Reference Methods For Analyzing For Asbestos in Various Media
James R. Millette, Ph.D., MVA, Inc.

Microscopy remains the primary tool for the analysis and quantification of asbestos in occupational and environmental studies. The American Society for Testing and Materials (ASTM) has recently approved two new Standard Methods for the analysis of asbestos in settled dust. Both methods require the use of a transmission electron microscope (TEM) equipped with an energy dispersive x-ray analysis system. Other methods currently in use require the use of a polarized light microscope (PLM) or phase contrast microscope (PCM).

In 1987 a list of the microscopy methods used for the analysis of asbestos was compiled and published. Since that time a number of new methods for the analysis of asbestos in various media have been developed and distributed. The following is a current list of reference methods:

Bulk Building Materials:

Occupational Air Sampling And Analysis:

Drinking Water
- EPA Method 100.1 (EPA-600-4-83-043) "Analytical Method For The Determination Of Asbestos In Water" by E.J. Chattfield and M.J. Dillon, Available from NTIS, Order Number PB83-280471, 1983 (TEM).
- EPA Method 100.2 (EPA-600-R-94-134) "Determination Of Asbestos Structures Over 10 µm In Length In Drinking Water" by K.A. Brackett, P.J. Clark, and J.R. Millette. Available from NTIS, Order Number PB84-201902, 1994 (TEM).

Ambient Air Testing:
- School Clearance by Aggressive Air Testing Following Abatement:
- Settled Dust:

For soils and materials at Superfund sites, an interim method has been prepared and distributed as:

A Number of ASTM Drafts are "In the Works". These include:
- ASTM - Guide For Evaluation of Asbestos on Surfaces.

Reference:
There's More to Our New Camera than Meets the Eye

Introducing our NEW Cooled 3CCD High Resolution, Color, Low Light Camera

Capture true color, high resolution, low light images and output them in just seconds!

• Dramatic Improvement in Picture Quality
• Capture Smaller FISH Probes
• Built-in Sharpening Filter
• Ten Fold Increase in Sensitivity
• Easy to Operate Software Controls
• Labeling Ability

For superior results, Oncor's total-systems approach maximizes performance by using Oncor's DNA and reagents in Fluorescence in Situ Hybridization (FISH) applications.

Call us at 1-800-77-ONCOR.

You've got to see it! It's cool!

Just when you think you've seen it all — a camera that stretches the limits of what you CAN see — Oncor advances its leadership in imaging systems technology with its new, cooled 3CCD Color Camera System.

Oncor's innovative color camera system not only operates accurately at very low fluorescent light levels, it also provides exceptional imaging for brightfield microscopy. This ability offers the user a greater capacity to address a wider range of applications.

* For research use only. Not for use in diagnostic procedures.