THE RESOLUTION REVOLUTION

Stephen W. Carmichael, Mayo Clinic

The history of microscopy has focused on better and better resolution, as has been documented on these pages (e.g., J.-P. Revel). As one can see in the first graph, the early improvement in resolution was agonizingly slow, as it was dependent on technological improvements in optics and methods for preparing specimens. Hans and Zacharias Janssen are credited with being the first to put two lenses in the same optical path to create a primitive microscope in 1599. Nearly a century later, Antoni van Leeuwenhoek was imaging specimens on needles. Whereas van Leeuwenhoek and other observers were able to make significant observations to change fundamental concepts of their day, microscopists such as Ernst Abbe, Hermann Ludwig Ferdinand von Helmholtz, Lord John Rayleigh, and Carl Zeiss brought us to the brink of optimal performance of the light microscope. Abbe may have been the first to realize that the wavelength of light was a physical limitation to resolution. In 1876 he wrote: "After all what we know from the science of our time, there is a limit to our vision which we cannot exceed. This limit consists of the nature of light itself. But we still have the consolation that there are lots of things between heaven and earth which we cannot imagine at this moment. Perhaps one day the human genius will find a way to transcend those limits which we cannot exceed. In my opinion however the instruments which one day will serve to observe the ultimate details of nature will only share the term microscope with the instruments of our time." Ernst Abbe's remarks were remarkably prophetic and he would be delighted with the progress that has been made.

As the light microscope 300 years earlier, the transmission electron microscope did not become useful to biologists until details of specimen preparation were worked out. It was not until the 1950's with the introduction of proper fixatives for preservation and epoxy resins for embedding that the research potential of the electron microscope was realized. Later a breakthrough to very high resolution was made by Albert Crewe and co-workers using a scanning transmission electron microscope. They achieved atomic resolution using the Z-contrast method.

The next technological leap came unexpectedly, at least to me. The new generation of high resolution microscopes are not optical instruments but rather sensitive electronic devices. Binning and Rohrer took advantage of the fact that the probability of finding an electron beyond the surface of a conductor falls exponentially with distance beyond the surface boundary, since electrons act as though they are digging tunnels, the effect is known as tunneling. They exploited this phenomenon by placing a very sharp electrode tip in contact with the "electron cloud" of the specimen. The application of a voltage and the sample causes electrons to flow in a narrow channel in the electron cloud; this is the Z-contrast method.

In the early 20th century, physicists were experimenting with new forms of irradiation having wavelengths considerably shorter than light. While there was fierce competition to find workable applications to microscopy, it was Ernst Ruska and Max Knoll who put two electromagnetic coils in the path of an electron beam. They first tested their instrument by using each coil separately. On 7 April 1931, they used the second coil to magnify the image produced by the first, just as the Janssens had put a second lens in an optical path. The magnification achieved on that day was only 17.4x, but the transmission electron microscopes in routine use today are only technical refinements of this first instrument. Ruska by himself and working with Bodo von Borries built electron microscopes that surpassed the resolution of the light microscope.

As with the light microscope 300 years earlier, the transmission electron microscope did not become useful to biologists until details of specimen preparation were worked out. It was not until the 1950's with the introduction of proper fixatives for preservation and epoxy resins for embedding that the research potential of the electron microscope was realized. Later a breakthrough to very high resolution was made by Albert Crewe and co-workers using a scanning transmission electron microscope. They achieved atomic resolution using the Z-contrast method.

The next technological leap came unexpectedly, at least to me. The new generation of high resolution microscopes are not optical instruments but rather sensitive electronic devices. Binning and Rohrer took advantage of the fact that the probability of finding an electron beyond the surface of a conductor falls exponentially with distance beyond the surface boundary, since electrons act as though they are digging tunnels, the effect is known as tunneling. They exploited this phenomenon by placing a very sharp electrode tip in contact with the "electron cloud" of the specimen. The application of a voltage and the sample causes electrons to flow in a narrow channel in the electron cloud; this is the Z-contrast method.

THE RESOLUTION REVOLUTION

Stephen W. Carmichael, Mayo Clinic

The history of microscopy has focused on better and better resolution, as has been documented on these pages (e.g., J.-P. Revel). As one can see in the first graph, the early improvement in resolution was agonizingly slow, as it was dependent on technological improvements in optics and methods for preparing specimens. Hans and Zacharias Janssen are credited with being the first to put two lenses in the same optical path to create a primitive microscope in 1599. Nearly a century later, Antoni van Leeuwenhoek was imaging specimens on needles. Whereas van Leeuwenhoek and other observers were able to make significant observations to change fundamental concepts of their day, microscopists such as Ernst Abbe, Hermann Ludwig Ferdinand von Helmholtz, Lord John Rayleigh, and Carl Zeiss brought us to the brink of optimal performance of the light microscope. Abbe may have been the first to realize that the wavelength of light was a physical limitation to resolution. In 1876 he wrote: "After all what we know from the science of our time, there is a limit to our vision which we cannot exceed. This limit consists of the nature of light itself. But we still have the consolation that there are lots of things between heaven and earth which we cannot imagine at this moment. Perhaps one day the human genius will find a way to transcend those limits which we cannot exceed. In my opinion however the instruments which one day will serve to observe the ultimate details of nature will only share the term microscope with the instruments of our time." Ernst Abbe's remarks were remarkably prophetic and he would be delighted with the progress that has been made.

As the light microscope 300 years earlier, the transmission electron microscope did not become useful to biologists until details of specimen preparation were worked out. It was not until the 1950's with the introduction of proper fixatives for preservation and epoxy resins for embedding that the research potential of the electron microscope was realized. Later a breakthrough to very high resolution was made by Albert Crewe and co-workers using a scanning transmission electron microscope. They achieved atomic resolution using the Z-contrast method.

The next technological leap came unexpectedly, at least to me. The new generation of high resolution microscopes are not optical instruments but rather sensitive electronic devices. Binning and Rohrer took advantage of the fact that the probability of finding an electron beyond the surface of a conductor falls exponentially with distance beyond the surface boundary, since electrons act as though they are digging tunnels, the effect is known as tunneling. They exploited this phenomenon by placing a very sharp electrode tip in contact with the "electron cloud" of the specimen. The application of a voltage and the sample causes electrons to flow in a narrow channel in the electron cloud; this is the Z-contrast method.

THE RESOLUTION REVOLUTION

Stephen W. Carmichael, Mayo Clinic

The history of microscopy has focused on better and better resolution, as has been documented on these pages (e.g., J.-P. Revel). As one can see in the first graph, the early improvement in resolution was agonizingly slow, as it was dependent on technological improvements in optics and methods for preparing specimens. Hans and Zacharias Janssen are credited with being the first to put two lenses in the same optical path to create a primitive microscope in 1599. Nearly a century later, Antoni van Leeuwenhoek was imaging specimens on needles. Whereas van Leeuwenhoek and other observers were able to make significant observations to change fundamental concepts of their day, microscopists such as Ernst Abbe, Hermann Ludwig Ferdinand von Helmholtz, Lord John Rayleigh, and Carl Zeiss brought us to the brink of optimal performance of the light microscope. Abbe may have been the first to realize that the wavelength of light was a physical limitation to resolution. In 1876 he wrote: "After all what we know from the science of our time, there is a limit to our vision which we cannot exceed. This limit consists of the nature of light itself. But we still have the consolation that there are lots of things between heaven and earth which we cannot imagine at this moment. Perhaps one day the human genius will find a way to transcend those limits which we cannot exceed. In my opinion however the instruments which one day will serve to observe the ultimate details of nature will only share the term microscope with the instruments of our time." Ernst Abbe's remarks were remarkably prophetic and he would be delighted with the progress that has been made.

As the light microscope 300 years earlier, the transmission electron microscope did not become useful to biologists until details of specimen preparation were worked out. It was not until the 1950's with the introduction of proper fixatives for preservation and epoxy resins for embedding that the research potential of the electron microscope was realized. Later a breakthrough to very high resolution was made by Albert Crewe and co-workers using a scanning transmission electron microscope. They achieved atomic resolution using the Z-contrast method.

The next technological leap came unexpectedly, at least to me. The new generation of high resolution microscopes are not optical instruments but rather sensitive electronic devices. Binning and Rohrer took advantage of the fact that the probability of finding an electron beyond the surface of a conductor falls exponentially with distance beyond the surface boundary, since electrons act as though they are digging tunnels, the effect is known as tunneling. They exploited this phenomenon by placing a very sharp electrode tip in contact with the "electron cloud" of the specimen. The application of a voltage and the sample causes electrons to flow in a narrow channel in the electron cloud; this is the Z-contrast method.
If you think WDX microanalysis is not for you

Look Again

It is well recognized that WDX delivers outstanding x-ray performance for microanalysis. But you may not know how easy it can be to obtain these superior results in your lab.

With their high elemental sensitivity, accurate quantitative light-element analysis, and superb spectral resolution, the new WDX-400/600 spectrometers from Microspec allow analysis that can’t be done with EDX or other analytical techniques. These systems provide the high precision needed to ensure reliable results. At the same time, the Windows™ environment makes the WDX-400/600 systems easy to use and facilitates integration into your lab. They are compatible with most SEMs and with most SEM and EDX computers. And Microspec provides full support for instrument use, with training courses and a team of service engineers.

Take a closer look at WDX. Call today for a product brochure and application notes that include direct comparisons of WDX and EDX results on samples similar to yours.
"tunneling current." The tunneling current is extremely sensitive between the tip and the surface, and this sensitivity is used to produce precisely measured images of the vertical position of atoms on the surface of a specimen. "Scanning the surface produces a contour map at atomic resolution. This instrument is known as the scanning tunneling microscope. Binnig and Rohrer shared the Nobel prize with Ernst Ruska in 1986.

As the reader knows, several variations of the scanning tunneling microscope have been introduced in the intervening decade. One that has proven to be most valuable is the atomic force microscope developed by Binnig, Calvin Quate, and Christoph Gerber. But other advances have been made as well. Indeed, resolution is being pushed to the atomic level.

The most obvious example that is pushing biology forward is confocal microscopy. Combined with the proper computer software, it has become routine to reconstruct the structure of living cells in three dimensions. Added to this is the ability to record cell movement, observe the propagation of ion "waves" through the cytoplasm, and other dynamic intercellular events. Indeed, meetings of biologists these days are dominated by exquisite and colorful images of cells, whereas in the recent past electron micrographs prevailed.

Those who study living phenomena have discovered that instruments offering extraordinary resolution give us concomitantly "too small of a keyhole" to look through. In contrast, the current generation of "point" scanners and "slit" scanners offer relatively low spatial resolution but are already making their mark in biology.

While temporal resolution is being pushed to the picosecond scale, the spatial resolution of light microscopes continues to be improved by using sophisticated interference strategies. A new instrument called the laser feedback microscope offers a vertical resolution of 10 nanometers on a wet surface. The standing wave fluorescence microscope can image 50 nanometer structures inside cells. Spatial resolution only possible previously with electron microscopes is available with these new instruments that can examine living cells.

A revolution in our understanding of cell structure (spatial resolution) and function (temporal resolution) is upon us. The tools available to the modern microscopist no longer present a limitation. We are only limited by our imagination. And that means there are no limits at all!

References:

Abbe E. Beitrage zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. W. Scheide:
Arch fur mikroskopisehe Anat X 413-469 1876
Fox R. Light microscopes get a sharper look. Science 262: 1275 1993