),
Hi (M) = Ng[m]  (i=1), (4.3)
Bs/mBS (Z = 3),

and an exact sequence

0 — Ng/mNg — HZ (M, i, Bg[m] 0. (4.4)

If moreover mNg =0 (so that we have mBg =0 as well by (3.2)), then we have a
commutative diagram with exact rows

0 = HA (M. i) — = HE,(M i) — = HE, (M, i) — 0

: :

0 NS M /,Lm BS O7

where the vertical isomorphisms are those in (4.3), and the lower sequence is obtained
from the exact sequence (4.4) with the identifications Ng/mNg = Ng, Bg[m] = Bg.

Proof. The first statement follows from Proposition 2.14, Lemma 3.2 and Corollary 3.7
(2), and the second from the definition of Q. O

Lemma 4.2. Suppose that mg € Z~q is invertible in k and moNg = 0. Put m = m3
and let @ be the Bockstein operator (4.2) for m. Then there exists a subgroup Bg of
HZ (M, py,) fitting into a commutative diagram with exact row

Ng By (4.5)

| |

0—— Hé}t(MJ‘m) ? He?t(MaNm) T) Hg’t(le‘m) —0.

R

IR

In particular, we have an isomorphism
HZ, (M, 1) = QNs @ B, (4.6)

where we identified Ng = H} (M, ).
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Proof. Put H:

ét,n
rows and columns

(M) := H},(M,u,). We consider a commutative diagram with exact

&,mo (M) ——= Bg[mo] —=0

T

0 —— Ng/mNg —— Hgt’m(M) — Bg[m] ——0

F

O —_— Ns/moNS —_— HéQt,mO

(M).

All rows are from (4.4). The left and right vertical bijections come from moNg =mNg =0
and Bg[mg] = Bg|mg] = Bg, which follows from our assumption on mgy and m. We now
rewrite it using the latter half of Lemma 4.1:

Hgt,mU(M) Hg)t,mo(M) >0
| |
0—=H. (M)—2=H2 (M)—2~H} (M)—>0
ét,m ét,m ét,m
-
00— Hélt,mg(M) — Hé2t,mg(M)7

where () denotes the Bockstein operator (4%) for mg. We then obtain the assertion from
the middle horizontal exact row by putting Bg :=Im(¢) = ker(r). O

5. Vishik’s method

In [44, §4], Vishik obtained an exact sequence that computes the motivic cohomology
with Z/5Z coefficients of the classical Godeaux surface over C. In this section, we apply
his method to a general surface having a decomposition of the diagonal over an arbitrary
algebraically closed field. The main result of this section is Theorem 5.2 below.

We retain the assumptions and notations introduced in Setting 3.1 and 3.5. We also fix
the following data:

Setting 5.1. Fix mg € Z~ that is invertible in k and divisible by (3.2). Put m := m3.
We also fix an isomorphism Z/mZ = u,, by which we will identify étale and Galois
cohomology with different Tate twists. We write

Hyy (=) = Hiy(=Z/mZ),  Hiy(=) = Hia(—Z/mZL).
Using the isomorphism from (2.10), (4.1) and (4.3), we identify
H,,(S) 2 Hg (M) = Ns,  Hy,.(S) = H (M) = Bs, (5.1)

which are finite abelian groups dual to each other by Lemma 3.2 (3).
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5.1. Motivic cohomology
For X € Sm, K € Fld, and a,b € Z with b > 0, we write
HY%) (Xi,A) = H (X, A1), HY(Xi) i= Hioo(Xi, Z/mZ(b)), (5.2)

where A(b) and Z/mZ(b) are Voevodsky’s motivic complex [34, Definition 3.1] with
coefficients in A and Z/mZ, respectively. We put H%/(Xx,A) = H% (X)) =0 if b < 0.
We recall the following fundamental facts:

Hﬁ/’[b(XK,A):Hj/’,b(XK):O if a>2bor a>b+dimX. (5.3)
H (X A) = CHY (X )n,  H(Xi) = CH' (X)) /mCH' (X)), (5.4)
H%) (X)) = HY(Xg) ifa<b, (5.5)

The case a > 2b of (5.3) and (5.4) are consequences of Voevodsky’s comparison theorem
on the motivic cohomology with Bloch’s higher Chow groups (see [34, Corollary 19.2,
Theorem 19.3]). The second case of (5.3) is immediate from the definition (see [34,
Theorem 3.6]). The former Beilinson-Lichtenbaum conjecture (5.5) is proved in [48,
Theorem 6.17] as a consequence of Rost-Voevodsky’s norm residue isomorphism theorem
[48, Theorem 6.16], based on the previous works of Suslin-Voevodsky [40] and Geisser-
Levine [21].

If we fix a,b and K and let X vary, then Hﬁf’lb(X K,M) defines a motivic functor.
This follows from [34, Propositions 14.16 and 20.1], as Hﬁ/’[b(XK,A) is the colimit of
Hj/’lb(X x U,A) where U ranges over all smooth schemes over k with function field K.
The same is true of Hﬁ/’[b(X k). Therefore, the notations and results discussed in the
previous paragraph are extended to motives; cf. Remark 2.7.

We now state the main result of this section.

Theorem 5.2. For any a € Z and K € Fld, we have an exact sequence

0— H% > (Mg) — €D H& ™ (K) @ H () 5 HATHK(S)/K) — 0
i=1,2
Here, U is given by ¥(a®b) = pri(a)Uprs(b), where pr; denotes the respective projectors
on Spec(K) x S. (The last term is the unramified cohomology over K and not over k.)

5.2. Etale cohomology
Proposition 5.3. For any N € Chow, and K € Fld, we have an isomorphism

Hea (K) @ Hg (N) = Hey (Nkc)- (5.6)

Proof. Vishik proved (5.6) in [44, Proposition 4.2] assuming k¥ = C and m is a prime,
although his proof did not use those assumptions. For the sake of completeness, we include
a short proof. We may replace N by X € Sm. Consider the spectral sequence

E;’b:Héal(K,Hgt(X?)) :>Hgt+b(XK)7 (5-7)
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where K is a separable closure of K. By the smooth base change theorem, we have
HY (X%) = HY (X) on which the absolute Galois group of K acts trivially, and hence,

,b a ~ a
Ey” = H o (K HE (X5)) 2 HE o (K) @ H, (X).

Observe that £ " is generated by H}, (X) as a H,,(K)-module, and the differential maps
di*: ER* — B are HE  (K)-linear. It follows from the commutative diagram

Hgt(XK) - Eg’j = Hg;al(Kngt(X?))

T

HY (X)

Hgt (X?)

that the edge maps HY (Xg) — Ey”’ are surjective for all j, whence Ey’ = E%J. We
conclude that (5.7) degenerates at Ez-terms and induces the desired isomorphism. O

Remark 5.4. The proof shows that (5.6) remains valid when N is replaced by any
X € Sm.

Corollary 5.5. For any K € Fld and a € Z, we have an isomorphism

H (M) (2 (K) @ Ne) & (HE(K) @ QN) 58)
® (HE, (K)® Bg) @ (HE, (K) @ Bs).
Proof. Apply Proposition 5.3 to N =M and use (4.6), (5.1) and (5.5). 0

5.3. The first coniveau filtration
The isomorphism Z/mZ = u,, fixed in Setting 5.1 yields a homomorphism
T HY) (Mg) — H) M (M.
Proposition 5.6. For any K € Fld and a € Z, the map
7 H (M) = HYG (M) = HE (M)

s injective, and its image corresponds to the subgroup

(Heo  (K)®QNs) @ (Héy (K) ® Bs) (5.9)

®ker[og : (H&y (K)® Ng) @ (HE2(K) ® Bs) — He.(Mx))]

under the isomorphism (5.8) (see (2.9) for HS.(Mk)). Here, o, is given by the
composition

. . ~ (58)  wa "
(HE (K)® No) @ (HE P (K)© Bs) <" HY (Mg ) == Hy (M),

where p is given by Theorem 5.8 (1) below.
Remark 5.7. We will show that «a, is surjective in Proposition 5.10 below.

For the proof, we recall an important result from [42]:
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Theorem 5.8. Let X € Sm, K € Fld and a,b € Z with b > 0.
(1) There exists a long exact sequence
oo HY TN (X ) B HY) (X)) D Hy P (X, A8) — HOP V7N (X ) 5 oo

where H2 is from (2.9).

(2) Let BV = H;;fj(XK,%":i) = Héi:'j(XK) be the T-Bockstein spectral sequence
constructed in [42, p. 4478] (using the long exact sequence in (1)). Let TEi’j =
@wE(XK)(i)Hé;f(K(x)) = Hé:rj(XK) be the coniveau spectral sequence. Then we
have an isomorphism of spectral sequences Eb7 = TE?_i;j’_i.

(3) The composition
CH(Xk)/mCH"(Xr) 2 Hp* (X)) — H>**(Xk) = HZ(Xk)
agrees with the cycle map.

Proof. This is taken from [42, Lemma 2.1, Theorem 2.4]. Here, we only recall that (1) is
a consequence of (5.5), (2) is due to Deligne and Paranjape (see [7, p.195, footnote], [36,
Corollary 4.4]), and (3) is a consequence of (2). O

We need a simple lemma.

Lemma 5.9.

(1) The following diagram is commutative:

H%) (M) —— H%M (M)

o] E

Hﬁf;l’b(MK) — Hg%_l’b—ﬂ(MK).
(2) We have Q(Hg, (K)® HE, (M) = He,\(K) @ Q(H, (M)).

Proof. The m-th power map HQ,, (k,pm2) = HQ, (k,pim) is surjective since k is alge-
braically closed, and hence, Q(¢) =0 for any ¢ € py,. Thus, (1) follows from a formal
property of the Bockstein operator Q(xUy) = Q(x) Uy +aUQ(y) by taking y = ¢ (since
7 = —U( by definition). The same formal property reduces (2) to the surjectivity of
HE (K,p8%) — HE, (K,u$), which is a consequence of the norm residue isomorphism
theorem (see [48, Theorem 6.16]). O

Proof of Proposition 5.6. The injectivity of 7 is a part of the Beilinson-Lichtenbaum
conjecture (proved by Voevodsky in [48, Theorem 6.17]). Since H, ' (Sk, %) =0 and

Zar

HY (S, %) =HZ2 , (Sk) by the definition (2.9), we obtain from Theorem 5.8 (1) with

ur,m
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a =b an exact sequence sitting in the upper row of a diagram:
0—— H%' '(Myg) ——= H%(Mg) —2—= HS, . (Mx) (5.10)

ur,m
<] lo

ij;l’a_l(MK) %) Hﬁ//_La(MK)-

(This reproves the desired injectivity.) The square in (5.10) is commutative by
Lemma 5.9 (1). The lower horizontal arrow in the diagram is an isomorphism by (5.5).
By (5.8), we find that H%, “*"" (M) and H%(My) are respectively decomposed as

(HE&E
(HE!

K)® Ns) @ (Hg ' (K) © QNs) & (HE, (K) © Bs) ® (HE ' (K) © Bs),
K) @ Ns) & (HE, (K) @ QNs) @ (HE, (K) © Bs) & (H, (K) @ Bs).
By Lemma 5.9 (2) and (5.10), we get

p(He (K) @ QNs) = p(Qr(He, (K) ® Ns)) = p(rQ(HE, (K) ® Ns)) =0.

Similarly, we obtain p(H&,*(K)® Bs) = 0 since Bg = QBgs. To conclude (5.9), it suffices
now to note that H%,. , (Mg)= H%.(Mg) by (2.8) and use Corollary 3.7 (1). O

ur,m

(
(

5.4. The second coniveau filtration

Proposition 5.10. For any K € Fld and a € Z, the map
T HY 7 (My) — H% (M)
is injective, and its image corresponds to the subgroup
ke[, « (He! (K) ® QNs) & (Hg' (K) @ Bs) — Hy (M) (5.11)

under the isomorphism (5.9). Here, B, is defined by the commutativity of
(HE(K) @ QNs) @ (HE,* (K) @ Bs)
e
(HEor' (K) @ Ns) @ (HE, (K) @ Bs) ——= Hi (Mig).
Moreover, the map oy in (5.9) is surjective.

Proof. Since H;;’(MK,A) is annihilated by m for any a,b € Z, a commutative diagram
with an exact row

H'y M (M) —— H'y (M, A) 7= HY (M A H'/ (M)

e

H%) (M)
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shows that the complex (H;/’lb(M K ),Q) is exact. Consider a diagram

H‘/}’;iZ(MK) % H;{afl(MK)

o] E

ij;l’aiz(MK) - I{‘(/J,/;l,afl(]\4-}()7

which is commutative by Lemma 5.9 (1). Since Hj/;rl’afz(MK) =0 by (5.3), the previous
remark shows that the left vertical map in the diagram is surjective. The rest of the
proof goes along the same lines as Proposition 5.6. We apply (5.9) to obtain direct sum
decompositions of H%, " 7*(Mg) and H%'~' (M) respectively as

(H& P (K) © QNs) & (Hey (K) @ Bs) @ ker(ag_1),

(Hg, (K) ® QNs) @ (Hey (K) @ Bs) @ker(aa).
By Lemma 5.9 (2), the summand (H&,*(K)®QNs)® (H& (K)® Bs) of H, V7% (M)
is killed by the left vertical map because Q2 =0 and Bg = QBg. However, 70 Q
maps ker(a,_1) injectively into the summand (H&,2(K)® QNs) ® (H&,*(K)® Bs) of
H% ' (M), showing the first statement.

In particular, we have shown the injectivity of 7: H%/"* " (X, ) — H% (X k). Thus,

the exact sequence from Theorem 5.8 (1) applied with a = b shows that p: H%*(Xg) —
H¢ (M) is surjective. The same exact sequence together with Proposition 5.6 shows

that p((H&2(K)®QNs) @ (H& P (K)® Bg)) = 0. This completes the proof of the last
statement. O

Proof of Theorem 5.2. As the unramified cohomology is normalized, birational and
motivic (Proposition 2.9), we have H! (S) = H. (M) and H. (K(S)/K)= H! (Mk).
Now Propositions 5.6 and 5.10 complete the proof. O
6. Main exact sequence

We keep the assumptions in Setting 3.1, 3.5 and 5.1.

6.1. Main exact sequence

The following is the main technical result of this paper.

Theorem 6.1. Suppose that S € SmProj admits a decomposition of the diagonal (see
Definition 2.12) and dim S = 2. Then we have an ezact sequence for any K € Fld

0 — CHo(Sk ) tor,a — €D Hom(H},(S), HL, (K /k)) — Hi (K (S)/k) — 0.
i=1,2

(Unlike Theorem 5.2, the last term is the unramified cohomology over k and not over K.)

The proof of Theorem 6.1 will be complete in §6.3 below.
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Remark 6.2. In the situation of Theorem 6.1, we have a canonical isomorphism
CHO(SK)Tor,A = Coker(CHo(S)A — CHo(SK)A), (6.1)

and this group is annihilated by the integer (3.2). To see this, it suffices to note that
the degree map CHy(Sk) — Z is split surjective (as k is algebraically closed), and use
Lemma 3.2 (4). As a special case where K = k(T) for T € SmProj, we also have (see

(2.5))
CHO (Sk(T))Tor,A = ChOWnOT(T S) (62)

6.2. Auxiliary lemmas

Lemma 6.3. Let E be a field such that m is invertible in E and i, C E. Then Héal(E)
is a free Z/mZ-module for any j € Z.

Proof. We may assume m = ¢¢ for a prime number ¢ # p and e € Z~o. Recall
that a module over an Artin local ring is free if and only if it is flat (see, for
example, [2, Proposition 2.1.4]). By the norm residue isomorphism theorem (see
[48, Theorem 6.16]), KM, (E) ® g surjects onto KM (E)or ©Z gy, and hence, KM (E) 1o,
is divisible by (. It follows that K7 M(E) is the direct sum of an /-divisible group and a
flat Zg)-module. Thus, KM (E )®Z/mZ & HGal(E) is a flat Z/mZ-module. O

By the Poincaré duallty, we have a perfect paring of finite abelian groups for any ¢ € Z
(=, =) Hi7H(S) x HL (S) — Z/mZ.
For i = 1,2, we define the homomorphisms
Qi Hi'(S) = Hg '(S),  mit HE(S) — Hiy(S) (6.3)
as follows. For ¢ = 1, they are given by (5.1). For ¢ = 2, @} and 75 are the compositions
H3L(S) = HL(S) S HE(S).  HEZ(S) S HE(S) = 3 (S),

where @ are the Bockstein operator (4.2). (Hence, @] and m are bijective, and we have

Qs

a split short exact sequence 0 — H} (S) 53 HZ(S) = H2,(S) —0.)

Lemma 6.4. We have a perfect paring of finite abelian groups for i =1,2
(= =)t HiT'(8) x Hyy (S) = Z/mZ
characterized by the formula
(Qi(a),) = (a,mi(b))  (a€ HIT'(S),be H(S)). (6.4)

Proof. For i =1, (6.4) is nothing other than the paring in Lemma 3.2 (3), whence the
result. Assume now i = 2. We claim that Q4 (H_L,(9)) is the exact annihilator of itself with
respect to (—,—). For this, we first note that (Q4(H.(9)),Q5(HL.(S))) = 0 because

Q(a)UQ(b) = Q(a)UQ(b) —aUQ*(b) = Q(aUQ(b)) =0
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for a,b € H} (S). Here, the first (resp. third) equality holds because @* =0 (resp. Q :
H3.(S) — HZ(S) is the zero map, as HZ (S,Z/mZ) — H} (S,Z/m?Z) is injective). We
then use the fact |Q5(Hy,(S))| = [Hy, (S)| = [HE.(S)] = [HE (S)/ Q3 (H i (S))] to conclude
the claim. It follows that (—,—) induces the perfect paring in the statement characterized
by (6.4). O

Lemma 6.5. Let E be a field satisfying the assumption of Lemma 6.5. Then for i =1,2
and for any j € Z, we have isomorphisms

H{yyy(E) © Hy ™' (S) = Hom(H(y (S), H (E)),

HY(B) @ HiH(S) 2 Hom(H, (S), HE (E)).
Proof. This follows from Lemmas 6.3, 6.4 and 8.1 (2). O

Lemma 6.6. The canonical map HZ (Spec(E @y k(S))) — HZ,,(E(S)) is injective for
any E € Fld.

Proof. We consider a commutative diagram with exact row:

HE, (Spec(E ® k(S5))) — HE, (E(S))

| %’

HéQt(UE) ng,m(UE) > 07

0 —— Pic(Ug)/mPic(Ug)

where U is an open dense subscheme of S. Since the map in question is obtained as the
colimit of ¢y o7y as U ranges over such schemes, it suffices to show the vanishing of the
lower left group for sufficiently small U C S. For this, we take a (possibly reducible) curve
C C S whose components generate NS(S). Then we find Pic(Ug) =0 as soon as U C S\ C
because we have Pic(Sg) = NS(S) by Lemma 3.2 (4). We are done. O

Lemma 6.7. For any E € Fld, the map
P HE(B)@ HYTH(S) = Hau(E(S)), a®brspri(a)Uprs(h)  (6.5)

i=1,2

is injective, where pr; denotes the respective projectors on Spec(E) x S.

Proof. We decompose (6.5) as follows:

P Hea (B) 2 Y7 (S) = D HE. (B) @ HE, (k(S)
i=1,2 i=1,2
= H (Spec(E @y, k(S))) = HE, (E(S)).
The injectivity of the first map follows from Lemma 6.3 since H: (S) = H. (k(S)/k) is a
subgroup of H,,(k(S)) by definition (see (2.6), (2.11)). The second (resp. third) map is
also injective by Remark 5.4 (resp. Lemma 6.6). O
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6.3. End of the proof
We consider a commutative diagram

0 —— CHy(Sk)tor,n ——= @ Hi(K)© H3 7 (S) — 2 H3.(K(S)/K) —0

i=1,2

lal 82
X IQGBHéall( )®H3 1(S)T>®Héal(Fw)
i=1,2 v w

The upper row is an exact sequence obtained by setting a = 4 and replacing ¢ with 3—i in
Theorem 5.2. In the lower row, v (resp. w) ranges over all discrete valuations of K (resp.
K(S)) that are trivial on k, and F), (resp. F,) denotes the residue field. For each v, let
w(v) be an extension of v to K(S). Then the (v,w(v))-component of ¢ is given by (6.5)
for £ = F,, and the other components are zero. The two vertical maps are the residue
maps recalled in §2.5.

Lemma 6.7 shows that v is injective. By Lemma 6.5, we have isomorphisms

Héal(K) ®H31"_1(S) = HOIII(H:H(S),HéaI(K))’
He (Fy) @ HiT'(S) 2 Hom(H i (S), Hegl (F))-
By (2.6) and the left exactness of Hom(H{, (S),—), we obtain

ker(0y) = @ Hom(H, JHE (K /E)).

i=1,2

However, since H3,(K(S)/k) C H3.(K(S)/K) C HE,,(K(S)), we have

ker(92) = H, (K (S)/K) Nker(Hg (K (5)) = €D Héa(Fu)) = HiL (K (S)/k).

Now a diagram chase completes the proof of Theorem 6.1.

Remark 6.8. It is not always the case that H{ (K/k)® H37'(S) = Hom(H{,(9),
H (K/E)).

7. Main results

In this section, we suppose k is algebraically closed and A =Z[1/p].

7.1. An exact sequence
Theorem 7.1. Let S, T € SmProj. Suppose that S admits a decomposition of the
diagonal and dim S = 2. Then we have an exact sequence

0 — CHo (Sk(r)) Tor, A — P Hom(H.,(S),H\,(T)) — H3.(S x T) — 0. (7.1)

i=1,2

Proof. Apply Theorem 6.1 to K = k(T) and use (2.11). Note that the injectivity of ®
follows also from Proposition 3.6 together with (6.2). O
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Remark 7.2. Using Lemma 8.3, we may rewrite (7.1) as follows:
0 = CHo(Sk(r))tor.a = €D Tor(H3 (S), Hiy(T)) = Hi (S x T) — 0. (7.2)
i=1,2

This, together with (5.1) recovers Kahn’s exact sequence [29, Corollary 6.4] as a special
case T = 5. It also recovers [29, Corollary 6.5] as the case dim7T = 1. The general case
should be compared with [29, Theorem 6.3], where the map

CHo (Sk(r))Tor.a = @D [ Tor(HE, (S, Z4e), H (T, Z4))
i=1,20#£p

is studied.

7.2. Faithful property of unramified cohomology

Theorem 7.3. Let S,T € SmProj. Suppose that S admits a decomposition of the
diagonal and dim S = 2. Let f: T — S be a morphism in Chow,*". Then the following
are equivalent:

(1) We have f =0 in Chow,” (T,S).
(2) The map F(f): F(S)— F(T) vanishes for any normalized, birational and motivic
functor F: SmProj°®® — Mod,.

(3) The map H! (f): H!.(S)— H:.(T) vanishes for i =1,2.

Proof. The implications (1) = (2) = (3) are obvious, and (3) = (1) follows from Theorem
7.1 and Lemma 7.4 below. O

Lemma 7.4. Under the identification CHo(Sk(r))Tor,n = Chow}™ (T, S) from (6.2), the
map ® in (7.1) is induced by the functors Hi . fori=1,2.

Proof. Put K :=k(T). We use a cartesian diagram

Sk Pz Spec K
Pr1i iSQ
s Speck,

where pr; are the projections and s; are the structure maps. We first show, by a standard
argument, the commutativity of the diagram

H, (Sk) —— €, Hom(H{, (8), H (K)) (7.3)

o d
i Tp

D, Hi ' (S) @ Hg o (K),

IR

where cr is the correspondence action (that is, cr(€)(a) = pry, (pri(a)Ug)), kil is the
Kiinneth isomorphism, and pd is the isomorphism from Lemma 6.5. We take a € H, ét(S' ),
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be HL '(S) and x € HY, (K) and compute
(crokii) (b@x)(a) = pra, (pri(a) Upry (b) Upr(x))

* * ) *
= pro. (pri(aUb) Upry(x)) = pry,(pri(aUb)) Uz
@ s5s1:(aUb)Uz =pd(b®@x)(a).
Here, we have used the projection formula for étale cohomology and the base change
property in [3, Exposé XVIII, Théoréme 2.9] at (1) and (2), respectively. We have shown
the commutativity of (7.3).
We now consider the following diagram:

cyc

CHo(Sk ) tor, A~ HA (Sk) —> @, Hom(HY, (S), Hiyy (K))

@, Hom(H,,(S), H,.(T)).

Here, cyc is the cycle map, and II is the direct sum of the compositions
Hom(HZlI’(S)7HlZ,U'(T)) — Hom(Htllr(S)vHéal(K)) <_1> Hom(Hét(S)aHéal(K))v

where 7 is induced by m; in (6.3) (which is split surjective). If we set pdokii™! at ()
and ® at (xx), then the diagram commutes by Theorem 5.8 (3) and Lemma 6.4. However,
if we set cr at (*) and the induced map by H} at (sx), then the diagram commutes by
definition. Hence, the assertion follows from the commutativity of (7.3). O

Example 7.5. Let S be an Enriques surface over C (so that S admits a decomposition
of the diagonal by [6] and Remark 2.16 (1)). Let f:T — S be its universal cover so that
deg(f) =2 and T is a K3 surface. In [4, Corollary 5.7], Beauville showed that H2 (f)
vanishes if and only if there exists L € Pic(T') such that o(L) = L~ and ¢;(L)? =2 mod 4,
where o € Gal(f) is the nontrivial element. Moreover, it is shown that all the S satisfying
those conditions form an infinite countable union of hypersurfaces in the moduli space of
Enriques surfaces [4, Corollary 6.5]. Explicit examples of S satisfying those conditions can
be found in [20, 27]. As H! (f) =0 by definition, Theorem 7.3 shows that this condition
implies F(f) =0 for any normalized, birational and motivic functor F.

Example 7.6. Let us apply Theorem 7.3 to T'=S5 and f =m-idg with m € Z<y.
The minimal m which satisfies the condition (3) is nothing other than the torsion order
Tork® (S) in the sense of Definition 2.13. Thus, Theorem 7.3 (together with (5.1)) recovers
a main result of [29, Corollary 6.4 (b)], which says Tor}y™ (S) = exp(NS(S)a, Tor)-

Theorem 7.3 suggests the following problem.

Problem 7.7. Is the functor H, viewed as a functor from the full subcategory of torsion

objects in Chow}}”" to Mod,, faithful? (Compare [29, Question 3.5].)
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7.3. Explicit computation of the Chow group and unramified cohomology

Theorem 7.8. Suppose the characteristic of k is zero. Let S € SmProj be a surface
admitting a decomposition of the diagonal. If H. (S) is a cyclic group of prime order ¢,

then so are CHo(Sk(s))Tor,a and H3.(Sx S).

Proof. Let M € Choweff be the Chow motive constructed in Proposition 3.4. Since
CHo(Sk(s))Tor,n = Chowy*"(S,.5) = Chow,*" (M, M), Proposition 3.6 (1) and (7.1) yields
an exact sequence

0 — Chow} (M, M) % @B Hom(H},(S), Hi\(S)) — H3(Sx ) »0.  (7.4)
i=1,2

We know idy; € Chow$(S,S) has order £ by Proposition 3.6 (2). Thus, it suffices to
show @ is not surjective. If it were surjective, then by (7.4), there should be a projector
7: M — M in Chow$" such that N :=Im(r) C M satisfies Pic(N) =0 and Br(N) =~ Z/(Z,
but this would contradict the following result of Vishik. O

Theorem 7.9 (Vishik). Suppose that k is of characteristic zero, and let N € Chowiﬁ be
a nontrivial direct summand of a motive of a surface such that £-idy =0 for some prime
number £. Then we have Pic(N) # 0.

Proof. See [44, Corollary 4.22]. O

Remark 7.10. The assumption on the characteristic is used only to invoke Vishik’s
result. It is likely to hold in any characteristic, as long as £ is invertible in k.

Corollary 7.11. In Theorem 7.8, suppose further that k = C. Then we have
Coker(CH?(S x ) — H*(S x S(C),Z(2)) N H**(S x S)) = Z/ V7.
In particular, S x S wviolates the integral Hodge conjecture in codimension two.

Proof. Set X := S x S. We claim that CHy(X) 2 Z. For this, it suffices to show that
ker(CHo(X) — Z) is torsion by Roitman’s theorem, but Proposition 3.4 implies that

ker(CHo(X) — Z) = ChowST (A(0),M © M),

which is obviously killed by ¢. Now the corollary is a consequence of Theorem 7.8 and
the following result of Colliot-Théléne and Voisin [14]. O

Theorem 7.12 (Colliot-Théléne, Voisin). Suppose k =C and let X € SmProj. Assume
that there exist Y € SmProj and a morphism f:Y — X such that dimY =2 and f, :
CHo(Y) — CHy(X) is surjective. Then we have an isomorphism of finite abelian groups

H3 (X) = Coker(CH?(X) — H*(X(C),Z(2)) N H*?(X)).

Proof. See [14, Théoreéme 3.9]. O
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Example 7.13.

(1) By applying Theorem 7.8 to an Enriques surface S, we find that CHo(Sk(s))Tor is
of order two. This answers a question raised by Kahn [29, p. 840, footnote] (in case
of characteristic zero).

(2) Similarly, we may apply Theorem 7.8 to a Godeaux surface S over C, as long as
Bloch’s conjecture holds for S (see Remark 2.16). This is previously known for the
classical Godeaux surface by Vishik (see a remark after Proposition 4.6 in [44]).
Other Godeaux surfaces for which Bloch’s conjecture is verified can be found in
26, 47).

Problem 7.14. Does the equality
|CHo (Sk(s))or| = [H (S x S|

remain valid when H} (S) 2 NS(S)7or, 4 is not cyclic of prime order — for example, for a
Beauville surface (see [19]) or for a Burniat surface (see [1]) over C? Note that Bloch’s
conjecture is known for such surfaces, and we have H} (S) = Z/5Z x Z/5Z or H} (S) =
Z)27 X 1|27 x Z/2Z, respectively.

8. Appendix: elementary homological algebra

In this section, we prove some elementary lemmas that have been used in the body of
this paper.

Lemma 8.1.

(1) Let A,B be abelian groups. Suppose that A is finitely generated and that B is a free
Z-module. Then the canonical map

Hom(A,Q/Z)® B — Hom(A,BRQ/Z), X®b [a— b x(a)]

is an isomorphism.

(2) Let m € Z~q and let A,B be Z/mZ-modules. Suppose that A is finite and that B is
a free Z/mZ-module. Then the canonical map

Hom(A,Z/mZ)® B — Hom(A, B), X®b— [a— x(a)b)]
is an isomorphism.

Proof. (1) Write B =Z%! with some set I. Since tensor product commutes with arbitrary
sums, we can identify —® B = (—)®!. To conclude, it suffices to note that Hom(A4,—)
commutes with arbitrary sums because 4 is finitely generated. The proof of (2) is identical.

O

Lemma 8.2. Let A,B be abelian groups. Suppose that A is finite and that B is a free
Z-module. Then we have canonical isomorphisms

Hom(A4,Q/Z)® B 2 Hom(A,B®Q/Z) = Ext(A,B).
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Proof. The first isomorphism is from Lemma 8.1. The second is seen by an exact sequence
0—-B—=BQ—B®Q/Z — 0, together with Hom(A4,B®Q) =Ext(4,BQ)=0as A
is finite and B® Q is injective. O

Lemma 8.3. Let A, B be abelian groups with A finite. Then we have canonical
isomorphisms
Tor(Hom(A,Q/Z),B) = Hom(A, B), Hom(A,Q/Z)® B =2 Ext(A,B).

Proof. Set (—)Y := Hom(—,Q/Z). We take an exact sequence 0 — By — By — B — 0
with free Z-modules B;. Applying the two functors AY ® — and Hom(A,—), we obtain a
commutative diagram with exact rows

0— > Tor(AY,B) — > AY®B; — > AV ©By — > AV@B —>0
0 —— Hom(A,B) —— Ext(A,B;) — Ext(A,By) — Ext(4,B) —— 0,

where two middle vertical isomorphisms are from Lemma 8.2. The lemma follows. O

9. Appendix: P'-invariance and birational motives

The aim of this appendix is to prove Proposition 9.1 below. We freely use the basic notion
from [34]. Let F' be a Nisnevich sheaf with transfers over our base field k. For e =0,1, we
denote by i, : Speck — A! the corresponding closed immersions and define

ho(F) := Coker(if, — i} : Hompst(Zy (A'),F) — F),
ho(F) := Coker(i}, — i} : Hompgr(Z, (P'),F) — F)

as presheaf cokernels. For an abelian group A, we write F'® A for a presheaf with transfers
given by U — F(U) ®z A. Note that the canonical map

(F® A)nis = (Fis ® A)nis (9.1)

is an isomorphism (being a map of sheaves that induces isomorphisms on stalks). The
following proposition is communicated to us by Bruno Kahn.

Proposition 9.1 (B. Kahn). Let G be a P*-invariant Nisnevich sheaf with transfers. For
any X € Sm connected and for any Y € SmProj, there is a homomorphism (x) fitting
in a commutative diagram

Cor(X,Y) Homap(G(Y),G(X))
| lo
COI‘(SpeCk(X),Y) —_— Z()(Yk(X)) —— CHo(Yk(X)).

In particular, G is birational and motivic in the sense of Definition 2.5 (with A=17).
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Proof. We consider the following diagram:

Cor(X,Y)®zG(Y) G(X)
(1)
(ho(Y) @ G(Y))(X) (2)
(ho(Y)nis @ G(Y))(X) (ho(Y)©G(Y))nis(X)
@
(ho(Y)nis ® G(Y) )nis (X).

The map (0) factors through (1) since G is Pl-invariant; it also factors through (2) since
it is a Nisnevich sheaf. By (9.1), (3) is an isomorphism. However, we have

(ho(Y)nis @ G(Y))(X) = (ho(Y )nis @ G(Y))(X)
=ho(Y)nis(X) ®z G(Y) = CHo(Yi(x)) @2 G(Y),

where the first isomorphism is from [32, Theorem 3.5] and the third from [31, Theorem
3.1.2]. We obtain an induced map CHg (Y (x)) ®zG(Y) = G(X). The proposition follows
by adjunction. O
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