A universal, turbulence-regulated, multi-freefall star formation law

Christoph Federrath, Diane M. Salim and Lisa J. Kewley

Research School of Astronomy and Astrophysics,
The Australian National University, Canberra, ACT 2611, Australia
email: christoph.federrath@anu.edu.au

Abstract. We develop a new star formation (SF) law based on the density PDF of turbulence and on the multi-freefall concept of gas collapse. We derive a relation where the star formation rate (SFR) correlates with the molecular gas mass per multi-freefall time, whereas previous models had used the average, single-freefall time. We define a new quantity called maximum (multi-freefall) gas consumption rate (MGCR) and show that the actual SFR is only about 0.4% of this maximum possible SFR, confirming the observed low efficiency of star formation.

Keywords. galaxies: high-redshift — galaxies: ISM — galaxies: starburst — stars: formation

The rate of star formation controls a galaxy’s fundamental properties and evolution (Padoan et al. 2014). Nonetheless, the functional dependence of the column density of star formation (Σ_{SFR}) is still one of the most debated topics in astrophysics, with historical parameterizations including the mean column density of gas (Σ_{gas}) (Kennicutt & Evans 2012), as well as the ratio between Σ_{gas} and the average freefall time t_{ff} (Krumholz et al. 2012; Federrath 2013; Krumholz 2014).

Significant scatter remains in both these approaches, such that Σ_{SFR} can vary by more than an order of magnitude for any given Σ_{gas} or Σ_{gas}/t_{ff}. Here (published in Salim et al. 2015), we improve the single-freefall law by the multi-freefall concept of gas collapse, taking into account the density PDF (Hennebelle & Chabrier 2011; Federrath & Klessen 2012). We find

$$\Sigma_{SFR} = 0.4% \times \text{MGCR} = 0.4% \times \Sigma_{gas}/t_{ff} \times \left(1 + \frac{b^2 \mathcal{M}^2 \beta}{\beta + 1}\right)^{3/8},$$

where \mathcal{M} is the Mach number, $1/3 \leq b \leq 1$ is the turbulence driving parameter (Federrath et al. 2008; 2010) and β is the ratio of thermal to magnetic pressure. Our new SF law implies that SF is inefficient with the SFR reaching only 0.4% of the MGCR. In Salim et al. (2015) we show that this new SF law provides superior fits to Milky Way and extragalactic data compared to any previous SF law.

References

Federrath, C., Roman-Duval, J., Klessen, R. S., Schmidt, W., & Mac Low, M. 2010, A&A, 512, A81
Kennicutt, R. C. & Evans, N. J. 2012, ARAA, 50, 531
Krumholz, M. R. 2014, Physics Reports, 539, 49

740