Interstellar Methanol from the Lab to Protoplanetary Disks

Maria N. Drozdovskaya1, Catherine Walsh1, Ruud Visser2, Daniel Harsono3 and Ewine F. van Dishoeck1,4

1Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA, Leiden, The Netherlands
email: drozdovskaya@strw.leidenuniv.nl
2ESO; 3University of Heidelberg; 4MPE

Keywords. astrochemistry, stars: formation, (stars:) planetary systems: protoplanetary disks

1. Summary

Interstellar methanol is thought to be the precursor of larger, more complex organic molecules. It holds a central role in many astrochemical models (e.g., Garrod & Herbst 2006). Methanol has also been the focus of several laboratory studies (e.g., Watanabe \textit{et al.} 2004, Fuchs \textit{et al.} 2009), in an effort to gain insight into grain-surface chemistry, which potentially builds chemical complexity already in the cold, dark prestellar phase. The case of methanol is a prime example of experimental work having implications on astronomical scales. Drozdovskaya \textit{et al.} (2014) unified physical and chemical models to simulate infalling material during the birth of a low-mass protostar. An axisymmetric 2D semi-analytic collapse model (Visser \textit{et al.} 2009), wavelength-dependent radiative transfer calculations with RADMC3D (Dullemond \& Dominik 2004) and a comprehensive gas-grain chemical network (Walsh \textit{et al.} 2014) were used to study two modes of protoplanetary disk formation. One mode predominantly grows the disk via viscous spreading, while the other by the continuous infall of matter. Drozdovskaya \textit{et al.} (2014) conclusively showed that the abundance and distribution of methanol in the disk is determined by the infall path, leading to regions in which methanol is enhanced and/or depleted relative to what is expected for static models of protoplanetary disks. The results for the comet-forming zone show a level of depletion for methanol commensurate with that observed towards cometary comae (e.g., Mumma \& Charnley 2011) showing that chemical processing en route from protostar to protoplanetary disk is important for setting the composition of comet- and planet-building material. The ties between extrasolar systems and Solar System bodies are now being tested by cometary data from the Rosetta mission and protoplanetary disk observations by ALMA (Drozdovskaya \textit{et al.} in prep.).

References