Formaldehyde as a Fixative for Light and Electron Microscopy
Freida L. Carson, Baylor University Medical Center

Since Blum discovered its hardening properties in 1893, formaldehyde has become the most widely used fixative in the world for specimens to be examined by light microscopy. However, since most commercial preparations of formaldehyde contain methanol, a protein precipitant, formaldehyde has been considered an unsatisfactory fixative for tissues to be examined by electron microscopy. In 1973, Carson et al. described a parallel study comparing the electron microscopic results of fixation with paraformaldehyde vs. formaldehyde. They found that there was no difference in the preservation of ultrastructural morphology provided that the buffer systems were identical. In 1976, McDowell and Trump described a fixative combining commercial formaldehyde and glutaraldehyde (4CF-1G). Both of these fixatives are dual purpose fixatives and preclude the selection of tissue for electron microscopy prior to fixation. They can both be prepared in large quantities and used for routine surgical specimens. The fixative containing formaldehyde alone does not need to be refrigerated and is stable for months; whereas, the formaldehyde-glutaraldehyde mixture should be refrigerated. The 4CF-1G solution will show a 0.2 to 0.3 unit drop in pH and will turn cloudy in 4 to 8 weeks. Although tissue does not need to be preselected for electron microscopy, very thin sections should be taken from the periphery of fixed thicker tissues when ultrastructural studies are indicated. Trump and Jones reported no change in ultrastructural preservation after storage for 36 months in either of these fixatives.

In our investigations, we initially looked at the differences in the ultrastructural preservation of blood and bone marrow fixed in the usual phosphate buffered formaldehyde found in most histopathology laboratories, in a modified Millonig phosphate buffered formaldehyde, in a neutralized (with marble chips) formaldehyde, and in an acetate buffered formaldehyde. Modified Millonig solution is prepared with sodium monobasic phosphate and sodium hydroxide, which when combined in solution will immediately give an equilibrium between sodium monobasic and sodium dibasic phosphates. The amount of alkali can be varied so that the pH can be adjusted between 5.4 and 8.0 without changing the toxicity of the fixative. The modified Millonig solution gave superior results and so this solution was chosen for the parallel studies. The usual phosphate buffered formaldehyde solution has a miliosmolality of approximately 161 exclusive of the formaldehyde and a pH of 6.85; whereas, the Millonig preparation has a miliosmolality of 290 and a pH of 7.2-7.4. The latter is very close to the miliosmolality of plasma and probably accounts for the superior ultrastructural preservation seen. That there is less cytolysis with the Millonig preparation is also apparent on light microscopic preparations. Because of the increased phosphate concentration, the concentration of the first alcoholic solution used for processing should not exceed 65% or the phosphate salts will precipitate.

In an earlier study, we had investigated the effect of varying both the buffer system and the concentration of paraformaldehyde. Blood and bone marrow were selected for this study because the fixative is immediately in intimate contact with the cells and therefore differences in penetration rates, block sizes, and intrinsic tissue variances were eliminated. Formaldehyde has no

STOP HASSLING WITH MULTIPLE SERVICE CONTRACTS!

START by putting all of your instruments under one service contract with MAS (regardless of make or model). Our expert EM SERVICE GROUP has the knowledge and skill to keep your instrument working at its best.

TEM'S / SEM's

- HITACHI
- JEOL
- AMRAY
- TOPCON
- ISI
- PHILIPS
- CAMBRIDGE

PREP EQUIPMENT

- VACUUM COATERS
- MECHANICAL PUMPS
- TURBO PUMPS
- PLASMA ASHERS
- SPUTTER COATERS

WE SERVICE

- COMPUTER CONTROLLERS
- BEAM BLANKERS
- WATER CHILLERS

Contracts and On-Demand Emergency Service at Reasonable Rates from Factory Trained Specialists.

800-421-8451

3945 Lakefield Court, Suwanee, Georgia 30024 770-866-3200 FAX 770-866-2259 or 616 Hutton Street, Suite 101 Raleigh, North Carolina 27606 919-829-7041 FAX 919-829-5518

ADVANCED ANALYTICAL PRODUCTS AND SERVICES
been considered to be osmotically active by some investigators, and we found that varying the paraformaldehyde concentration between 0.5% and 4% exerted very little effect on the ultrastructure of bone or bone marrow cells.\(^7\) However a very noticeable effect on ultrastructure was noted when the buffer system was varied. We studied s-collidine, cacodylate, and phosphate buffer systems, and found that the Millonig phosphate buffer gave vastly superior results over the other two systems. As a result of this study, in 1972 we changed from an s-collidine buffer system to a phosphate buffered paraformaldehyde for all routine electron microscopy studies, and in 1973 we changed to a phosphate buffered formaldehyde solution. The modified Millonig formaldehyde solution has been used to fix all specimens for electron microscopy, including kidney biopsies, and the results have been excellent.

ELECTRON MICROSCOPIST

The Department of Microscopy and Microanalysis at Abbott Laboratories is recruiting an Electron Microscopist for its Biological Microscopy group. This group provides ultrastructural pathology support for Nonclinical Drug Safety studies, as well as for other biological microscopy projects, such as cell screening, virus identification and counting, and immunolabeling.

Requirements for this position include: a Masters' degree in a biological field, such as cell biology, anatomy, or zoology; or Bachelor's degree and extensive, relevant experience; a thorough understanding of mammalian histology and ultrastructure; excellent technical skills including tissue collection at necropsy, tissue and cell processing for TEM, sectioning, staining, operation of electron microscopes and related equipment, darkroom procedures; ability to communicate information in technical reports and in oral presentations.

Highly desirable, but not essential, are: experience in ultrastructural pathology or toxicologic pathology; working knowledge of SEM specimen preparation and instrumentation; working knowledge of immunocytochemistry, in situ hybridization, and other labeling methods at light or electron microscopic level; familiarity with Good Laboratory Practices.

We are looking for a team player with outstanding interpersonal skills and the ability to adjust readily to rapidly changing priorities and shifting deadlines. The ability to communicate clearly, both verbally and in writing, is essential. Careful attention to detail and accuracy are required.

The Department of Microscopy and Microanalysis provides corporate-wide support in Biological and Materials Microscopy to all divisions of Abbott Laboratories. The facility houses two TEMs (a Philips CM12 STEM and a LEO 910), two SEMs (a Philips XL30-FEG and AMRAY 1830i), three EDXS systems, a BioRad confocal scanning laser microscope, several fluorescents and light microscopes (polarized light, DIC), and a Quaintec Image Analysis system. We also have an Arcturus PixCell laser capture microdissection system and a Becton Dickinson FACSCalibur flow cytometer. Microtomes include Reichert Ultracut E and S ultramicrotomes, RMC 6000 XL cryoulrotome, Microm histological microtome, and Microm HM500 cryostat.

Please send letters of application and resumes to:

Jane A. Fagerland, Ph.D.
Abbott Laboratories
D45M/AP31
200 Abbott Park Rd.
Abbott Park IL 60064-6202
(847) 935-0104 voice
(847) 938-5027 fax
jane.a.fagerland @abbott.com

Abbott Laboratories is an equal opportunity employer.

Win a Free Digital Camera

Find Out How At www.small-world.net