Variability-specific differential gene expression across reproductive stages in sows

J. Casellas1,2*, M. Martínez-Giner1, R. N. Pena1, I. Balcells2, A. Fernández-Rodríguez3, N. Ibáñez-Escríche1 and J. L. Noguera1

1Genètica i Millora Animal, IRTA-Lleida, 25198 Lleida, Spain; 2Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; 3Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28080 Madrid, Spain

(Received 14 February 2012; Accepted 20 June 2012; First published online 11 October 2012)

Differential gene expression analyses typically focus on departures across mathematical expectations (i.e. mean) from two or more groups of microarrays, without considering alternative patterns of departure. Nevertheless, recent studies in humans and great apes have suggested that differential gene expression could also be characterized in terms of heterogeneous dispersion patterns. This must be viewed as a very interesting genetic phenomenon clearly linked to the regulation mechanisms of gene transcription. Unfortunately, we completely lack information about the incidence and relevance of dispersion-specific differential gene expression in livestock species, although a specific Bayes factor (BF) for testing this kind of differential gene expression (i.e. within-probe heteroskedasticity) has been recently developed. Within this context, our main objective was to characterize the incidence of dispersion-specific differential gene expression in pigs and, if possible, providing the first evidence of this phenomenon in a livestock species. We evaluated dispersion-specific differential gene expression on ovary, uterus and hypophysis samples from 22 F2 Iberian × Meishan sows, where a total of 15 252 probes were interrogated. For each tissue, heteroskedasticity of probe-specific residual variances was evaluated by three pairwise comparisons involving three physiological stages, that is, heat, 15 days of pregnancy and 45 days of pregnancy. Between 2.9% and 37.4% of the analyzed probes provided statistical evidence of within-tissue across-physiological stages dispersion-specific differential gene expression (BF >1), and between 0.1% and 3.0% of them reported decisive evidence (BF >100). It is important to highlight that <8% of the heteroskedastic probes were also linked to differential gene expression in terms of departures among the probe-specific mathematical expectation of each physiological stage. This discarded the disturbance of scale effects in a high percentage of probes and suggested that probe-specific heteroskedasticity must be viewed as an independent phenomenon within the context of differential gene expression. As a whole, our results report a remarkable incidence of dispersion-specific differential gene expression across the whole genome of the pig, establishing a very interesting starting point for further studies focused on deciphering the genetic mechanisms underlying heteroskedasticity.

Keywords: Bayes factor, gene expression, heteroskedasticity, microarray, sow reproduction

Implications

Dispersion-specific differential gene expression across physiological stages has been evaluated on ovary, uterus and hypophysis from 22 F2 Iberian × Meishan sows. The heteroskedastic model evidenced relevant departures of the residual variance in 2.9% to 37.4% of the analyzed probes, highlighting a remarkable incidence of this phenomenon in pigs. Moreover, scale-effect disturbances were discarded in most of the probes with dispersion-specific differential gene expression. These results provided the first evidence of heteroskedasticity for gene expression in a livestock species, suggesting the possibility of dispersion-related regulatory genetic mechanisms involved in sow reproduction.

Introduction

The current availability of low-cost massive platforms for profiling gene expression levels in domestic species has opened new research possibilities with a plethora of potential contributions to our livestock industries. The analysis of these genomic data tries to identify differential gene expression (Wolfinger et al., 2001) associated with some phenotype of interest, for example muscle growth (Reecy et al., 2006) or stress tolerance (Collier et al., 2006), although all studies in domestic species typically focus on differences linked to
the mathematical expectation (i.e. mean) of two or more groups of microarrays, without considering alternative patterns of departure.

In humans, Bachtiary et al. (2006) and Somel et al. (2006) have provided evidence of differential gene expression in terms of dispersion parameters, although dispersion-specific methodologies for microarray experiments were not developed until the Bayes factor (BF) approach adapted by Casellas and Varona (2008). In that methodological paper, the authors revealed a remarkable incidence of genes with heterogeneous residual variances in great ape fibroblasts, and discarded the influence of scale effects in the greatest part of them (Casellas and Varona, 2008). This novel approach allows for a straightforward screening of dispersion-related differential gene expression phenomena and provides raw material for the identification of regulatory genetic mechanisms involved in the variability of gene transcription.

Unfortunately, we lack of any preliminary information about the incidence and relevance of this kind of differential gene expression in the swine species. Within this context, our principal objective was to analyze gene expression data from uterus, ovary and hypophysis of 22 F2 Iberian × Meishan sows, characterizing the incidence of heterogeneous residual variances when comparing three different reproductive stages (i.e. heat, 15 days of gestation and 45 days of gestation).

Material and methods

This research was carried out on frozen tissues and live animals were not required. Nevertheless, all animal protocols regarding the original F2 Iberian × Meishan sows were approved by the Institut de Recerca i Tecnologia Agroalimentaries (IRTA; http://www.irta.cat) Animal Care and Use committee within the context of research project AGL2000-1229-C03.

Tissue collection

A total of 61 tissue samples from ovary, uterus and hypophysis of 22 F2 Iberian × Meishan sows were recovered at the commercial slaughterhouse (ESFOSA, Vic, Spain). More specifically, both the whole hypophysis and one ovary were collected when possible, whereas a sample from the apical uterus was obtained close to the oviduct. Samples were immediately frozen in liquid nitrogen and stored at −80°C until laboratory processing. All sows were in their fifth size (H; 11.48 ± 1.47 piglets per litter), number of piglets born per litter, that is, low average litter size (L; 5.78 ± 2.53 piglets per litter) and high average litter size (H; 11.48 ± 1.47 piglets per litter). A summary of the number of tissue samples per reproductive stage and performance is shown in Table 1.

Table 1 Number of microarrays for each tissue and physiological stage combination

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Physiological stage</th>
<th>HEAT</th>
<th>15d</th>
<th>45d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uterus</td>
<td></td>
<td>4/4</td>
<td>3/3</td>
<td></td>
</tr>
<tr>
<td>Ovary</td>
<td></td>
<td>4/4</td>
<td>3/4</td>
<td></td>
</tr>
<tr>
<td>Hypophysis</td>
<td></td>
<td>4/4</td>
<td>2/2</td>
<td>3/3</td>
</tr>
</tbody>
</table>

1Microarrays from lowly prolific sows.
2Microarrays from highly prolific sows.

RNA extraction

RNA was extracted from frozen tissue with 1 ml of TRIzol Reagent (Sigma-Aldrich Inc., St Louis, MO, USA), homogenized with a motor-driven homogenizer and incubated for 5 min at room temperature. 200 μl of chloroform was added to the supernatant and incubated in the same conditions. After incubation, the sample was centrifuged at 4°C for 10 min, the aqueous phase was mixed with 200 μl of ethanol, removed to a filter column (RiboPure™, Ambion Inc., Austin, TX, USA) and filtered by centrifugation (12 000 g for 30 s at room temperature). The filter was washed twice with Wash Solution (RiboPure™, Ambion Inc.) and finally, RNA was eluted in 100 μl of Elution Buffer (RiboPure™, Ambion Inc.). The quantity of RNA was determined using a NanoDrop ND-100 (NanoDrop Technologies Inc., Wilmington, DE, USA) and all samples were adjusted between 0.7 and 1 μg/μl. The quality of the samples was determined by using a 2100 BioAnalyzer (Agilent Technologies, Santa Clara, CA, USA) with the RNA 6000 Nano Kit (Agilent Technologies).

Microarray processing

Each sample was independently hybridized on a GeneChip Porcine Genomic Array (Affymetrix, Santa Clara, CA, USA) using the One-Cycle Target Labeling protocol described by the microarray manufacturers. Hybridization and scanning were performed in the Unidad de Genómica of Vall d’Hebron hospital (Barcelona, Spain).

Normalization and analyses of microarray data quality

Quality control of the microarrays was performed with Affy and SimpleAffy packages of the Bioconductor (Ihaka and Gentleman, 1996; Irizarry et al., 2003). All the microarrays fulfilled the quality requirements, thus all of them were used in the analysis. Data normalization was performed with the Robust Multichip Average algorithm (Irizarry et al., 2003) using the RMAExpress package (http://rmaexpress.bnmbolstad.com/). After filtering, 15 535 probes (each probe is a fragment of complementary nucleic acid covering genomic or inter-genomic annotated regions) were used for gene expression analyses. Probe annotation was first done using the annotation file supplied by Affymetrix (http://www.affymetrix.com/index.aflx).
Heteroskedastic linear mixed model

For each pairwise comparison between two physiological stages Ω_1 and Ω_2 of a given tissue, data from n replicates of non-competitive hybridization microarrays were available. Gene expression data were analyzed under the following hierarchical mixed model:

$$y = X\mu + Z_1p_1 + Z_2p_2 + Z_3p_3 + Z_4p_4 + e$$

where y was the $(nm) \times 1$ column vector of intensity scores sorted by microarray, within treatment within probe, and e was the $(nm) \times 1$ column vector of residuals. Preliminary analyses on this data set suggested significant differential gene expression on the basis of sow prolificacy. Within this context, sows were classified as lowly (L) or highly (H) prolific (see Table 1), and the model accounted for the interaction between sow prolificacy and physiological stage with four levels, $L \times \Omega_1$ (p_1; dimension $n_1 \times 1$) and $H \times \Omega_1$ (p_2; dimension $n_2 \times 1$), $L \times \Omega_2$ (p_3; dimension $n_3 \times 1$) and $H \times \Omega_2$ (p_4; dimension $n_4 \times 1$), where $n = n_1 + n_2 + n_3 + n_4$. Note that p_1 to p_4 accounted for the effect of each probe, whereas μ was a systematic effect characterizing the overall mean of each microarray, and X, Z_1, Z_2, Z_3, and Z_4 were appropriate incidence matrices.

Following Casellas and Varona (2008), vector e was assumed to be normally distributed,

$$e \sim \text{MVN}(0, R)$$

with R being the matrix of residual (co)variances. Assuming null residual (co)variances (Kendziorski et al., 2003; Newton et al., 2004; Casellas et al., 2008), heteroskedasticity between physiological stages was analyzed by stating

$$R = \begin{bmatrix} I_1 \sigma^2_{e(i)} \pi_i & 0 \\ 0 & I_2 \sigma^2_{e(i)}(1-\pi_i) \end{bmatrix}$$

where I_1 was a $(n_1 + n_2) \times (n_1 + n_2)$ identity matrix, I_2 was a $(n_3 + n_4) \times (n_3 + n_4)$ identity matrix, 0 was a $(n_1 + n_2) \times (n_3 + n_4)$ matrix of zeros, $\sigma^2_{e(i)}$ was the sum of residual variance for the ith probe in both physiological stages and π_i was the probe-specific heteroskedasticity parameter. As shown by Casellas and Varona (2008), $\pi_i = 0.5$ accounted for equal residual variances between treatments and $\pi_i = 0.5$ suggested within-probe (between treatments) heteroskedasticity. Given the reduced number of replicates within each physiological stage, a common residual variance was assumed for both L and H sows.

This model was analyzed under a standard Bayesian development with the following joint posterior probability:

$$p\left(\mu, p_1, p_2, p_3, p_4, \sigma, \pi_1, \sigma^2_{p_1}, \sigma^2_{p_2}, \sigma^2_{p_3}, \sigma^2_{p_4} \mid y\right) \propto p\left(y \mid a, p_1, p_2, p_3, p_4, R\right)p(\mu) \times p\left(p_1 \mid \sigma^2_{p_1}\right)p\left(p_2 \mid \sigma^2_{p_2}\right) p\left(p_3 \mid \sigma^2_{p_3}\right)p\left(p_4 \mid \sigma^2_{p_4}\right)$$

where $\sigma = \left[\sigma^2_{e(1)}, \sigma^2_{e(2)}, \ldots, \sigma^2_{e(m)} \right]$, $\pi' = \left[\pi_1, \pi_2, \ldots, \pi_m \right]$, and the Bayesian likelihood was stated as multivariate normal,

$$p\left(y \mid \mu, p_1, p_2, p_3, p_4, R\right) \sim \text{MVN} \left(X\mu + Z_1p_1 + Z_2p_2 + Z_3p_3 + Z_4p_4, R \right)$$

The a priori distribution for the probe effects was assumed:

$$p\left(\sigma^2_j \mid j \in \{1, 2, 3, 4\}\right) \sim \text{MVN}(0, I_i, \sigma^2_{p_j})$$

where I_i was a $n_i \times n_i$ identity matrix and $\sigma^2_{p_j}$ was the variance component for p_j. Scaled χ^2 priors with hyperparameters $S^2 = 0$ and $v = -2$ were assumed for all variance components $\sigma^2_{p_i}$ and flat priors were also assumed for μ.

Given that we lacked a priori information about probe-specific dispersion patterns in pigs, the prior distribution for π was defined as a mixture of distributions involving a uniform distribution between 0 and 1, and null probability otherwise (Casellas and Varona, 2008):

$$p(\pi) = \frac{1}{m} \sum_{k=1}^{m} \chi(\pi_k \in [0, 1])$$

Note that this prior distribution is the key point for further testing of within-probe heteroskedasticity and covers all possible values taken for π_k with equal probability, following Verdinelli and Wasserman (1995), García-Cortés et al. (2001) and Varona et al. (2001).

BF for testing within-probe heteroskedasticity

The BF is the basic tool for comparing models in the Bayesian framework (Kass and Raftery, 1995). This factor provides the ratio of the posterior probability of both competing models without requiring the definition of the null and alternative hypotheses. Differences in residual variance between physiological stages were checked probe-by-probe by applying the BF proposed by Casellas and Varona (2008). This approach straightforwardly compares $\pi_i = 0.5$ (within-probe homogeneous residual variance for the ith probe, within-probe heterogeneous residual variances for the remaining probes; Model HO) against $\pi_i = 0.5$ (within-probe heterogeneous residual variances for all probes; Model HE). This BF tests probe-by-probe dispersion patterns, although it does not inform about the best analytical model for the joint inference of all probes (Casellas and Varona, 2008). The BF between Model HE and Model HO (BF_{HE/HO}) was calculated from the Markov chain Monte Carlo sampler output of Model HE, by averaging the full conditional densities of each cycle at $\pi_i = 0.5$ using the Rao–Blackwell argument (Wang et al., 1994). Note that $\text{BF}_{\text{HE/HO}} > 1$ shows that Model HE is more suitable than Model HO, revealing a statistically relevant degree of heteroskedasticity in probe i.

On the other hand, within-probe homogeneous residual variances are corroborated under $\text{BF}_{\text{HE/HO}} < 1$. Following
García-Cortés et al. (2001) and Varona et al. (2001), the posterior density \(p(\pi = 0.5 | y) \) suffices to obtain \(BF_{HE/HO,i} = \frac{p(\pi = 0.5)}{p(\pi = 0.5 | y)} \)

because \(p(\pi = 0.5) \) was previously stated by \(p(\pi) \) at \(\pi = 0.5 \).

Markov chain Monte Carlo sampling
A total of nine independent analyses were performed, accounting for each within-tissue pairwise comparison between physiological stages. For each analysis, autocorrelated samples from the relevant marginal posterior distribution of all unknowns in the model were obtained by Gibbs sampling (Gelfand and Smith, 1990), with the exception of \(\pi \), which required a Metropolis–Hastings step (Hastings, 1970). A single chain with 500 000 elements was launched for each pairwise comparison, and the first 50 000 samples were discarded as burn-in. Sampling convergence was checked by visual inspection according to Raftery and Lewis (1992).

Correction for multiple testing
Following Kass and Raftery (1995), the posterior odds between Model HE and Model HO, \(PO_{HE/HO} = BF_{HE/HO,i} \times \frac{p_{HE}}{p_{HO,i}} \)

where \(p_{HE} \) was the a priori probability of Model HE and \(p_{HO,i} \) was the a priori probability of Model HO. \(PO_{HE/HO} \) could be viewed as a weighted BF, which accounted for more realistic a priori probabilities for both models under multiple testing. In the standard development of the BF described above, we assumed that the ratio between \(p_{HE} \) and \(p_{HO,i} \) (prior odds) was 1 and the a priori probabilities for Model HE and Model HO were both 0.5 at each probe. This assumption provided an a priori expected number of probes with heteroskedastic dispersion pattern of 7676.5 in each analysis. To provide a more realistic and conservative framework, and according to dispersion-specific gene expression results reported by Casellas and Varona (2008), we a priori assumed that only one out of 100 probes could have heterogeneous residual variances, applying a multiplicative correction factor of 1/99 to all BF. All BF provided in this study were corrected by multiple testing.

Results and discussion
As highlighted by Wolfinger et al. (2001), inference in microarray gene expression analyses is typically focused on

![Figure 1 Plots of the pairwise distribution of log(BF_{HE/HO}), \(\sigma^2 \), and \(\pi \) parameters in the uterus.](https://www.cambridge.org/core/core/.../a12001747)
gene-specific differences between mathematical expectations of two (or more) groups of biological conditions. However, discrepancies in gene expression could also be characterized by other statistics of interest like dispersion parameters (Bachtiary et al., 2006; Somel et al., 2006). Despite the recent release of massive microarray platforms for evaluating gene expression levels, dispersion-related differential gene expression patterns were poorly investigated in mammals and we lack prospective results in domestic species of livestock. The recent development of a specific BF approach to check for within-probe between-groups heterogeneous residual variances in microarray studies (Casellas and Varona, 2008) opened a new research framework for gene expression analyses, allowing for genome-wide screenings of dispersion-related differential gene expression with minimum computational requirements. We adopted this methodology to characterize the incidence of dispersion-related differential gene expression in sows, the first screening of this phenomenon in a livestock species. Nevertheless, this must be viewed as one of the multiple statistical approaches that can be used to unravel dispersion-specific differential gene expression in livestock. Indeed, this model can be easily adapted to account for tail-area probability approaches (see Blasco (2005) for additional details) or even equivalence testing (Morey and Rouder, 2011) among others.

Taking the estimates from the analysis performed on uterus samples as an example (Figure 1), our results can be straightforwardly characterized by plotting the dispersion pattern of the BF itself and the two main variables involved in its parameterization, \(\eta_i \) and \(\sigma_{(i)}^2 \). As expected, \(\sigma_{(i)}^2 \) estimates accumulated to the left boundary of the positive parametric space (lower and upper rows, Figure 1), resulting in a shaped exponential pattern with minimum incidence of large variances (e.g. 1.4% (HEAT v. 15d) to 3.2% (45d v. 15d)) of \(\sigma_{(i)}^2 \) estimates were >5 and without showing a clear linkage with realized BF_{HE/HO} (Figure 1, upper row). Conversely, \(\eta_i \) estimates distributed across all the parametric

<table>
<thead>
<tr>
<th>Table 2 Distribution of the number of probes (and percentage) for each analysis according to Jeffreys’ (1984) scale of evidence for Bayes factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>BF_{HE/NO} = < 1</td>
</tr>
<tr>
<td>Uterus</td>
</tr>
<tr>
<td>HEAT v. 15d</td>
</tr>
<tr>
<td>HEAT v. 45d</td>
</tr>
<tr>
<td>15d v. 45d</td>
</tr>
<tr>
<td>Ovary</td>
</tr>
<tr>
<td>HEAT v. 15d</td>
</tr>
<tr>
<td>HEAT v. 45d</td>
</tr>
<tr>
<td>15d v. 45d</td>
</tr>
<tr>
<td>Hypophysis</td>
</tr>
<tr>
<td>HEAT v. 15d</td>
</tr>
<tr>
<td>HEAT v. 45d</td>
</tr>
<tr>
<td>15d v. 45d</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3 Distribution of the number of probes with mean-related differential expression on the dispersion-related categories defined by the Bayes factor of Model HE against Model HO</th>
</tr>
</thead>
<tbody>
<tr>
<td>BF_{HE/NO} = < 1</td>
</tr>
<tr>
<td>Uterus</td>
</tr>
<tr>
<td>HEAT v. 15d</td>
</tr>
<tr>
<td>HEAT v. 45d</td>
</tr>
<tr>
<td>15d v. 45d</td>
</tr>
<tr>
<td>Ovary</td>
</tr>
<tr>
<td>HEAT v. 15d</td>
</tr>
<tr>
<td>HEAT v. 45d</td>
</tr>
<tr>
<td>15d v. 45d</td>
</tr>
<tr>
<td>Hypophysis</td>
</tr>
<tr>
<td>HEAT v. 15d</td>
</tr>
<tr>
<td>HEAT v. 45d</td>
</tr>
<tr>
<td>15d v. 45d</td>
</tr>
</tbody>
</table>

a Comparison between lowly prolific sows.

b Comparison between highly prolific sows.
space (i.e. from 0 to 1) and showed a clear linkage with $BF_{HE, HO}$. As previously reported by Casellas and Varona (2008), $BF_{HE, HO}$ resulted in a very characteristic U-shaped pattern when plotted against π_i (Figure 1, medium row), increasing $BF_{HE, HO}$ with extreme values of π_i (i.e. π_i tending to 0 or 1) and decreasing with intermediate estimates of π_i. Both $\sigma^2_{e(i)}$ and π_i gave us a detailed idea about the overall dispersion pattern of gene expression within each tissue and reproductive stage (Figure 1, lower row). Focusing on uterus, HEAT vs. 15d and HEAT vs. 45d analyses provided a skewed distribution of both $\sigma^2_{e(i)}$ and π_i with a higher incidence of small π_i estimates and suggesting an increase of the average $\sigma^2_{e(i)}$ with smaller π_i. Both results indicated a smaller residual variability in gene expression during heat when compared with further gestational progress (i.e. 15d and 45d), which suggested a higher need for accurate genetic regulation during this initial reproductive stage. The last comparison (45d vs. 15d) tended to show a higher incidence of large π_i values (i.e. closer to 1), which was indicative of a smaller overall residual dispersion of gene expression at 15d than at 45d. As a whole, these plots showed a regular temporal trend across heat and gestation in sows, suggesting that the variability of the overall gene expression increased with time, at least from heat to 45d of gestation. Very similar plots and the same overall trends were observed in both ovary and hypophysis tissues (results not shown).

As shown in Table 2, most of the analyzed probes did not reveal relevant departures from the null hypothesis of homogeneous residual variance ($BF_{HE, HO} < 1$), ranging between 77.6% and 91.2% of the total in uterus, 95.8% and 97.1% in ovary and 62.6% and 96.1% in hypophysis. Nevertheless, the main result was not these non-heterogeneous probes but the 2.9% to 37.4% of probes providing statistical evidence of dispersion-related differential gene expression. Note that within-probe heterogeneous residual variances were previously reported when comparing great ape tissue samples (Casellas and Varona, 2008), although our results contribute the first evidence of within-probe heteroskedasticity in a domestic species of mammals. Following Jeffreys’ (1984) scale of evidence for BFs, 1.5% to 19.9% of probes provided almost irrelevant evidence favoring Model HE ($1 \leq BF_{HE, HO} \leq 3.16$), whereas substantial (0.8% to 10.6%; $3.16 \leq BF_{HE, HO} \leq 10$), strong (0.2% to 4.2%; $10 \leq BF_{HE, HO} \leq 31.62$), very strong (0.1% to 2.3%; $31.62 \leq BF_{HE, HO} < 100$) and decisive (0.1% to 3.0%; $BF_{HE, HO} \geq 100$) results must be highlighted in our study. These estimates reported a remarkable incidence of dispersion-related differential gene expression in sows, which were revealed in all three biological tissues included in our study (i.e. ovary, uterus and hypophysis) and across all the reproductive stages (i.e. HEAT, 15d and 45d of pregnancy; Table 1).

One could hypothesize that this between-groups heterogeneity of the residual variance of gene expression could be linked to scale effects because of differential gene expressions in terms of mathematical expectations. Nevertheless, this hypothesis was discarded by the results shown in Table 3. Only 0% to 7.5% of the genes with larger than one $BF_{HE, HO}$ for heterogeneous residual variances also revealed relevant differential gene expressions in terms of mathematical expectations at a posterior probability of 95% (see Casellas et al. (2008) for additional details on the calculation of this posterior probability). These results agreed with Casellas and Varona (2008) and, although they cannot be extrapolated to all microarray experiments, they suggest that heterogeneous residual patterns could be a biological phenomenon of special interest in further analyses of gene expression data in the swine species, independent from scale-effect disturbances.

![Figure 2](https://doi.org/10.1017/S1751731112001747)
Venn diagrams provided evidence of a higher incidence of heterogenically expressed genes (with BF_{HE/0i} > 100) in uterus than in ovary or hypophysis (Figure 2), although only one gene in uterus (RPS3A; Table 4) revealed decisive evidence of heteroskedasticity in all three pairwise comparisons between reproductive stages. This gene, which encodes for the 40S ribosomal protein S3a of the small ribosomal subunit and has been linked to apoptosis and cell differentiation phenomena (Naora and Naora, 1999), showed greater gene expression variability at 15d than at 45d and also at 45d compared with HEAT. Regarding the remaining genes with decisive evidence of heteroskedasticity or homoskedasticity in all three pairwise comparisons (Table 4), they were linked to multiple biological processes and metabolic pathways, suggesting that dispersion-specific differential gene expression could be widely distributed across the whole genome. Although the main target of this research was not focused on the identification of specific heteroskedastic genes but on checking for the suitability of this phenomenon, and its incidence in the whole genome of swine, probes shown in Table 4 represent a very promising starting point for identifying the genetic mechanisms involved in the regulation of gene transcription on a dispersion basis. Moreover, commonly used housekeeping genes such as GAPDH, HMBS, RPL32, SDHA and YWHAZ (Vandesompele et al., 2002) were also included in the analysis and none of them showed statistically relevant dispersion-specific differential gene expression; this provided additional confidence about differentially expressed genes shown in Table 4.

As recently demonstrated at a gene-specific level (Lo and Gottardo, 2007), an accurate modeling of residual dispersion patterns allows for a more realistic fit of gene expression data, reducing the rate of false positives when differential gene expression is characterized in terms of mathematical expectations or their differences (Kendziorski et al., 2003; Newton et al., 2004; Lo and Gottardo, 2007). Moreover, the analysis of heterogeneous residual dispersion patterns opens up promising research possibilities within the gene expression framework, where heterogeneity in residual variability could be viewed as an alternative and plausible characterization of differential expression patterns. The current study provided the first evidence of massive heteroskedasticity

Table 4 Summary of probes with decisive evidence of heterogeneous (BF_{HE/0i} > 100) and/or homogeneous (BF_{HE/0i} < 0.01) residual variances in all three pairwise comparisons

<table>
<thead>
<tr>
<th>Gene</th>
<th>Tissue</th>
<th>HEAT v. 15d</th>
<th>HEAT v. 45d</th>
<th>15d v. 45d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(p_i)</td>
<td>BF_{HE/0i}</td>
<td>(p_i)</td>
</tr>
<tr>
<td>(HEAT = 15d) < 45d</td>
<td>ARP21</td>
<td>Ut</td>
<td>0.47</td>
<td>9 (\times) 10^{-3}</td>
</tr>
<tr>
<td></td>
<td>APOA2</td>
<td>Ut</td>
<td>0.47</td>
<td>9 (\times) 10^{-3}</td>
</tr>
<tr>
<td></td>
<td>AS811</td>
<td>Ut</td>
<td>0.52</td>
<td>8 (\times) 10^{-3}</td>
</tr>
<tr>
<td></td>
<td>BPI</td>
<td>Ut</td>
<td>0.54</td>
<td>1 (\times) 10^{-2}</td>
</tr>
<tr>
<td></td>
<td>CPB2</td>
<td>Ut</td>
<td>0.51</td>
<td>9 (\times) 10^{-3}</td>
</tr>
<tr>
<td></td>
<td>FDX1</td>
<td>Ut</td>
<td>0.54</td>
<td>9 (\times) 10^{-3}</td>
</tr>
<tr>
<td></td>
<td>C7orf45</td>
<td>Ut</td>
<td>0.55</td>
<td>9 (\times) 10^{-3}</td>
</tr>
<tr>
<td></td>
<td>SLC16A12</td>
<td>Ut</td>
<td>0.56</td>
<td>9 (\times) 10^{-3}</td>
</tr>
<tr>
<td></td>
<td>PFKM</td>
<td>Ov</td>
<td>0.52</td>
<td>9 (\times) 10^{-3}</td>
</tr>
<tr>
<td></td>
<td>C5orf23</td>
<td>Ut</td>
<td>0.53</td>
<td>9 (\times) 10^{-3}</td>
</tr>
<tr>
<td>HEAT < (15d = 45d)</td>
<td>B3GAT2</td>
<td>Ut</td>
<td>0.03</td>
<td>210.2</td>
</tr>
<tr>
<td></td>
<td>GALN7</td>
<td>Ut</td>
<td>0.03</td>
<td>161.3</td>
</tr>
<tr>
<td></td>
<td>GIT1</td>
<td>Ut</td>
<td>0.03</td>
<td>233.9</td>
</tr>
<tr>
<td></td>
<td>MBNL1</td>
<td>Ut</td>
<td>0.02</td>
<td>698.0</td>
</tr>
<tr>
<td></td>
<td>C5orf52</td>
<td>Ut</td>
<td>0.01</td>
<td>6068.0</td>
</tr>
<tr>
<td></td>
<td>TMEM123</td>
<td>Ut</td>
<td>0.02</td>
<td>891.6</td>
</tr>
<tr>
<td></td>
<td>TMEM45B</td>
<td>Ut</td>
<td>0.01</td>
<td>12 557.7</td>
</tr>
<tr>
<td></td>
<td>HKDC</td>
<td>Ov</td>
<td>0.02</td>
<td>1009.9</td>
</tr>
<tr>
<td></td>
<td>SERPINB7</td>
<td>Ut</td>
<td>0.02</td>
<td>514.4</td>
</tr>
<tr>
<td></td>
<td>SLC16A1</td>
<td>Ut</td>
<td>0.03</td>
<td>190.1</td>
</tr>
<tr>
<td></td>
<td>SYT13</td>
<td>Ut</td>
<td>0.01</td>
<td>1555.7</td>
</tr>
<tr>
<td></td>
<td>TPP2</td>
<td>Ut</td>
<td>0.03</td>
<td>204.1</td>
</tr>
<tr>
<td>HEAT < (15d > 45d)</td>
<td>RPS3A</td>
<td>Ut</td>
<td>0.00</td>
<td>25 529.8</td>
</tr>
</tbody>
</table>

Ut = uterus; Ov = ovary.

Note that 118 (uterus) and 161 (ovary) probes with homogeneous residual variances (BF_{HE/0i} < 0.01) across all tissues have been omitted.

1Residual variances were homogeneous between HEAT and 15d, but were heterogeneous between these two groups and 45d.

2Residual variances were homogeneous between 15d and 45d, but were heterogeneous between these two groups and HEAT.

3Residual variances were heterogeneous across all groups, greater in 15d than in 45d, and greater in 45d than in HEAT.
for gene expression in the swine species, a phenomenon that must be accurately considered in further studies in order to provide a detailed characterization of the genetic architecture and regulation of domestic pigs. Moreover, and if confirmed in future analyses, the list of genes provided in Table 4 must be considered as an aspiring starting point for a deeper understanding of the genetic pathways involved in sow reproduction, and may reveal dispersion-related regulatory mechanisms.

Acknowledgments

Financial support was provided by Spain’s Ministerio de Ciencia y Tecnología (AGL2000-1229-C03), Ministerio de Educación y Ciencia (AGL2004-08368-C03) and Ministerio de Ciencia e Innovación (AGL2008-04818-C03). The authors are indebted to the staff of Nova Genètica (Solsona, Spain) for cooperating in the experimental protocol, in particular to F. Márquez, I. Riart, R. Mañé, F. Rovira, M. González and E. Ramells, to M. Arque (IRTA-Lleida, Lleida, Spain) for her active and friendly collaboration during data collection and to the staff of the Escorxador Frigorífic (IRTA-Lleida, Lleida, Spain) for her active and friendly collaboration for facilitating tissue sample collection at slaughter. The authors gratefully acknowledge the contributions of the INRA (France) and the SIA El Dehesón del Encinar (Spain) for providing the purebred Meishan sows and Iberian boars, respectively. The research contract of J. Casellas was partially financed by Spain’s Ministerio de Ciencia e Innovación (programs Juan de la Cierva, José Castillejo and Ramon y Cajal). M. Martínez-Giner was funded by a fellowship from the Spain’s Ministerio de Educación y Ciencia.

References

