Faint extended structures near galaxies: preliminary results from the Wise Observatory

Noah Brosch1, Aleksandr Mosenkov2 and R. Michael Rich3

1Wise Observatory, Tel Aviv University and Dept. of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
email: noah@wise.tau.ac.il

2Ghent University, Belgium; St. Petersburg State University and Central Astronomical Observatory, Russian Academy of Sciences, Russia
3Dept. of Physics and Astronomy, UCLA

Abstract. We present the first results from a survey of deep imaging of edge-on galaxies, with the goal of testing the growth-by-accretion of galaxies proposed by ΛCDM. The data were obtained with a new telescope at the Wise Observatory. Our images show previously unreported extensions of the disk, tidal distortions, and streams at the level of 27-28 mag arcsec-2.

Keywords. Galaxies, halos, interactions

In ΛCDM galaxies form by accreting dwarf-galaxy sized units of dark and baryonic matter. It is important to confront this prediction with observations; among the most powerful approach is the observation of the accretion history of galaxies. We have initiated a program of deep imaging for a sample of 180 edge-on disk galaxies (EODGs) selected from the Revised Catalog of Edge-on Galaxies (Karachentsev \textit{et al.} 2003) with angular size >2 arcmin and visibility ($\delta>-30^\circ$). We use a new 0.7-m prime-focus telescope at the Wise Observatory (The Jay Baum Rich telescope; JBRT, Brosch \textit{et al.} 2015), as well as an identical facility near Frazier Park, CA (see Rich \textit{et al.} these proceedings). The JBRT camera is at prime focus behind a 2-element Ross corrector, imaging a $\sim 1\text{^o}^2$ field at f/3.2 onto a PL-16801 (FLI) 40962 CCD with 9\textmu m pixels, at 0.84 arcsec pixel-1. To reach the required LSB levels we co-add 20 -- 100+ dithered images, each exposed for 300 sec through a luminance (wide R) filter [250 nm bandpass, center at 560 nm, flat transmission profile at 95% over the entire bandpass].

The images are debiased, dark-subtracted, flat-fielded with twilight sky flats, astrometrically registered, sky-subtracted and co-added, while rejecting outlier pixels, using \textit{THELI} (Schirmer 2013). Further processing is done using \textit{DECA} (Mosenkov 2014). This includes masking of unrelated objects (stars, field galaxies, artifacts), re-estimation of the sky background in the region of interest, and photometric calibration using unsaturated stars with R-band magnitudes. The galaxy image is then cropped and aligned with the major axis horizontal, and a model fit to the galaxy’s surface brightness profile. Our preliminary very deep images of EODGs reach $\mu \geq 28$ mag arcsec-2. Imaging the entire EODG sample will be used to test ΛCDM.

References

Brosch, N., Kaspi, S., Niv, S. & Manulis, I. 2015 \textit{Ap	extsc{t}SS}, 359, 49

Schirmer, M. 2013 \textit{ApJS} 209, 21