ON TRACE BILINEAR FORMS ON LIE-ALGEBRAS

by HANS ZASSENHAUS

(Received 17th October, 1958)

To what extent is the structure of a Lie-algebra \(L \) over a field \(F \) determined by the bilinear form

\[f(a, b) = (a, b)_A \]

(1)
on \(L \) that is derived from a matrix representation

\[a \rightarrow \Delta(a) \quad (a \in L) \]

of \(L \) with finite degree \(d(A) \) by forming the trace of the matrix products

\[f(a, b) = \text{tr}(\Delta a \Delta b) \quad (a, b \in L) \]

(2)

Such a bilinear form is a function with two arguments in \(L \), values in \(F \) and the properties:

\[f(a_1 + a_2, b) = f(a_1, b) + f(a_2, b) \]

(bilinearity)

\[f(a, b_1 + b_2) = f(a, b_1) + f(a, b_2) \]

(3)

\[f(\lambda a, b) = f(a, \lambda b) = \lambda f(a, b) \]

(symmetry)

\[f(a, b) = f(b, a) \]

(symmetry)

\[f(\lambda a, b) = \lambda f(a, b) \]

(invariance under \(L \))

(4)

\(\lambda \in F \); \(a, a_1, b, b_1, c \in L \).

It is clear from the definition that the trace bilinear form (1) depends only on the class of equivalent representations to which \(A \) belongs.

For any subset \(K \) of \(L \), the set \(K^1 \) of all elements \(x \) of \(L \) satisfying \(f(K, x) = 0 \) is a linear subspace of \(L \), because of the bilinearity of \(f \). This linear subspace is called the orthogonal subspace of \(K \). It coincides with the orthogonal subspace of the linear subspace \(\{FK\} \) generated by \(K \). If \(K_1 \subseteq K_2 \) then \(K_1^1 \supseteq K_2^1 \). By the symmetry of \(f \) we have \(K \subseteq (K^1)^1 \). If \(K \) is an ideal of \(L \), then it follows from the invariance of \(f \) that the orthogonal subspace \(K^1 \) is also an ideal. The ideal \(L^1 = L^1(\Delta) \) is called the radical of the representation \(\Delta \). For any ideal \(A \) of \(L \) contained in \(L^1 \), a symmetric invariant bilinear form \(f^A \) is induced on the factor algebra \(L/A \) by setting

\[f^A(a|A, b|A) = f(a, b) \quad (a, b \in L) \]

(7)

We observe that the kernel of \(\Delta \), i.e. the ideal \(L_\Delta \) of \(L \) formed by the elements \(x \) that are mapped onto 0 by \(\Delta \), lies in the radical of \(\Delta \). By the first isomorphism theorem, \(L/L_\Delta \) is isomorphic to a Lie-subalgebra of the Lie-algebra formed by the matrices of degree \(d(A) \) over \(F \). Hence \(L/L_\Delta \) and \(a \text{ for } L/L^1 \) are finite-dimensional Lie-algebras.

It will be the aim of the investigation to determine the structure of the factor algebra \(L/L^1 \) in terms of simple algebras.

Theorem 1. If the characteristic of \(F \) is distinct from 2 and 3, then, for any solvable ideal \(A \) of \(L \), the ideal \(L^1 \) is contained in the radical of any matrix representation \(\Delta \).

\[\text{For any two subsets } K_1, K_2 \text{ of } L, \text{ denote by } f(K_1, K_2) \text{ the set of all values } f(x_1, x_2), \text{ where } x_i \text{ denotes any element of } K_i (i = 1, 2). \]

Hence \(f(K, K^1) = f(K^1, K) = 0 \).
Before we enter into the proof of Theorem 1, let us prove

Lemma 1. For any irreducible representation Δ of a Lie-algebra L over the field of reference F all of the irreducible components of the representation Δ^T obtained by restricting Δ to the sub-invariant subalgebra T are equivalent, and

Lemma 2. If the irreducible representation Δ of the Lie-algebra L over the field of reference F induces by restriction to the ideal Γ of L a nilrepresentation Δ^A of A, then Δ^A is a null representation of A.

Proof of Lemma 1. By assumption there is a chain $L = L_0 \supseteq L_1 \supseteq \ldots \supseteq L_m = T$ of Lie-algebras over F from L to T such that L_i is an ideal of L_{i-1} ($i = 1, 2, \ldots, m$). Let M be a representation space of A. Since it is of finite dimension over F, it must contain an irreducible A-subspace m. Also there is a maximal L_i-F-subspace M_x of M such that $m \subseteq M_x$ and all irreducible components of the representation of L_i with representation space M_x are equivalent to the representation F of L_i with representation space m. Let s be an element of L, x an element of L_i, u an element of M_x; then

$$x(su) = x(su) - s(xu) + s(xu) = (xs)u + s(xu).$$

Hence $x(su)$ is contained in $sM_x + M_x$ and thus $sM_x + M_x$ is an L_i-F-module such that the mapping of u onto su is an operator homomorphism of M_x onto $(sM_x + M_x)/M_x$. It follows that the irreducible components of the representation of L_i with representation space $(sM_x + M_x)/M_x$ are equivalent to F. By the Jordan-Hölder Theorem, the same applies to the irreducible components of the representation of L_i with representation space $sM_x + M_x$. Because of the maximality of M_x we have $sM_x + M_x = M_x$, $sM_x \subseteq M_x$, $LM_x \subseteq M_x$. Since M is an irreducible L-F-space, it follows that $M_x = M$ and thus every irreducible component of Δ^L_i is equivalent to F.

The proof of Lemma 1 can now be completed by induction on m and by an application of the Jordan-Hölder Theorem.

Proof of Lemma 2. Without restricting the generality we can assume that Δ is a faithful representation. Hence Δ^A is faithful. By [4, p. 34, Satz 11], the Lie-algebra A is nilpotent. By [4, p. 29], every irreducible component of Δ^A is a null representation. Let M be a representation space of Δ. It contains a minimal A-F-subspace $\neq 0$, say m. Hence $Am = 0$. Let M_1 be the linear subspace of M consisting of all elements u of M satisfying $Au = 0$. Applying (8) for s of L, x of A, u of M_1, we find that su belongs to M_1. Hence M_1 is a non-vanishing invariant subspace of the L-F-space M. Since M_1 is irreducible, it follows that $M_1 = M$, $AM = 0$ and this proves Lemma 2.

Proof of Theorem 1. (1) Let F be algebraically closed, $L^T \neq L$, Δ be irreducible and faithful and $A(\Delta^A) = 0$. By Lemma 1, the irreducible representation Δ induces on A a representation Δ^A all of whose irreducible constituents are equivalent. Since A is nilpotent, it follows from [4, p. 29] that each irreducible representation of A maps each element of A onto a matrix with only one characteristic root (of maximal multiplicity). Hence, for any element a of A, the matrix $\Delta(a)$ has only one characteristic root, say $\alpha(a)$, of maximal multiplicity $d(\Delta)$.

If the characteristic of F is 0, then by the trace argument we have

$$\alpha(a + b) = \alpha(a) + \alpha(b).$$

If the characteristic of F does not vanish, then it is by assumption greater than 3 and,
HANS ZASSENHAUS

since $A(AA) = 0$, it follows that (9) again holds by \cite[p. 95, formula (66)]{4}. We observe also that

$$
\Delta(\lambda a) = \lambda \Delta(a) \quad (\lambda \in F, a \in A), \quad \cdots \cdots (10)
$$

so that α is a linear form on A.

As a next step we want to show that, for any element x of L,

$$
\alpha(xA) = 0. \quad \cdots \cdots (11)
$$

It suffices to show (11) under the additional assumption that

$$(x, x)_A \neq 0. \quad \cdots \cdots (12)$$

Indeed, we know that there are elements y, z of L for which $(y, z)_A \neq 0$, and from the identity

$$(y + z, y + z)_A = (y, y)_A + 2(y, z)_A + (z, z)_A$$

it follows, in view of the assumption that the characteristic of F is not 2, that at least one of the three elements $(y + z, y + z)_A, (y, y)_A, (z, z)_A$ does not vanish. Hence there is an element x_0 of L for which $(x_0, x_0)_A \neq 0$. For any element x of L we have the identity

$$(x, x)_A + (x_0, x_0)_A = \frac{1}{4} ((x + x_0, x + x_0)_A + (x - x_0, x - x_0)_A),$$

so that at least one of the three elements $(x, x)_A, (x + x_0, x + x_0)_A, (x - x_0, x - x_0)_A$ does not vanish. Therefore, if we have shown already that $\alpha(x_0A) = 0$ and that at least one of the three conditions $\alpha(xA) = 0, \alpha((x + x_0)A) = 0, \alpha((x - x_0)A) = 0$ is satisfied, it follows from the linearity of α that (11) is true without restrictions on the element x of L.

Now let us assume (12).

We want to show that for any subalgebra U of A satisfying $xU \subseteq U$ we have $\alpha(xU) = 0$. We observe that $V = Fx + U$ is a subalgebra of L containing U as an ideal. The representation Δ induces a representation Δ^V on V. Let Γ be an irreducible constituent of Δ^V with representation space m. Since $(x, x)_A$ is the trace of $(Ax)^2$, which can be formed by adding up the traces of $(Fx)^2$ over all irreducible constituents of Δ^V, it follows from (12) that Γ may be chosen in such a way that

$$(x, x)_A \neq 0. \quad \cdots \cdots (13)$$

(a) If V is nilpotent then, by \cite[p. 29]{4}, the matrix $\Gamma(x)$ has only one characteristic root ξ, so that $(x, x)_A = d(\Gamma)^2 \xi^2$ and thus, by (13), we have $d(\Gamma) \neq 0$ in F, $\xi^2 \neq 0$. From \cite[p. 97, Satz 12]{4} it follows that $d(\Gamma) = 1, \Gamma(xU) = 0, \alpha(xU) = 0$.

(b) If $U = Fu$ and

$$xu = \lambda u \quad (\lambda \neq 0), \quad \cdots \cdots (14)$$

then there is a characteristic root ξ of $\Gamma(x)$ and an element $v \neq 0$ of m such that

$$xv = \xi v. \quad \cdots \cdots (15)$$

Set $v_0 = v$ and $v_{i+1} = uv_i$ for $i = 0, 1, 2, \ldots$. It follows by induction that

$$xv_i = (\xi + i\lambda)v_i \quad (i = 0, 1, 2 \ldots). \quad \cdots \cdots (16)$$

Indeed (15) is (16) for $i = 0$. Let (16) be proved for some subscript i; then it follows from (14) that

$$xv_{i+1} = x(uv_i) = (ux)v_i + u(xv_i) = uv_i + u(\xi + i\lambda)v_i = \lambda v_{i+1} + (\xi + i\lambda)v_{i+1} = (\xi + (i + 1)\lambda)v_{i+1}.$$

Since m is finite-dimensional, it follows that there is a first element among the elements...
v_0, v_1, ... that is linearly dependent on the preceding elements, say v_g. Hence the linearly independent elements v_0, v_1, ..., v_{g-1} span a linear subspace of m which is invariant under V. Since m is irreducible, it follows that the g elements v_0, ..., v_{g-1} form a basis of m. Hence

\[(x, x)_F = \text{tr} \left((Tx)^2 \right) = \sum_{i=0}^{g-1} (\xi + i\lambda)^2 \]

\[= g\xi^2 + g(g-1)\xi\lambda + \frac{g(g-1)(2g-1)}{6} \lambda^2 \]

\[= g\left(\xi^2 + (g-1)\xi\lambda + \frac{(g-1)(2g-1)}{6} \lambda^2 \right), \]

since the characteristic of F is different from 2 and 3.

From (13) it follows that \(g \neq 0\) in F. Hence

\[\text{tr}(Y(xu)) = g\alpha(xu) = \text{tr}(Fxu - FuFx) = 0, \quad \alpha(xu) = 0, \quad \alpha(xU) = 0.\]

(c) If \(UU = 0\) and if there is a basis \(u_1, u_2, ..., u_n\) of U over F such that \(xu_i = \lambda u_i + u_{i+1}\) \((\lambda \neq 0, i = 1, 2, ..., \mu; u_{n+1} = 0)\), and if we have shown already that \(\alpha(xu_i) = 0\) for \(i = k, k+1, ..., \mu + 1\), then we find that the linear form \(\alpha\) vanishes on the ideal \(Fu_k + Fu_{k+1} + ... + Fu_{\mu+1}\) of V, so that \(\Gamma\) induces on this ideal a nil representation. By Lemma 2 this nil representation is a null representation. If \(k > 1\), then we can apply (b) to the Lie-algebra \(\Gamma(Fx) + \Gamma(Fu_{k-1})\), substituting \(\Gamma(x)\) for \(x\) and \(\Gamma(u_{k-1})\) for \(u\), and obtain \(\alpha(u_{k-1}) = 0\). Hence, by induction, \(\alpha(u_k) = \alpha(u_{k+1}) = ... = \alpha(u_n) = \alpha(u_{\mu+1}) = 0, \alpha(xU) = 0.\)

(d) If \(UU = 0\), then let us consider a decomposition of U into the direct sum of the characteristic subspaces \(U_i\), that cannot be further decomposed into invariant subspaces. To each of the subalgebras \(Fx + U_i\), either (a) or (c) is applicable and thus we have \(\alpha(xU_i) = 0\); moreover \(\alpha(xU) = 0\) because of the linearity of \(\alpha\).

We may set \(U = AA\) and in this event we find that \(\alpha(x(AA)) = 0.\) As had been shown before, it follows that \(\alpha(L(AA)) = 0.\) Hence the irreducible representation \(L\) induces on the ideal \(L(AA)\) of \(L\) a nil representation and this nil representation is a null representation by Lemma 2. Since it is faithful by assumption, it follows that

\[L(AA) = 0. \quad \text{.................................(17)}\]

(e) Denoting by \(x^*\) the linear transformation \(\begin{pmatrix} a \\ x^a \end{pmatrix}\) of A and by S the set of the characteristic roots of \(x^*\), it follows that there is a decomposition \(A = \sum_{k \in S} A_k\) of \(A^*\) into the direct sum of the characteristic subspaces \(A_k\) of \(x^*\) consisting of all elements \(a\) of A satisfying an equation \((x^* - k)^\mu a = 0\) for some exponent \(\mu\). Moreover, by [4, p. 32], we have \(A_jA_k \subseteq A_{j+k}\), where we set \(A_h = 0\) if \(h\) is not a characteristic root of \(x^*\). From (17) it follows that \(AA\) is contained in \(A_g\). Since the characteristic of F is distinct from 2, it follows that \(A_kA_{k'} \subseteq AA \cap A_{2k} \subseteq A_0 \cap A_{2k} = 0\) if \(k \neq 0\); hence \(A_k\) is an abelian subalgebra of A. In this event \(A_k\) admits a decomposition into the direct sum of abelian subalgebras of A to which (c) is applicable, so that \(\alpha(xA_k) = 0\) if \(k \neq 0\). If \(k = 0\), then (a) is applicable and we find again that \(\alpha(xA_0) = 0.\) Hence \(\alpha(xU_k) = 0\) for all \(k\) of S and hence \(\alpha(xA) = 0\) because of the
It now follows that \(\alpha(\mathcal{A}) = 0 \), as has been shown above. The irreducible representation \(\mathcal{A} \) induces a nil representation on the ideal \(\mathcal{A} \mathcal{L} \). By Lemma 2, this nil representation is a null representation and, since \(\mathcal{A} \) is faithful, it follows that \(\mathcal{A} \mathcal{L} = 0 \).

Let \(\mathcal{B} \) be any solvable ideal of \(\mathcal{L} \) so that \(D^{k-1} \mathcal{B} = 0 \) for some exponent \(k \). There is the chain of ideals

\[
\mathcal{B} \supseteq D \mathcal{B} = \mathcal{B} B \supseteq D^2 \mathcal{B} \supseteq \ldots \supseteq D^k \mathcal{B} = 0.
\]

If \(k > 0 \), then \(D^{k-1} \mathcal{B} \) is an abelian ideal of \(\mathcal{L} \) and then it follows that \(L D^{k-1} \mathcal{B} = 0 \), as was shown above. If \(k > 1 \), then the ideal \(\mathcal{A} = D^{k-2} \mathcal{B} \) satisfies the condition \(\mathcal{A} (\mathcal{A} \mathcal{B}) = 0 \), so that \(L \mathcal{A} = 0 \), as was shown above. Since \(D^{k-1} \mathcal{B} = \mathcal{A} \mathcal{B} \subseteq L \mathcal{A} = 0 \), it follows that \(D^{k-1} \mathcal{B} = 0 \).

Hence \(\mathcal{L} \mathcal{B} = 0 \). \(\mathcal{L} \mathcal{B} \subseteq \mathcal{L}^\perp \).

(2) Let \(\mathcal{F} \) be algebraically closed and \(\mathcal{A} \) be irreducible. If \(\mathcal{L}^\perp = \mathcal{L} \), then it is obvious that \(\mathcal{L} \mathcal{A} \subseteq \mathcal{L}^\perp \). Let \(\mathcal{L}^\perp \neq \mathcal{L} \). The representation \(\mathcal{A} \) induces a faithful irreducible representation of the Lie-algebra \(\mathcal{A} \mathcal{L} \). We denote the Lie-multiplication in \(\mathcal{A} \mathcal{L} \) by \(X \circ Y = XY - YX \).

Since \(\mathcal{A} \) is a solvable ideal of \(\mathcal{L} \), it follows that \(\mathcal{A} \mathcal{A} \) is a solvable ideal of \(\mathcal{A} \mathcal{L} \) and hence it follows, as was shown at the close of (1), that \(\mathcal{A} \mathcal{L} \circ \mathcal{A} \mathcal{A} \subseteq \mathcal{A} (\mathcal{L} \mathcal{A}) \). But \(\mathcal{A} \mathcal{L} \circ \mathcal{A} \mathcal{A} = \mathcal{A} (\mathcal{L} \mathcal{A}) \) and \((\mathcal{L} \mathcal{A})^\perp = \mathcal{A} (\mathcal{L}^\perp) \); hence \(\mathcal{A} (\mathcal{L} \mathcal{A}) \subseteq \mathcal{A} (\mathcal{L}^\perp) \), \(\mathcal{L} \mathcal{A} \subseteq \mathcal{L} \mathcal{A} + \mathcal{L}^\perp = \mathcal{L}^\perp \).

(3) Let \(\mathcal{F} \) be algebraically closed. Let

\[
\mathcal{A} \sim \begin{pmatrix}
\Delta_1 & * & \cdots & * \\
* & \ddots & \cdots & * \\
\vdots & \ddots & \ddots & \vdots \\
* & \cdots & * & \Delta_r
\end{pmatrix}
\]

be a complete reduction of the representation \(\mathcal{A} \) with irreducible constituents \(\Delta_1, \ldots, \Delta_r \). We have

\[
\text{tr}(\Delta a \Delta b) = \sum_{i=1}^r \text{tr}(\Delta_i a \Delta_i b),
\]

\[
(a, b)_\Delta = \sum_{i=1}^r (a, b)_{\Delta_i};
\]

hence

\[
\mathcal{L}^\perp (\mathcal{A}) \subseteq \bigcap_{i=1}^r \mathcal{L}^\perp (\Delta_i).
\]

Since it was shown in (2) that \(\mathcal{L} \mathcal{A} \subseteq \mathcal{L}^\perp (\mathcal{A}) \), it follows from (20) that \(\mathcal{L} \mathcal{A} \subseteq \mathcal{L}^\perp (\mathcal{A}) \).

(4) Let \(\mathcal{E} \) be an algebraically closed extension of the field of reference. The product algebra \(\mathcal{L}_E = \mathcal{L} \times \mathcal{E} \) over \(\mathcal{F} \) is a Lie algebra over \(\mathcal{E} \) such that any \(\mathcal{F} \)-basis \(\mathcal{B} \) of \(\mathcal{L} \) is an \(\mathcal{E} \)-basis of \(\mathcal{L}_E \). The representation \(\mathcal{A} \) can be uniquely extended to a representation \(\mathcal{A}^\mathcal{E} \) of \(\mathcal{L}_E \) by setting \(\Delta^\mathcal{E} (\sum_{b \in \mathcal{B}} \lambda(b) b) = \sum_{b \in \mathcal{B}} \lambda(b) b \) with coefficients \(\lambda(b) \) in \(\mathcal{E} \). The product algebra \(\mathcal{A}_E = \mathcal{A} \times \mathcal{E} \) over \(\mathcal{F} \) is a solvable ideal of \(\mathcal{L}_E \); hence it follows from (3) that \(\mathcal{L}_E \mathcal{A}_E \subseteq \mathcal{L}_E^\perp \) and thus \(\mathcal{L} \mathcal{A} \subseteq \mathcal{L}_E^\perp \cap \mathcal{L} = \mathcal{L}^\perp \).

From the proof of Theorem 1 and another application of Lemma 2 we derive the

Corollary of Theorem 1. Under the same assumptions, for an irreducible representation \(\mathcal{A} \) of \(\mathcal{L} \) either the radical of \(\mathcal{A} \) coincides with \(\mathcal{L} \) or the radical of \(\mathcal{A} \) does not coincide with \(\mathcal{L} \) and \(\mathcal{L} \mathcal{A} \) lies in the kernel of \(\mathcal{A} \).
The example of the solvable linear Lie-algebras formed by all 2 x 2-matrices over any field of characteristic 2 shows that Theorem 1 does not hold for fields of characteristic 2. The example of the solvable linear Lie-algebras formed by the linear combinations of the matrices
\[
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{pmatrix}, \begin{pmatrix}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}, \begin{pmatrix}
0 & -1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{pmatrix}, \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]
over any field of reference of characteristic 3 shows that the corollary of Theorem 1 does not hold any longer.

The following theorem states that, as far as the structure of \(L \) and the non-degenerate symmetric invariant bilinear form induced on \(L/L^1 \) is concerned, it suffices to assume that \(A \) is fully reducible and faithful, that \(L^1 \) lies in the centre of \(L \) and that every solvable ideal of \(L \) lies in the centre.

Theorem 2. If the characteristic of the field of reference is distinct from 2 and 3, then for any Lie-algebra \(L \) with a matrix representation \(A \) there is a subalgebra \(U \) with a fully reducible representation \(\Psi \) and kernel \(U_\Psi \) such that

\[
U + L^1 = L, \quad \text{..}(21)
\]
\[
(a, b)_\Psi = (a, b)_A \quad \text{for } a, b \in U, \quad \text{..}(22)
\]
\[
UU^1(\Psi) \subseteq U \Psi \subseteq U^1(\Psi), \quad \text{..}(23)
\]
\[
UA \subseteq U_\Psi \quad \text{for any ideal } A \text{ of } U \text{ for which } \Psi A \text{ is solvable. } \text{.............}(24)
\]

For the proof of Theorem 2 we need the following

Lemma 3. For any ideal \(A \) of a finite-dimensional Lie-algebra \(L \) over the field of reference \(F \), there is a subalgebra \(U \) of \(L \) such that \(U + A = L \) and \(U \cap A \) is nilpotent. If \(L/A \) is nilpotent, then \(U \) can be chosen as a nilpotent subalgebra (cf. [3, Theorem 4]).

Proof of Lemma 3. If \(L = 0 \), then Lemma 3 is clear. Let \(L \neq 0 \) and the theorem be proved already for Lie-algebras of dimension less than \(\dim_F L \). For any element \(a \) of \(A \) we form the adjoint linear transformation \(\text{ad}(a) = \begin{pmatrix} x \\ ax \end{pmatrix} \) of \(L \). The set of all elements \(x \) of \(L \) that are annihilated by some power of \(\text{ad}(a) \) forms a subalgebra \(L_0 \), by [4, p. 31]; moreover, \(L \) is the direct sum of \(L_0 \) and another linear subspace \(\hat{L}_0 \) such that \(\text{ad}(a)(\hat{L}_0) = \hat{L}_0 \). Now let \(a \) be an element of \(L \) for which \(\text{ad}(a) \) induces a nilpotent linear transformation of \(L/A \) (e.g. an element of \(A \)). Then it follows that \(\hat{L}_0 = [\text{ad}(a)]^{r-1}\hat{L}_0 \subseteq [\text{ad}(a)]^rL = A \), if \(r \) is large enough; hence \(L_0 + A = L \). If \(\dim_F L_0 \neq \dim_F L \), then, by the induction assumption, it follows that there is a subalgebra \(U \) of \(L_0 \) such that \(U + L_0 \cap A = L_0 \) and \(U \cap (L_0 \cap A) = U \cap A \) is nilpotent. But \(U + A = U + (L_0 \cap A) + A = L_0 + A = L \). Moreover, if \(L/A \) is nilpotent, then, since by the second isomorphism theorem \(L/A \) is isomorphic to \(L/A \), it follows that \(L_0/\gamma(L_0 \cap A) \) is nilpotent, so that it can be assumed that \(U \) is nilpotent.

If the subalgebra \(L_0 \) always coincides with \(L \), then the adjoint representation of \(L \) induces a nil representation of \(A \). The adjoint representation of \(A \) is a constituent of a nil representation; hence it is itself a nil representation and hence \(A \) is nilpotent, by Engel’s Theorem. In this case we may set \(U = L \), if \(L/A \) is not nilpotent. If \(L/A \) is nilpotent, then for every
element a of L the adjoint linear transformation induces a nilpotent linear transformation of L/A. Thus by assumption the adjoint representation of L is a nil representation and by Engel’s Theorem it follows that L is nilpotent. In this case we set $U = L$.

Proof of Theorem 2. By Lemma 3 there is a subalgebra U of L satisfying (21) such that $U \cap L^2$ is nilpotent. The representation Δ_U induced by Δ by restriction to U has a complete reduction

$$\Delta_U \sim \begin{pmatrix} \Delta_1 & \ast & \ldots & \ast \\ \Delta_2 & \ast & \ldots & \ast \\ & \ast & \ldots & \ast \\ & & \ast & \ast \end{pmatrix}$$

with irreducible constituents Δ_1, Δ_2, ..., Δ_r. For the fully reducible representation Ψ that is obtained by adding only those irreducible constituents Δ_i for which the Δ_i-radical does not coincide with L, we clearly obtain (22). Since $U^1(\Psi) = U \cap L^2$ is a nilpotent ideal and therefore $U^{1+} = U^{1+}(\Psi)$ is a solvable ideal of U, (23) follows by an application of the corollary of Theorem 1; (24) is proved similarly.

After these preparations we have the following

Structure Theorem (Theorem 3). (a) For any Lie-algebra L over a field F of characteristic distinct from 2 and 3 and for any matrix representation Δ of L, the factor algebra \bar{L} of L over the Δ-radical of L permits a decomposition

$$\bar{L} = \sum_{i=1}^r \bar{L}_i$$

into the direct sum of mutually orthogonal and indecomposable ideals \bar{L}_1, \bar{L}_2, ..., \bar{L}_r distinct from 0.

(b) The ideals \bar{L}_1, \bar{L}_i are perfect ideals and uniquely determined up to the order. The centre $z(\bar{L}_i)$ of \bar{L}_i is of the same dimension over the field of reference as the factor algebra \bar{L}_i/\bar{L}_i^2 of \bar{L}_i over \bar{L}_i^2.

(c) If the ideal \bar{L}_i is abelian, then it is one-dimensional.

(d) If the centre of \bar{L}_i vanishes, then $\bar{L}_i = \bar{L}_i^{1+}$ is simple non-abelian.

(e) Only if the characteristic of F does not vanish can there be non-abelian components \bar{L}_i with non-vanishing centre $z(\bar{L}_i)$. In this event the ideal \bar{L}_i^2 is the sum of the minimal non-vanishing perfect ideals \bar{L}_{i1}, ..., \bar{L}_{imi} of \bar{L} contained in \bar{L}_i. The algebra \bar{L}_i^2 is directly indecomposable but there is the decomposition

$$\bar{L}_i^2/z(\bar{L}_i) = \sum_{j=1}^{m_i} (\bar{L}_{i1} + z(\bar{L}_i))/z(\bar{L}_i)$$

of the factor algebra $\bar{L}_i^2/z(\bar{L}_i)$ into the direct sum of its minimal non-vanishing ideals, each of which is simple non-abelian.

(f) Every minimal non-vanishing perfect ideal of \bar{L} coincides with one of the ideals \bar{L}_{i1}. If and only if its centre vanishes, we have $\bar{L}_{i1} = \bar{L}_i$. The minimal non-vanishing perfect ideals are mutually orthogonal.

Proof of Theorem 3. From the definition of \bar{L} it follows that the trace bilinear form of Δ induces on \bar{L} a symmetric invariant bilinear form such that the orthogonal space of \bar{L} vanishes, i.e., a non-degenerate bilinear form. Hence, for every linear subspace \bar{X} of \bar{L}, the dimension of \bar{X}^\perp plus the dimension of the orthogonal subspace \bar{X}^\perp is equal to the dimension of \bar{L}. Hence
If \bar{X} is non-degenerate, i.e. if $\bar{X} \cdot \bar{X}^\dagger = 0$, then we have in any event the direct decomposition $\bar{L} = \bar{X} \oplus \bar{X}^\dagger$. Thus there is a decomposition (25) of the finite-dimensional Lie-algebra \bar{L} into the direct sum of r mutually orthogonal non-vanishing ideals $\bar{L}_1, \bar{L}_2, \ldots, \bar{L}_r$, such that there is no further decomposition of \bar{L}_i into the direct sum of mutually orthogonal non-vanishing ideals ($i = 1, 2, \ldots, r$). Note that every ideal of \bar{L}_i is also an ideal of \bar{L} and that the trace bilinear form of Δ induces on \bar{L}_i a non-degenerate symmetric invariant bilinear form.

If \bar{L}_i is abelian, then, since the characteristic of F is distinct from 2, it follows that there is an element \bar{x} of \bar{L}_i for which $(\bar{x}, \bar{x})_A \neq 0$, so that \bar{L}_i is orthogonally decomposable into the direct sum of the ideal $F\bar{x}$ and the orthogonal complement $(F\bar{x})^\perp \subset \bar{L}_i$, and this implies that $\bar{L}_i = F\bar{x}$. Note that $\bar{L}_i^2 = 0$ implies that \bar{L}_i is a perfect ideal.

Let $\bar{L}_i^2 \neq 0$. For the Lie-algebra $M = \bar{L}_i$ with non-degenerate bilinear form f satisfying (2)–(5), we find that

$$f(M^2, z(M)) = f(M, Mz(M)) = f(M, 0) = 0.$$

Conversely, if $f(M^2, x) = 0$ for the element x of M, then $f(M^2, x) = f(M, Mx) = 0$, $Mx = 0$, x lies in $z(M)$; hence $z(M) = (M^2)^\perp$, $z(M)^\perp = M^2$. If for an element \bar{x} of the centre of \bar{L}_i we have $(\bar{x}, \bar{x})_A \neq 0$, then there is the orthogonal decomposition of \bar{L}_i into the ideal $F\bar{x}$ and its orthogonal complement. Since this is impossible and since the characteristic of the field of reference is distinct from 2, it follows that $z(\bar{L}_i)$ is contained in $(z(\bar{L}_i))^\perp = \bar{L}_i^\dagger$. The dimensions of $z(\bar{L}_i)$ and of \bar{L}_i^\perp add up to the dimension of \bar{L}_i, so that $z(\bar{L}_i)$ is isomorphic to the factor algebra of \bar{L}_i over \bar{L}_i^{\perp}.

By Theorem 1 every solvable ideal of \bar{L} lies in $z(\bar{L})$. For every solvable ideal A of \bar{L}_i, it follows from Theorem 1 that $\bar{L}_i^2 A \subseteq (\bar{L}_i^2)^\perp \subset \bar{L}_i = z(\bar{L}_i)$; hence A lies in the second centre of \bar{L}_i^2, a solvable ideal of \bar{L}, and hence A lies in $z(\bar{L}_i)$. It follows that the factor algebra $\bar{L}_i^2/z(\bar{L}_i)$ contains no abelian ideal $\neq 0$. Moreover $\bar{L}_i^2/z(\bar{L}_i) \neq 0$. The trace bilinear form of Δ induces a non-degenerate symmetric invariant bilinear form f^\ast on $L_i^\ast = \bar{L}_i/z(\bar{L}_i)$.

There is a decomposition

$$L_i^* = \sum_{j=1}^{m_i} L_{ij}^*$$

of L_i^* into the direct sum of mutually orthogonal ideals L_{ij}^* which permit no further proper orthogonal decomposition. For an ideal A^* of L_{ij}^*, set $B^* = A^{\perp} \cap L_{ij}^*$, so that

$$f^\ast((A^* \cap B^*)^2, L_{ij}^*) = f^\ast(A^* \cap B^*, (A^* \cap B^*)L_{ij}^*) \subseteq f^\ast(A^*, B^*) = 0, (A^* \cap B^*)^2 = 0.$$

Thus $A^* \cap B^*$ is an abelian ideal of L_{ij}^* and therefore of L_i^*. Hence $A^* \cap B^* = 0$, $L_{ij}^* = A^* + B^*$, so that, by assumption, $A^* = L_{ij}^*$, and therefore L_{ij}^* is simple non-abelian. If X^* is any minimal non-vanishing ideal of L_i^* then, as shown above, $X^* \neq 0$; hence $X^*L_{ij}^* \neq 0$, $X^*L_{ij}^* \neq 0$ for some index j, $X^* \cap L_{ij}^* \subseteq X^* \cap L_{ij}^*$, $X^* \cap L_{ij}^* \neq 0$. $X^* \cap L_{ij}^* = * = L_{ij}^*$. It follows that the components L_{ij}^* are simple non-abelian ideals characterized as the minimal non-vanishing ideals of L_i^*.†

The ideal $\bar{L}_{ij}^* \subseteq \bar{L}_i^2$ formed by the cosets in L_{ij}^* contains a minimal perfect ideal $\bar{L}_{ij} \neq 0$ of \bar{L}_i^2. It is clear that $L_{ij}^* \supseteq (L_{ij}^* + z(\bar{L}_i))/z(\bar{L}_i)$ and hence

$$(L_{ij}^* + z(\bar{L}_i))/z(\bar{L}_i) = L_{ij}^*, \quad L_{ij}^* = L_{ij}^* + z(\bar{L}_i), \quad (L_{ij}^*)^2 = (\bar{L}_{ij})^2 = \bar{L}_{ij}.$$

† Compare [1], [2].
Thus \mathcal{L}_i is uniquely determined by L_i^* as the derived algebra of the algebra \mathcal{L}_i^* formed by the cosets modulo $z(\mathcal{L}_i)$ belonging to L_i^*.

Conversely, if A is a minimal perfect ideal $\not= 0$ of \mathcal{L} then, because $\overline{A} = A$, we find that the i-th component ideal $A_i = (A + \sum_{j \neq i} A_j) \mathcal{L}_i$ lies in \mathcal{L}_i^2 and is isomorphic to A. Hence, if $A_i \not= 0$, then A_i is a minimal perfect ideal $\not= 0$ of \mathcal{L}_i. Thus $A_i = \mathcal{L}_i^2$ for some j, $A_j A_i = A_i \subseteq A_i A \subseteq A$, $A_i A = A_i$, $A_i \subseteq A$. Since A is itself a minimal perfect ideal $\not= 0$ of \mathcal{L}, it follows that $A_i = \mathcal{L}_i^2$.

Since the trace bilinear form of A induces on $\mathcal{L}_i^2/z(\mathcal{L}_i)$ a non-degenerate bilinear form, it follows by an argument similar to an earlier one that

$$0 = (D^2L_i, D\mathcal{L}_i \cap (D^2L_i)\mathcal{L}_i) = (D\mathcal{L}_i, D\mathcal{L}_i \cap (D^2\mathcal{L}_i)\mathcal{L}_i),$$

$$D\mathcal{L}_i \cap (D^2\mathcal{L}_i)\mathcal{L}_i = z(\mathcal{L}_i),$$

$$\mathcal{L}_i \cap (D^2\mathcal{L}_i)\mathcal{L}_i$$

is solvable, $\mathcal{L}_i \cap (D^2\mathcal{L}_i)\mathcal{L}_i \subseteq z(\mathcal{L}_i)$,

$$\mathcal{L}_i \cap (D^2\mathcal{L}_i)\mathcal{L}_i = z(\mathcal{L}_i) = \mathcal{L}_i \cap (D\mathcal{L}_i)\mathcal{L}_i,$$

$$D^2\mathcal{L}_i = D\mathcal{L}_i, D^2\mathcal{L}_i = D\mathcal{L}_i.$$ For the perfect ideal $D\mathcal{L}_i$ we find that

$$D\mathcal{L}_i = z(\mathcal{L}_i) + \sum_{j=1}^{r_i} \mathcal{L}_{ij} = D^2\mathcal{L}_i = \sum_{j=1}^{r_i} \mathcal{L}_{ij}.$$
Let Γ be an absolutely irreducible constituent of Δ. Then for any element z of $z(H) \cap H^2$ we have, by Schur's Lemma, $\Gamma_z = \xi I$ for some element ξ of an extension of F. By [4, p. 29], for any element h of H the matrix $\Gamma(h)$ has only one characteristic root, say $\lambda(h)$, of maximal multiplicity $d(\Gamma)$, so that

\[(z, h) = \operatorname{tr}(\Gamma z \Gamma h) = \xi \operatorname{tr}(\Gamma(h)) = d(\Gamma) \xi \lambda(h).\]

Here either the degree of Γ is divisible by the characteristic of F or $d(\Gamma) = 1$, $\Gamma(H^2) = 0$, $\Gamma(z) = 0$, $\xi = 0$. At any rate $(z, h) = 0$. Hence $(z, h) = 0$, $z \subseteq H^1(\Delta^H)$, $z \subseteq L^1(\Delta) \subseteq z(L)$. By assumption, for each irreducible constituent Δ_i of Δ we have $L^1(\Delta_i) \subseteq L$; hence $H^1(\Delta^H) \subseteq H$. Since the characteristic of F is not 2, it follows that there is an element h of H such that $(h, h)_{\Delta_i} = 0$. There is an absolutely irreducible constituent Γ of Δ^H for which $(h, h)_{\Gamma} \neq 0$. On the other hand we know that the matrix $\Gamma(h)$ has only one characteristic root $\lambda(h)$ of multiplicity $d(\Gamma)$, so that $0 \neq (h, h) = \operatorname{tr}(\Gamma h)^2 = d(\Gamma) \lambda(h)^2$, $d(\Gamma)$ is not divisible by the characteristic of F, $d(\Gamma) = 1$, by [4, p. 97, Satz 12]. Hence $\Gamma(z) = 0$, $\Delta_i(z)$ is a nilpotent matrix. Hence, by Schur's Lemma, $\Delta_i(z)$ is a singular matrix. Hence, by the characteristic of the ideal Fz of L, $\Delta_i z = 0$, by Lemma 2. Since L is fully reducible, it follows that $\Delta z = 0$, $z = 0$, $H^2 \cap z(H) = 0$, $H^2 = 0$, q.e.d.

Proof of the remainder of Theorem 3. By Theorem 2 and its proof we can assure that L satisfies the assumption of Lemma 4. Moreover we can assume that $0 \subseteq z(L) \subseteq L^2 \subseteq \bar{L} = \bar{L}_i$.

If there is a Cartan subalgebra H of L then, by Lemma 4, it is abelian. Since H is nilpotent and its own normalizer, it follows from [4, pp. 28–29] that there is a decomposition $L = H + \hat{H}$ of L into the direct sum of H and another linear subspace \hat{H} such that $H \hat{H} = \hat{H}$. Hence $H + L^2 = L$. Let $\bar{H} = H/L^2$, so that $H + \bar{L}^2 = \bar{L}$ and \bar{H} is abelian. If there is a decomposition $\bar{L}^2 = \bar{A} + \bar{B}$ of \bar{L}^2 into the direct sum of the two ideals \bar{A}, \bar{B} of \bar{L}^2, then it follows from $D\bar{L}^2 = \bar{L}^2$ that $D\bar{A} = \bar{A}$, $D\bar{B} = \bar{B}$, hence \bar{A}, \bar{B} are ideals of \bar{L}. Moreover it follows from the relations $A \cap B = 0$, $A + B = \bar{L}^2$ that $A^2 + B^2 = \bar{L}^2$, $A^2 \cap B^2 = \bar{L}^2$, $A^2 \cup B^2 = \bar{L}^2$, $A^2 + B^2 = \bar{L}^2$, $A^2 \cap B^2 = \bar{L}^2$, $A^2 \cup B^2 = \bar{L}^2$, $A^2 + B^2 = \bar{L}^2$, $A^2 \cap B^2 = \bar{L}^2$, $A^2 \cup B^2 = \bar{L}^2$. Since \bar{L} is orthogonally indecomposable, it follows that either \bar{A} or \bar{B} vanishes. Hence \bar{L}^2 is indecomposable.

If there is no Cartan subalgebra of L then, by [4, pp. 32–33], it follows that the field of reference is finite. Let $\mathcal{O}(\bar{L}^2)$ be the associative algebra over F that is generated by the adjoint linear transformations of \bar{L}^2. Let $\mathcal{O}(\bar{L}^2)$ be the linear associative algebra consisting of all linear transformations of \bar{L}^2 that are elementwise permutable with $\mathcal{O}(\bar{L}^2)$. Since \bar{L}^2 is perfect, it follows that there is, up to the order of the components, only one decomposition $\bar{L}^2 = \sum_i \bar{A}_i$ of \bar{L}^2 into the direct sum of indecomposable ideals A_i. Hence the factor algebra $\mathcal{O}(\bar{L}^2)$ over its radical is isomorphic to a ring sum of finitely many division algebras E_1, E_2, ..., E_s of finite dimension over F. By a theorem of Macclagan-Wedderburn, all the E_i's

\[f(H, \hat{H}) = f(H, H \hat{H}) = f(H^3, \hat{H}) = f(H^4, H \hat{H}) = f(H^5, \hat{H}) = \ldots = f(H^{s+1}, \hat{H}) = 0\]

and hence (26) is satisfied.
are finite extensions of F. Since the numbers prime to the product P of the degrees of the extensions E_i over F are unbounded, it follows from [4, pp. 32-34] that there is an extension E of F of degree prime to P, such that the extended Lie-algebra L_E over E contains a Cartan subalgebra. By the method of the construction of E, there is, up to the order of the components, only one decomposition of L_E^2 into the direct sum of indecomposable ideals $\neq 0$, viz., the decomposition $(L_E^2)_E = \sum_{i=1}^{t} (A_i)_E$. As we have seen before, there is a decomposition $L_E = \sum_{i=1}^{t} B_i$ of L_E into the direct sum of the mutually orthogonal ideals B_i such that $(A_i)_E$ is contained in B_i, for $i = 1, 2, \ldots, s$. We have $(\sum_{i=2}^{t} (A_i)_E)^4 = B_1 + z(L_E) = (\sum_{i=2}^{t} A_i)^4_E$ and there is a linear subspace X of $(\sum_{i=2}^{t} A_i)^4$ such that $B_1 + z(L_E) = (A_1)_E + z(L_E)$, $A_i)_E + X_E$ is an ideal of L_E and $(A_1)_E + X_E)$ such that $B_1 \cap B = 0$ and therefore there is the orthogonal decomposition $L = B \perp B$ of L. It follows that $t = 1, \bar{L}$ is indecomposable, q.e.d.

REFERENCES

UNIVERSITY OF NOTRE DAME,
NOTRE DAME, INDIANA, U.S.A.