Pros and Cons of Low Voltage SEM
EDX Elemental Analysis

Ed Boyes
DuPont Company
edward.d.boyes@usa.dupont.com

It was Castaing (1) who many years ago lamented “First I realized that in massive samples which concerned the metallurgists I would have to give up the splendid resolving power that I had cheerfully envisaged, as I became aware of the terrific path that my electrons would perform haphazardly in the sample before agreeing to stop. I had to limit my ambitions to analyzing volumes of a few cubic micrometers. This was a big disappointment...”. In the early days most instruments for imaging and microanalysis of bulk samples were restricted to operating only at relatively high beam energies (~30kV) and for many (and perhaps too many) years this became the accepted operating procedure. However, we now know there are substantial advantages (pros) in using lower, and in some cases much lower, voltages; but also some significant limitations (cons). So what is possible?

The key is that at lower beam energy the electron penetration range into the sample is reduced greatly. For beam energy \(E_b \) the range \(R \) can be approximated by the Bethe equation (2) with \(R \propto E_b^{-3} \). Changing the beam energy from 20kV to 5kV typically reduces the range by 10x and the excited volume \(\propto E_b \) by 1000x for the same x-ray line energy. The advantages are even greater at higher voltage ratios, e.g. ~100x and ~1,000,000x respectively at 1.5kV. Critically this moves electron microbeam analysis of bulk samples from resolutions at and above 1 micrometer (in this respect the laws of physics remain the same over the past half century), down into the exciting sub-micron (1-0.1um) and nanometer ranges. Many application technologies, including semiconductor microfabrications and pigment and fiber properties, have critical dimensions ~0.1-0.25um determined by the half wavelength of blue light or soft UV radiation. Low voltage analysis is a key component of defect review tools for these production processes; and increasingly also a powerful research tool in the chemical, materials (3) and biological (4) sciences where many problems are on a similar length scale.

The previous wide gap between high voltage analysis of robust and representative wide area bulk samples in the electron microprobe or SEM at >1μm and thin section STEM for feature sizes <0.1μm has finally closed. In favorable circumstances, such as the analysis of carbon overlayers at 1.5kV, or Ta at 5kV, the need for thin sections is pushed back with demonstrated LV-EDX SEM detection sensitivities down to <2nm for thin surface films (5). In addition, it is much easier and quicker to look at a surface film directly in plan view than to have to make a cross-section sample (which is also generally much easier for SEM than (S)TEM). Fortunately, the method is not too sensitive. With careful specimen handling thin surface films from oxidation in air (e.g. on freshly plasma cleaned Cu) do not create undue problems. For samples heterogeneous on a fine sub-micron scale the effect of geometry on the reported chemistry can be much greater than the traditional ZAF x-ray corrections. Fig. 1 shows the measured k-ratios for a 0.104μm thin film of Al on a Si wafer as a function of electron beam energy. Many of the properties of these two materials are similar and we can think of this as being a physically homogeneous sample with a buried chemical interface parallel to the surface. Sets of such data for different film thicknesses can be interpreted to show good agreement with the Bethe equation (Fig. 2). The arrows indicate the point of coincidence between Figs 1 and 2. The improvements in volumetric sensitivity extend well down into the nanometer dimension range and there is a corresponding dramatic improvement in the spatial resolution of x-ray maps at low voltages. Fig 3 (ZrO₂/ SiO₂ composite at 5kV) includes features down to 50nm or less in size recorded at an original magnification of 15,000x and far removed from the prior art. The special DuPont/Hitachi S5000SPX FESEM used here also provides ~1nm (2.5x) electron image resolution at 1kV and superior (0.35x or 15x) EDX sensitivity. A potential downside of low voltage analysis is the increased energy density in the sample. This is the origin of the improved analytical resolution (pro) but it can also have undesirable (con) side effects including damage creation in sensitive samples. The total injected energy per x-ray count generated is increased only modestly (~2x) with kV and on a temporal or rate basis it is...
The corollary of the limited interaction range for x-ray production with low voltage beams is the similar-reduction in the x-ray escape path length, also by factors of >10x. This is generally much more important than differences in take-off angle. It can lead to a significant reduction, and in many cases the effective elimination, of matrix absorption (A) and fluorescence (F) in x-ray corrections. In this regard, but not in others (Z), there are some basic similarities to thin section corrections in the (S)TEM (6). However, in the SEM the “thin section” is created in the context of the surface of the wide area native sample by restricted penetration of the electron beam into the bulk, without the physical separation or reduction required for (S)TEM. Light element analysis is generally much improved, with better and more proportionate low Z representation, in spectra obtained at low beam voltages.

OK, if low voltages have all these wonderful advantages (pros) why was it not used much more widely and earlier? Well, there are some serious problems/snags (cons) too. Firstly, let us consider the fundamental physics. To excite an x-ray line with energy \(E_a \) requires we use a beam energy \(E_b \) at least \(1.3x \) \(E_a \); or an over voltage \(U = E_b/E_a(Si) \). There needs to be available a characteristic x-ray line at an accessible (for a signal) and useful (low enough for the application penetration range) energy. It should also have a workable fluorescent yield; for example with a 5kV beam Cu(L) does but Ti(L) is problematic. Secondly, the peak to background (P/B) ratios and kilocounts per second per nanoamp (kcps/nA) both decline significantly as the beam energy is reduced. For Si(K) the factor is ~6x between 20kV and 5kV (fig.4). This reduces the actual mass sensitivity improvement due to geometry from ~1000x to ~150x. Not catastrophic, in fact very useful; but not quite as good as is first promised. In a new instrument (DuPont/Hitachi S5000SPX FESEM) we have more than compensated for the loss in kcps/nA by improving the EDX detection sensitivity by ~15x over previous practice. This would apply across the kV range, except the 50kcps/nA and 2nm probe with Al at 5kV, and 10kcps with the 0.2nA we prefer, translates into an unmanageable >1Mcps/nA for Pt at 30kV. By the way, it is clear signal strength (counts) matters more than a few eV energy resolution in low voltage analysis and larger area EDX detectors (30mm\(^2\) etc.) are always preferred with FESEMs. Light elements in a heavier matrix will always be better represented in low voltage spectra irrespective of lateral resolution because of the reduction in matrix absorption and fluorescence.

Thirdly, at lower analysis voltages, the corrections for Z become a strong function of the exact accelerating voltage translated to the sample (so no charging, please). For each system (element + microscope + detector etc.) this should be a one time determination using simple elemental standards or equivalent calculations. This is much more manageable than the alternative need at high voltages for large, variable (including sensitivity to local take-off angle) and complex A and F corrections (17x for O in SiO\(_2\) at 30kV) at every analysis point. Depending on the detector characteristics, SiO\(_2\) analyses correctly below 10kV. The latter value is for a perfect detector – which does not exist (not close, yet) – and 3-5kV is typical for a good lo-Z system today.

It helps, especially for unknown samples, if the majority of elements can be analyzed at one beam voltage and 5kV fulfills this need with only a few exceptions; the most important of which is Barium. In principle 7kV covers everything; but as always with differing yields. At voltages in the 5-7kV range conductive coatings are often required to stabilize conditions at the specimen surface. We currently use thin (2-5nm) sputtered or evaporated Carbon etc.) than metal coatings produce too many overlapping x-ray lines. This is a general problem even without a contribution from the coating be-

Fig. 3. High resolution chemical image map of ZrO\(_2\) in SiO\(_2\) matrix using Zr(L) x-ray line at 5kV, 0.2nA/2nm probe, 256 x 256 spectral image recorded in 11 minutes live time on SPX system at 15,000x original magnification.

Fig. 4. Experimental x-ray yield and P/B ratio for Si with kV. Values from a special SPX system but the slope with kV is universal.
COMING EVENTS

- Microscopy NZ Conference
 February 10-14, 2003, Wellington, NZ
 peter.smith@agresearch.co.nz
- TMS
 March 2-6, 2003, San Diego, CA
 ckobert@tms.org
- PITTCON 2003
 March 9-14, 2003, Orlando, FL
 www.pittcon.org
- Mirge 2003
 March 10-12, 2003, Rocquencourt, France
 www.telin.rug.ac.be/mirage2003
- Histochemical Society Annual Meeting 2003
 April 11-15, 2003, San Diego, CA
 johc@u.washington.edu
- Experimental Biology
 April 12-16, 2003, San Diego, CA
 seb@sebiology.org
- Scanning 2003
 May 3-5, 2003, San Diego, CA
 www.scanning.org
- American Society for Microbiology
 May 18-22, 2003, Washington, DC
 www.asmusa.org
- Microscopical Society of Canada
 June 4-6, 2003, Vancouver, BC, Canada
 ech@unixg.ubc.ca
- Lehigh Microscopy Schools
 June 8, Introduction to SEM & EDS
 June 9-13, SEM & X-ray Microanalysis
 June 16-20, Advanced SEM
 June 16-20, Quantitative X-ray Microanalysis
 June 16-20, Analytical TEM
 June 16-19, Characterization of Nanostructures
 June 17-19, TEM Specimen Preparation
 June 17-19, Atomic Force Microscopy
 sharon.coe@lehigh.edu
- Materials Research Society
 April 21-25, 2003, San Francisco, CA
 info@mrs.org
- Microscopy and Microanalysis 2003
 August 3-7, 2003, San Antonio, TX
 www.msa.microscopy.com
- Society for Neuroscience
 November 8-13, 2003, New Orleans, LA
 web.sfn.org
- American Society for Cell Biology 2003
 December 13-17, 2003, San Francisco, CA
 www.ascb.org
- Materials Research Society
 December 1-5, 2003, Boston, MA
 info@mrs.org
- Microscopy and Microanalysis 2004
 August 1-5, 2004, Savannah, GA
 www.msa.microscopy.com
- Microscopy and Microanalysis 2005
 July 31-August 4, 2005, Honolulu, HA
 www.msa.microscopy.com

Please check the "Calendar of Meetings and Courses" in the MSA journal "Microscopy and Microanalysis" for more details and a much larger listing of meetings and courses.

MRS-4
Calibrate from 10X to 200,000X

This is our third generation, traceable, magnification reference standard for all types of microscopy (SEM, Optical, STM, AFM, etc.). The MRS-4 has multiple X and Y pitch patterns that range from 1/4 μm (± 0.045 μm) to 500 μm (± 0.1 μm) and a 6 mm ruler with 1 μm increments.

Visit our website and send for our free resources guide.

GELLER
Microanalytical Laboratory
486a BOSTON STREET (RT. 1) * TOPSFIED, MA 01983
978/887-7000 * 978/887-6871 * jg@gellermicro.com
http://www.gellermicro.com

Jennifer LaPlante, ’00, Ohio Wesleyan University

Jennifer is currently in medical school at the University of Florida. Image was taken using a LEO 435VP at the G.W. Burns SEM Laboratory. Submitted by Laura Tuhela-Reuning, OWU.
Introducing the JSPM-5200 from JEOL, the newest scanning probe microscope to let you explore the structure of surfaces in their native environments.

Analyze samples in fluid at body temperature, investigate optical coatings, and observe magnetic and electrical phenomena.

You control the imaging environment — fluid, vacuum, ambient air, or controlled atmosphere and the temperature (130K-800K) of your samples.

Powerful image processing and analysis functions — plus more than 20 data collection modes — will let you see things you've never seen before. Easy to operate and easy to upgrade, the JSPM-5200 is the most versatile SPM/AFM instrument for your research needs.

Contact the imaging experts at JEOL or visit www.jeol.com/jspm-5200.html to see things as they really are.
Native! of your SPM imaging environment

Vacuum Control
7x10^{-7} torr achievable.
(Optional lock-in amplifier shown.)

Scanning Kelvin Probe Microscopy (SKPM)
Images of Sn Alloy
Topography and Kelvin Probe images of tin alloy wire bonding acquired simultaneously. SKPM image shows a reduced capacity to conduct at grain boundaries.

Fluid Cell
Open (shown) and hermetically-sealed in-fluid cells available.

Bacillus Eschrichia Coi
AFM image

The JSPM-5200 Scanning Probe Microscope
cause peak separations (e.g. Ta(M) and Si(K), \(\Delta E_x \sim 31 eV \)) can be less
than the 60-200eV energy resolution of the EDX detector. Overlap of the
L lines of 3D transition elements, such as Cr, with light element K lines,
such as O, is a problem in specific cases, as is the 60-80eV separation
of adjacent 3D L lines. Classical WDX spectrometers have adequate
energy resolution (~10eV) but their inefficiency in kops/nA sensitivity
requires the brutal high current beam conditions of a microscope which
may be specimen destructive for light (and not so light) elements (7).
The advent of x-ray optics combined with parallel beam spectrometers
(8), and eventually microcalorimeters (9), should help significantly with
resolution of this problem. With the correct processing we have shown
cold FEG systems can have both the emission stability (<1%/hr variation)
and current (0.2-1nA at 5kV) for serial data collection, including spectral
imaging maps (fig 3).

Fig. 5 is an example of a surface containing an embedded rogue
particle. In the high voltage (30kV) analysis (a) the particle chemistry
is mixed up with major contributions from the surrounding matrix, in this
case a heat treated Pt EM apature. By reducing the beam energy to 4kV
the matrix Pt(M) line is still adequately excited, if with its usual rather low
P/B ratio (c) but the analysis on the particle (b) is now contained within
the volume of that component. This is established by convergence of the
chemistry as the voltage is reduced, since the embedded depth is initially
unknown. Even if perfect separation cannot be achieved, the trend allows
the component chemistries to be separated. A modern computer controlled
instrument can (and should) be operated at a variety of voltages to best
effect. The source of the contamination by alumina and other ceramics
in this and other Pt applications may be due to incomplete reprocessing
of recycled auto exhaust catalyst materials. A further benefit of the low
voltage analysis is the proper representation of the oxygen light element
component of the particle chemistry. With a complete forensic character-
ization it is possible to go look for effective solutions to the problem;
or at least methods to ameliorate the negative consequences in key
applications. In this case the quick solution was to coat the apertures on
both sides with Pt or (much easier) Au-Pt, just like any other recalcitrant
high voltage SEM sample.

The challenge now is to turn low voltage analysis into a more general
quantitative procedure (10), including (more) reliable parameters for the
lower energy x-ray lines, and to exploit the potential improvements in ac-
curacy; especially for light elements in heavier matrices. The much higher
spatial resolution at low voltages helps with one key condition for accurate
quantitative analysis: the need to isolate homogeneous analysis volumes.
In a sample heterogeneous on a fine, sub-micron or nanometer, scale.
Almost any SEM can be used for thin film depth analysis. Extending this
to three dimensions is assisted by improved instrument configurations.
As well as (10) this will be the subject of a future publication.

The characteristics of low voltage analysis include:

- Superior spatial resolution (>10x) and volume sensitivity (>1000x)
- Reduction or elimination of complex A and F matrix corrections at
every point
- Proper representation of light elements in spectra
- but still no magic for C in W or Si matrices
- Potentially more accurate quantitative analyses, especially of light
elements - but a long way to go yet
- Restriction in x-ray lines (\(E_x \)) and beam energies (\(E_b \)) for analyses
per element - we use a 130% minimum ratio for \(U = E_x/E_b \)
- Some low energy x-ray lines have poor fluorescent yields
- Z corrections are more dependent on accelerating voltage (\(E_b \))
at low over voltage (U) - but one time determination per system and
set up using standards
- Yields and P/B ratios decline with lower kV, even for K and L lines
- and P/B ratios are already lower for M lines
- Most elements are in principle accessible at 5kV, all of them at 7kV
- and a useful number of light and 3D transition elements at 1.5kV
- and this is much more than Castaing had accessible in the first
microprobe
- Multiple voltages can be used to deconvolute the depth dimension
with trends in convergent chemistry
- New technology spectrometers will transform low voltage analysis
by making a wider range of elements accessible through low and
very low energy x-ray lines, and improving the P/B ratios and ana-
lytical sensitivity 10x or more
- Some of the limitations are fundamental but others can be improved
with new approaches
- Overall we conclude that low voltage EDX analysis is a powerful
new tool. In most, but not all, cases the pros out weigh the cons;
especially on the sub-micron scale or for light elements.

The bottom line with low voltage methods is the minimum detec-
table mass is typically improved by >100x, and the volume sensitivity by
>1000x, but for homogeneously distributed material the minimum mass
fraction is degraded by up to 10x, but usually rather less. The method
is best used to analyze the major constituents, especially 1-2Z, in small
volumes; rather than more widely distributed minor components of heavier
elements. A series of very useful new methods have been added to the
micro and nano analysis toolbox and they amount to much more than
just very high resolution (~50nm) chemical x-ray maps (useful also
as they are).

References
1. R. Castaing (1991), in Electron Probe Quantitation, Eds K F J Heinrich and
D E Newbury, Plenum, New York.
2. H. Bethe (1933), Hdbk of Physics, Springer, Berlin, Heidelberg and NY
3. E D Boyes (2001), Microscopy and Microanalysis, 6, 307
4. P Echlin (2001), Microscopy and Microanalysis, 7, 211
8. R. Agnello, et al. (1997), Proc Microscopy and Micronalysis, 55, 889
EDAX

Micro Characterization Tools
Right tool for the right job
...Only from EDAX

CHEMICAL ANALYSIS FOR THE SEM & TEM
• GENESIS XMS, the next generation of microanalysis systems
• GENESIS software, easy to use with full functionality
• Full range of microanalysis detectors including Si(Li) LN free and LN cooled, WDS, Silicon Drift and Microcalorimeter

STRUCTURAL ANALYSIS IN THE SEM & TEM
• EBSD in the SEM
 OIM provides crystal orientation mapping and texture analysis
 Delphi combines EBSD and EDS data for phase identification
• EBSD in the TEM
 ACT, diffraction for the TEM, using automated drift field imaging

INTEGRATED SOLUTIONS
• Realize the next level of micro characterization with simultaneous acquisition of EBSD and EDS analysis utilizing Chi-Scan, chemical prefiltering for the most accurate results

PHASE-CONTRAST IMAGING
• Reveal the internal microstructure of a sample with resolutions below 200nm