Large-Scale Molecular Gas Survey in 12CO, 13CO and C18O ($J = 2–1$) with the Osaka 1.85m mm-submm Telescope

Toshikazu Onishi1, Atsushi Nishimura2,1, Kazuki Tokuda1, Ryohei Harada1, Kazuhide Dobashi3, Tomomi Shimoikura3, Kimihiro Kimura1, and Hideo Ogawa1

1Department of Physical Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
email: onishi@p.s.osakafu-u.ac.jp

2Nobeyama Radio Observatory, National Astronomical Observatories of Japan, 462-2 Nobeyama Minamimaki-mura, Minamisaku-gun, Nagano 384-1305, Japan

3Department of Astronomy and Earth Sciences, Tokyo Gakugei University, 4-1-1 Nukuikita-machi, Koganei, Tokyo 184-8501, Japan

Abstract. We have developed a new mm-submm telescope with a diameter of 1.85 m (hereafter, Osaka 1.85-m telescope) installed at the Nobeyama Radio Observatory. The scientific goal is to precisely reveal physical properties of molecular clouds in the Galaxy by obtaining a large-scale distribution of molecular gas, which also can be compared with large-scale observations in various wavelengths. The target frequency is \sim230 GHz; simultaneous observations in $J = 2–1$ lines of 12CO, 13CO and C18O are achieved with a beam size (HPBW) of 2.7 arcmin. Here we present the progress of observations and the scientific results obtained by Osaka 1.85-m telescope. We note that these $J = 2–1$ data of the Galactic molecular clouds will be precious for the comparison with those of extra-galactic ones that will be obtained with the ALMA with the comparable spatial resolutions.

Keywords. ISM: clouds, stars: formation, radio lines: ISM

1. Telescope & Observations

The Osaka 1.85-m telescope is enclosed in a radome that prevents telescope structure distortion due to outdoor conditions. We have been observing molecular clouds along the Galactic plane by using the on-the-fly (OTF) mapping technique along the galactic coordinates. The technical details of the telescope and the performance are described in Onishi et al. (2013). The first scientific observations started from 2011 January. Currently, about 1500 square degrees have been covered including the galactic plane ($l = 5^\circ \sim 220^\circ$ with $b \pm \sim 1^\circ$) and star forming regions (Orion, Taurus, Cygnus OB7/X, Ophiuchus, Aquila and so on) (Fig. 1). The typical noise temperature (r.m.s.) is \sim0.45 K in T_{mb} with a velocity resolution of 0.3 km s$^{-1}$.

2. Scientific Results

2.1. Orion Molecular Cloud

We performed fully sampled $\sim 3'$ resolution images of 12CO ($2–1$), 13CO ($2–1$), and C18O ($2–1$) emission over the entire area of the Orion A and B giant molecular clouds. The data were compared with $J = 1–0$ of the 12CO, 13CO and C18O data (e.g., Nagahama et al.1998) to derive the spatial distributions of the physical properties of the molecular gas. We explore the large velocity gradient formalism (e.g., Goldreich & Kwan 1974) to determine the gas density and temperature using line combinations of 13CO ($2–1$), 12CO ($2–1$), and 12CO ($1–0$) assuming a uniform velocity gradient and abundance ratio of CO. The gas temperature is higher in the

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1743921316008243
area around the H\textsc{ii} region with >100 K. The gas density is higher (>2000 cm$^{-3}$) toward the cloud edge facing the H\textsc{ii} region. These facts suggest the strong stellar wind and UV radiation from the surrounding massive stars are compressing and heating the molecular gas. Most of the results here are published as Nishimura et al. (2015).

2.2. Survey of dense cores in Taurus

We have observed the entire area of Taurus molecular cloud complex with Osaka 1.85-m telescope. It is the largest survey in Taurus in high-density gas ($\sim10^4$ cm$^{-3}$) tracer of C18O (2–1). We performed the virial analysis toward ~40 C18O (1–0) cores (e.g., Onishi et al. 1998) to investigate their dynamical status. We then found that all of the cores with the C18O (2–1) detection have virial ratios of >1. This indicates that these cores have higher density and are dynamically evolved compared with those without the C18O (2–1) detection. We also identified some uncataloged compact cores as nearly point sources in C18O (2–1). They were detected in low-column density ($<3.5 \times 10^{21}$ cm$^{-2}$) environment judged from previous studies (e.g., 13CO observations by Mizuno et al. 1995). Their LTE masses are a few M_\odot, implying possible formation sites of very low-mass stars (or brown dwarfs) under the assumption of uniform star formation efficiency of $\sim6\%$ (Onishi et al. 1998).

References