Nobeyama 45m CO Galactic Plane Survey: Filament properties and star formation in M17

Atsushi Nishimura¹, Tomofumi Umemoto¹, Tetsuhiro Minamidani¹, Nario Kuno²,³, Tomoka Tosaki⁴, Shinji Fujita², Mitsuhiro Matsuo⁵, Yuya Tsuda⁶, Satoshi Ohashi⁷ and NRO-GPS team

¹Nobeyama Radio Observatory, National Astronomical Observatory of Japan, Minamimaki, Minamisaku, Nagano, Japan
²Department of Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
³Center for Integrated Research in Fundamental Science and Engineering (CiRiSE), University of Tsukuba, Tsukuba, Ibaraki, Japan
⁴Department of Geoscience, Joetsu University of Education, Joetsu, Niigata, Japan
⁵Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Kagoshima, Japan
⁶Graduate School of Science and Engineering, Meisei University, Hino, Tokyo, Japan
⁷Department of Astronomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
email: atsushi.nishimura@nao.ac.jp

Abstract. We present the 12CO(J=1–0), 13CO(J=1–0), and C18O(J=1–0) maps of the M17 giant molecular clouds (GMCs) obtained as a part of the Nobeyama 45m CO Galactic Plane Survey. The observations cover the entire area of M17 SW and M17 N clouds at an angular resolution of $\sim 15''$ which corresponds to ~ 0.15 pc. We found that the N cloud consists of a couple of twisted filaments, they are extended in parallel toward the H$^\text{ii}$ region. The typical width of the filaments is ~ 0.5 pc in 13CO intensity map. Most of young stellar objects (YSOs) are located on the filaments which have a bright rim structure in 8μm at the filament edge facing the H$^\text{ii}$ region. Furthermore, the time scale of the YSOs formation on the bright rim is comparable with that of NGC 6618 cluster which provides UV photons for the region. This fact indicates that the cluster triggered to form YSOs in N cloud. We also investigated the geometry of the H$^\text{ii}$ region and GMCs by comparing spatial distribution of 12CO velocity channel map and infrared dark cloud, and then found that NGC 6618 is possibly formed by the cloud cloud collision.

Keywords. ISM: clouds, ISM: individual (M17), radio lines: ISM, stars: formation

1. Introduction

Most stars are formed in giant molecular clouds (GMCs) in the Galaxy. Recently, Herschel observations reveal the ubiquitous existence of the filamentary structure (e.g., André et al.2010) and demonstrate that spatially complete high-resolution observations are essential to understand the whole picture of star formation in the GMCs. Molecular line observations have an advantage in GMC studies because it provides velocity information (e.g., Nishimura et al.2015) while its limited sensitivity prevent us to obtain large scale GMC images with sub-parsec resolution. Nobeyama 45m CO Galactic Plane Survey (Umemoto et al.in prep.) is realized by a newly developed multi-beam receiver FOREST (Minamidani et al.in prep.) and the survey provides the most powerful dataset for this purpose.

M17 is one of the most famous H$^\text{ii}$ region excited by the high-mass star cluster NGC 6618 (the region is reviewed by Chini & Hoffmeister 2008). The cluster consists of several O stars and estimated to be very young (~ 0.5 Myr; Hoffmeister et al.2008). The region mainly consists of two GMCs, M17 SW and M17 N (Lada 1976). We observed entire region of the clouds by
2 A. Nishimura et al.

Figure 1. Peak intensity maps of 12CO($J=1–0$), 13CO($J=1–0$), and C18O($J=1–0$).

using Nobeyama 45 m telescope and obtained 12CO($J=1–0$), 13CO($J=1–0$), and C18O($J=1–0$) images at an angular resolution of $\sim 15''$.

2. Results and discussions

Figure 1 shows the peak intensity maps of CO lines observed with Nobeyama 45 m telescope. The M17 molecular cloud complex is fully covered with improved angular resolution compared with previous 12CO($J=2–1$), and 13CO($J=2–1$) observation carried out by Povich et al. (2009).

We use DisPerSE algorithm (Sousbie 2011) to identify filamentary structures from the cube data of 13CO emission. After the filtering of doubtful candidates, we found that the typical filament width is ~ 0.5 pc and the density profiles seem to be follow Plummer-like function for both SW and N clouds. In the N cloud, almost all young stellar objects (YSOs) identified by Povich et al. (2013) are located on the filaments. Most of the YSOs are classified as Class 0/I and a few are Class II/III. All filaments associated with YSOs have bright rim features at 8μm with the direction of the cluster indicates that the star formation in N cloud is triggered by the feedback of the cluster.

We compared 12CO($J=1–0$) velocity channel maps with infrared images obtained by Spitzer/IRAC. We found that 20 km s$^{-1}$ components (blue) are mainly corresponding to dark lane observed in N cloud, while 23 km s$^{-1}$ components (red) have no dark cloud counterparts. Therefore, N cloud filaments (blue component) are located at the near side of the Hα region and the red component are located at the far side of the Hα region. Furthermore, both blue and red components are seen around the cluster. One possibility which satisfy the results is that the blue and red components were collided and this cloud cloud collision triggered NGC 6618 formation.

References

Minamidani, T., Nishimura, A., Miyamoto, Y., et al. in prep.
Umemoto, T., Minamidani, T., Nishimura, A., et al. in prep.