Why Flies Walk with Wet Feet

Stephen W. Carmichael¹
Mayo Clinic
carmichael.stephen@mayo.edu

Many animals can walk up vertical surfaces or even along the ceiling. And many studies have examined how flies accomplish this impressive task. Whereas these studies have revealed the anatomy of the contact area and there have been many assumptions about the fly attachment mechanism, the main elements that contribute to the attachment force were unknown. However, Mattias Langer, J. Peter Ruppersberg, and Stanislav Gorb have successfully demonstrated that the fluid secreted from the fly's feet is a critical factor in attaching the fly to the ceiling.

Scanning electron microscopy demonstrated that the attachment pads of fly legs are covered with setae, each ending in a small terminal plate. Langer et al. then scanned the terminal plate with an atomic force microscope (AFM) and showed that the border of the plate was about 60 nm higher than the center. Using an AFM combined with an upright infrared differential interference contrast video microscope to position precisely the cantilever tip of the AFM on the terminal plate, they then retracted the specimen and measured attractive forces on a nanoNewton (nN) scale. This precise positioning and sensitive force measurements allowed examination of the plate surface point-by-point, rather than being scanned continuously line-by-line. As the sample was retracted, the point of maximum stress was reached when the stress induced by the AFM cantilever exceeded the attractive force, then contact between the plate and tip was broken and the tip was re-positioned with no lateral force being applied to the plate. A median attractive force of 33 nN was measured in the center of the plate, and the force at the border was about half of that.

But what specifically was responsible for the attractive force? Langer et al. thought that the forces they measured could not be accounted for with just Van der Waals and Coulomb forces. They isolated small drops of secretions from foot pads. They then dipped the AFM cantilever in drops that corresponded to the dimensions of a foot pad, and then measured the attractive forces. The median attractive force was 38.5 nN, corresponding very well with the forces detected in the center of the plate. Interestingly, in measurements repeated on the same drops minutes later, the measured forces were smaller, suggesting that evaporation had diminished the attractive force.

To follow up on this latter observation, Langer et al. measured attractive forces on hair plates in a buffered aqueous solution. The forces diminished about 10-fold. This led to the conclusion that attractive capillary forces, mediated by secretions from the pad of the fly's foot, are a critical factor in creating a summed attractive force that exceeds the body weight of the fly. At least one component of this secretion is water-soluble. And that is why flies walk with wet feet!

1. The author gratefully acknowledges Dr. Stanislav Gorb for reviewing this article.

INDEX OF ARTICLES

Why Flies Walk with Wet Feet..........................3
Stephen W. Carmichael, Mayo Clinic
Advanced Confocal Microscopy An Essential Technique for Microfluidics Development8
Terence Lundy, Hyphenated-Systems, Burlington, CA
The Staining of Polymers II14
R. W. Smith and V. Bryg,* Lake Havasu City, AZ and *Richfield, OH
Low Voltage FESEM of Geological Materials20
C. Ma and G. Rossman, California Institute of Technology, Pasadena, CA
Temperature Monitoring of an EM Environment24
D. Fellmann, R. Bajek, B. Carragher and C. S. Potter,
The Scripps Research Institute, La Jolla, CA
Practical Issues for Quantitative X-ray Microanalysis in SEM at Low kV30
Peter Statham, Oxford Instruments Analytical Limited, High Wycombe, Bucks U.K.
Mounting Media and Antifade Reagents34
Compiled by Tony J. Collins, Wright Cell Imaging Facility, Toronto Western Research Institute, Canada
Ethics and Digital Imaging40
J. M. Mackenzie, M. G. Burke, T. Carvalho and A. Eades,
MSA Subcommittee on the Ethics of Digital Imaging
Investigating the Microstructure of a Newly Developed Aluminum Alloy Through X-ray Microanalysis42
P. Cannas and D. Rohde, Thermo Electron Corporation, Madison, WI

Fostering LIMS Development Through Open Standards
Part II — Ontologies and Business Process46
Avrum Goodblatt, PathBioResource, U. PENN School of Medicine
Freezing Biological Samples48
Charles W. Scouten & Miles Cunningham, myNeuroLab.com, St. Louis, MO
Industry News ..49
NetNotes...52
Index of Advertisers ...62

ABOUT THE COVER

Quantum dot fluorescence image of a section of the periphery of mouse kidney immunolabeled for actin (QD 525 shown in green) and laminin (QD 655 shown in blue) and the DNA in the cell nuclei counterstained with Hoechst (shown in red). Prominently stained are the proximal and distal convoluted tubules and the renal corpuscles. 300x. Image represents a significant advancement in fluorescence imaging of proteins in fixed tissues in that two of the target proteins shown here (actin and laminin) were localized using Quantum dots, a commercial bioproduct of nanotechnology. Quantum dots are solid-state semiconductor nanocrystals composed of cadmium selenide with a capping layer of zinc sulfide and have a number of unique properties that make them advantageous for fluorescence microscopy. These properties include very high fluorescence brightness and photostability, long apparent Stokes shifts, and narrow-band fluorescence emission. Only recently have high quality secondary antibody conjugates of Quantum dots become commercially available and the immunolabelling parameters been optimized. This image by Thomas Deerinck and Mark Ellisman, NCMIR won 5th place in the Olympus BioScapes™ International Digital Imaging Competition.

deerinck@ncmir.ucsd.edu

MICROSCOPY TODAY January 2006 3
A new leader in microanalysis

Bruker is pleased to welcome the newest member of our analytical instrument family: Bruker AXS Microanalysis. By combining the strengths of technology leaders RÖNTEC and PGT with the global reach and outstanding customer support of Bruker we have now created a dynamic new provider for all your microanalysis needs.

Welcome to the start of a new era!

BRUKER ADVANCED X-RAY SOLUTIONS

www.bruker-axs.com • www.bruker-axs-microanalysis.com
Morada

11 MegaPixel side-mounted TEM camera

Digital cameras for TEM applications are quickly becoming the standard for laboratories all over the world, and we are setting those standards today. With our 11 Megapixel camera Morada (side-mounted), we are once again pushing the envelope of camera performance. If you have a brand-new, state-of-the-art TEM or an older microscope – we can bring you to the forefront of digital imaging.

The Morada is packed with performance – up to 11 MegaPixels and a dynamic range of 14 bits. Combined with a pixel size of 9 microns for high sensitivity and technology that allows rapid read-out of data, the Morada offers a field of view that is twice that of a conventional photo plate.

More details about the Morada can be found on our web site: www.soft-imaging.net/TEM

Stop by our booth and experience Morada for yourself:
M&M, Honolulu, Hawaii, USA
Microscopy Conference 2005, Davos, Switzerland

For detailed information please contact:
Soft Imaging System
info.de@soft-imaging.net
www.soft-imaging.net

North America: +1 (303) 234-9270
Europe: +49 (251) 79800-0
Asia Pacific: +60 (3) 8313-1400
COMING EVENTS

2006
✓ Australian Conf. for Microscopy and Microanalysis (ACMM19)
 February 5-9, 2006, Sydney, Australia
 www.acm19.org.au
✓ TMS
 March 12-16, 2006, San Antonio, Texas
c kobert@tms.org
✓ PITTCON 2006
 March 12-17, 2006, Orlando, Florida
 www.pittcon.org
✓ The American Chemical Society
 March 26-30, 2006, Atlanta, Georgia
 natmtgs@acs.org
✓ American Soc. for Biochemistry and Molecular Biology
 April 1-5, 2006, San Francisco, CA
 www.asmb.org
✓ GA-TAN Microscopy Training Schools
 April 4 - May 3, 2006, Pleasanton, CA (multiple courses)
 www.gatan.com/training/index.html
✓ Focus On Microscopy 2006
 April 9-12, 2006, Perth, Australia
 www.FocusOnMicroscopy.org
✓ NIST/Particle Analysis Society Particle Workshop 2006
 April 24-26, 2006, Gaithersburg, Maryland
 www.nist.gov/particle
✓ SCANNING 2006
 April 25-27, 2006, Washington, DC
 www.scanning.org
✓ Lehigh Microscopy School
 June 4-16, 2006, Bethlehem, PA (multiple courses)
 www.lehigh.edu/microscopy
✓ Short Course: 3D Microscopy of Living Cells
 June 10-22, 2006, University of Wisconsin-Madison
 www.3dcourse.ubc.ca/brochure.htm
✓ Short Course: AFM and other Scanned Probe Microscopies
 June 12-16, 2006, Raleigh, North Carolina
 www.ncsu.edu/aif/afrncourse
✓ Microscopy and Microanalysis 2006
 July 30-August 3, 2006, Chicago, IL
 www.msa.microscopy.com
✓ ICEM XVI International Microscopy Congress
 September 3-8, 2006, Sapporo, Japan
 www.imc16.jp
✓ Society for Neuroscience
 September 9-14, 2006, Washington, DC
 info@sfn.org
✓ 12th International Metallography Conference
 September 27-29, 2006, Leoben, Austria
 reinhilde.stopar@unileoben.ac.at
✓ American Society for Cell Biology
 December 9-13, 2006, San Diego, CA
 www.ascb.org

2007
✓ Microscopy and Microanalysis 2007
 August 5-9, 2007, Fort Lauderdale, FL
 www.msa.microscopy.com

Please check the “Calendar of Meetings and Courses” in the MSA
journal “Microscopy and Microanalysis” for more details and a much
larger listing of meetings and courses.

MICROSCOPY TODAY

The objective of this publication is to provide material of
interest and value to working microscopists!

The publication is owned by the Microscopy Society of America
(MSA) and is produced six times each year, in odd months, altering
with MSA’s peer-reviewed, scientific journal Microscopy and
Microanalysis. We greatly appreciate article and material contributions
from our readers—“users” as well as manufacturers/suppliers.

The only criterion is that the subject matter be of interest to a reasonable
number of working microscopists. Microscopy Today has authors from
many disparate fields in both biological and materials sciences, each
field with its own standards. Therefore MT does not have a rigid set of
style instructions and encourages authors to use their own style, asking
only that the writing be clear, informative, and accurate. Length: typi-
cal article length is 1,500 to 2,000 words plus images, longer articles
will be considered. Short notes are encouraged for our Microscopy
101 section.

MICROSCOPY TODAY

ISSN 1551-9295

Ron Anderson, Editor
randerson20@tampabay.rr.com

José Mascorro, Technical Editor
jmascor@hotmail.com

Phil Osher, Technical Editor
oshel1pe@cmich.edu

Thomas E. Phillips, Contributing Editor
PhillipsT@missouri.edu

Dale Anderson, Art Director
microscopytoday@tampabay.rr.com

Regular Mail to:
Microscopy Today, P.O. Box 247, Largo, FL 33779

Courier Mail to:
1001 Starkey Road, Lot #374, Largo, FL 33771

Telephones:
1-(727)507-7101 • Fax: (727)507-7102 • Cell: (727) 631-1022
e-Mail:
microscopytoday@tampabay.rr.com

www.Page:
http://www.microscopy-today.com

Colophon: Microscopy Today is created using components of Adobe Creative Suite CS2®

Total Circulation: 14,554

Disclaimer: By submitting a manuscript to Microscopy Today, the author
warrants that the article is original (or that the author has the right to use
any material copyrighted by others). The use of trade names, trademarks,
etc., does not imply that these names lack protection by relevant laws and
regulations. Microscopy Today, the Microscopy Society of America, and
any other societies stated, cannot be held responsible for opinions, errors,
or for any consequences arising from the use of information contained in
Microscopy Today. The appearance of advertising in Microscopy Today
does not constitute an endorsement or approval by the Microscopy Society
of America of the quality or value of the products advertised or any of
the claims, data, conclusions, recommendations, procedures, results
or any information found in the advertisements. While the contents
of this magazine are believed to be accurate at press time, neither the
Microscopy Society of America, the editors, nor the authors can accept
legal responsibility for errors or omissions.

© Copyright, 2006, The Microscopy Society of America. All rights reserved.

NORAN System SIX for x-ray microanalysis

You no longer need to optimize your x-ray microanalysis parameters for just a few elements. That’s because Thermo’s NORAN System SIX x-ray microanalysis system gives you a complete data set with every run.

Built around our spectral imaging technology, NORAN System SIX:

- Eliminates guesswork by automatically optimizing data collection
- Gives you a full spectrum for every pixel of your electron microscope image
- Allows analysis and re-analysis of the full data set any time, anywhere.

Open your eyes to the world of NORAN System SIX at www.thermo.com/microanalysis or contact us for more information.

Telephone: 1-800-532-4752 • Email: analyze@thermo.com

Look closer for answers